Efficient and Complete Centralized Multi-Robot Path Planning

Ryan Luna and Kostas E. Bekris

Abstract— Multi-robot path planning is abstracted as the
problem of computing a set of non-colliding paths on a graph
for multiple robots. A naive search of the composite search
space, although complete, has exponential complexity and gl ~Push =
becomes computationally prohibitive for problems with just 03
a few robots. This paper proposes an efficient and complete
algorithm for solving a general class of multi-robot path
planning problems, specifically those where there are at most-

2 robots in a connected graph of: vertices. This paper provides
a full proof of completeness. The algorithm employs two
primitives: “push”, where a robot moves toward its goal until

no progress can be made, and “swap”, that allows two robots ~_Push
to swap positions without altering the position of any other
robot. Additionally, this paper provides a smoothing procedure (d) o)

for improving solution quality. Simulated experiments compare

the proposed approach with several other centralized and Fig. 1. A complete example of Push and Swap. (a) Start and goal
decoupled planners, and show that the proposed technique configurations. (b) Robot 1 pushes to its goal, moving robgtRRobot 2
improves computation time and solution quality, while scaling to is blocked by 1. 2 swaps with 1. (d) Robot 2 pushes to its gealRpbot 3

problems with 100s of robots, solving them in under 5 seconds. Pushes and is blocked by 1. 3 swaps position with 1. (f) Rolistt8ocked
by 2. 3 swaps position with 2, and reaches its goal.

. INTRODUCTION by searching a minimum spanning tree of the roadmap [1],

Multi-robot path planning [1], [2] requires the computatio OF restricting the problem domain in grid-worlds (i.e., 4 or
of paths for multiple robots on a graph, where the robot8 connectivity) [6]. It is possible to take advantage of ad-
must move from their start positions to unique goals whil&@0C networks formed when robots are within communication
avoiding collisions. An efficient solution to this problem i fange by sharing information and utilizing a coupled planne
relevant in many applications, such as warehouse manad@-compute trajectories for each connected component of the
ment, intelligent transportation, (dis)assembly, autooos Nnetwork [7].

mining, space exploration, as well as computer games. In contrast, decoupled approaches compute individually
optimal paths, and settle conflicts between the paths as they
A. Background arise. These approaches compute sub-optimal solutions and

Traditional solutions to the multi-robot planning problemare not usually complete. However, decoupled methods are
consider either a coupled or decoupled approach. In couplégically able to compute solutions in times that are orders
techniques, the robots are considered a single composite magnitude faster than coupled planners, making them
system with many degrees of freedom, and the solution evalent in the multi-robot literature. Prioritized plears
found by searching the composite roadm@ff = G x compute paths sequentially for different robots in order of
G x ... x G, whereG is the original graph and. is the priority. Paths of high priority robots are considered nmoyi
number of robots. The coupled approach guarantees rmhistacles that must be avoided by those of lower priority
only completeness, but optimality as well [3], [4]. Thesd8]. The choice of priorities has a significant impact on the
approaches, however, have exponential complexity in thsolution quality [9], and searching the space of priorities
number of robots. This complexity has inspired a numbetan improve performance [10]. Another typical decoupled
of approaches that attempt to prune the search space whalgproach considers tuning the velocities of robots aloeg th
maintaining completeness. One such method splits the mulirecomputed trajectories to avoid collisions [11], [12heEe
robot problem into a sequence of fully-coupled subcompa@pproaches have evolved over time, and are now able to com-
nents where each subcomponent can be solved independeptlye collision free paths for systems with dynamic constsai
of all others [2]. A hybrid technique plans for each robof{13]. Decoupled approaches suffer from deadlocks, and a
given future paths, and employs a coupled approach foumber of planners were created in order to reduce this.
choosing goals and avoiding deadlocks [5]. For graphs withechniques using incremental planning [14] or coordimatio
specific topologies, efficient and complete approacheg exigraphs [15], [16] have shown to reduce these deadlocks.

_ , _ A modern heuristic-search technique for solving multi-
R. Luna and K. E. Bekris are with the Department of Computerriéeie

and Engineering, University of Nevada, Reno, 1664 N. Vi@iSt., MS robot path pIannlqg ConSider$ a dynam.ic priority scheme
171, Reno, NV, 8955¢r | una, bekris}@se. unr. edu for the robots during replanning, and windows the search

in combination with a backwardd* heuristic in order to [1l. PUSH AND SWAP

improve search time and scalability [17]. This method was The PUSHAND_SWAP method sets the current assignment
further improved with spatial abstraction for faster hetiti 4 15 the starting ones and starts building the solution path
computation .and lower memory requwements [18]. Othefy. by insertingS into IT* (line 1). It also initializes the set
search techniques take advantage of the discrete space-byﬁ to the empty set. This set will be used throughout this
ating a flow network within grid-worlds [19], or decomposeyeqcription, indicating a set of static vertices that aeated

the roadmap into subgraphs with specific properties [20]. 55 gpstacles. It contains vertices of robots that have egach
B. Contribution their goals. Thgn for each robat PUSHAND_SWAP tries
ﬂrst to pushr to its goal 7 [r] by clearing its path from other

lanning that is computationally efficient and completedor robots (lines 2-5). If the push operation fails (line 5),rthe
P Ing IS putall y etiict P a swap operation is initiated with the robot that is blocking

very general class of problems, i.e., all instances wheareeth s path (line 6). If the swap also fails, then the problem

ar(_a”?t mosk _3 rob(t)rt]sc;n ggraphlw!thz ert'cesf' it dits not solvable (line 7). I~ has not reached its goal, then
e proposed method (\gure) is orders of magnitu fhe algorithm keeps applying push and swap operations (line
faster when compared to traditional coupldd. In compar- 3). Whenr reaches its goal [r], Afr] is inserted to the set
% of static robots, whose position must be respected by all

Eﬁ)r\t/kl](leﬁsmocr(;miril?;znkzsss n]:;)ragsumn"nui?onvgld:bros:otaleer& Ccl)?os ush operations (line 8). Eventually the algorithm retdilfis
’ P P hich is constructed by the calls tosH and SWAP.

of the underlying graph [19], [6], [1]. Compared to a
general decoupled algorithm [17], an efficient and completdlgorithm 1 PUSHAND_SWAP (G, R,S,T)
centralized planner [1], and a coupled planner utilizing1: A« S, IT* + {S}, U «+ 0

optimal decoupling[2], the proposed technique exhibits 2: for all » ¢ R do

competitive solution times with no dependence on parametes: while A[r] # T[r] do

This paper proposes a new method for multi-robot pat

selection. Empirical results show that the proposed ambroa 4: p = SHORTESTPATH (G, A[r], Tr])
consistently solves multi-robot path planning problems ins: if PUSHII*, G, A,r,p,U) == FALSE then
times significantly faster than several existing coupled an 6: if swapP(Il*,G, A, T,r,U) == FALSE then
decoupled approaches, and returns higher quality sokition 7: return @ (i.e., Failure)

The approach employs two basic primitives. The firsts: U < U U Alr]
primitive, “push”, forces robots to clear a specified path fo o: return II* (i.e., Success)
a robot to get to its goal. In harder instances, robots may
be required to switch positions along their shortest pathé. Push Primitive

This is addressed by the second primitive called “swap”. pysH (Algorithm 2) attempts to move robat along a
Once a robot cannot make progress towards its goal Rjven pathp*. This operation will incrementally move any
pushing, it must swap positions with the next robot alongohot occupying a vertex ip* away from this path, as long
its shortest path. This operation may force other robots fge occupied vertex doesn't belong to thegetA graphical

move in response; pOtentially all of them. EVentua”y, hé t examp|e of the Operation is shown in Figure 2.
robots must be returned to their original positions, withtju :
iAlgorithm 2 pusH(II*, G, A, r, p*, U)

two robots swapping positions. This work shows that if _
is not possible to execute a “swap” for two robots, then thel: t = last vertex inp

problem is not solvable. 2: v« vertex inp” after Alr]
3: while Afr] #t do
Il. SETUP AND NOTATION 4: advancer alongp* until blocked, inserting interme-
Consider a graplg(V, &) and n robots R, wheren < diate actions intdI*

[V| — 2. An assignmentd : [1,n] — V places the robots 5: if A[r] # ¢ then

in unique verticesYi,j € [1,n],j #i: Alij € V, Ali] # 6 Mark A[r] andi{ as blocked org

Alj]. The starting assignment is denoted®sand the goal 7 ve < reachable empty vertex toon G

assignment is denoted @s An actionw(A,, A,) is achange 8 p < SHORTESTPATH(G, v, v,)

between two assignment$, and .4, so that only one robot 9 if p == 0 then returnFALSE

moves between neighboring vertices in the two assignment): Mark A[r] andU as free ong

e, 3ic[l,n] andVj € [1,n],j #i: 11: move robots orp towardwv,; insert actions intdI*
12: return TRUE

Aali] 7 Asli], (Aalil, Asli]) € €, Aalj] = Asli] PUSH iterates as long as has not reached the end of the
A pathIl = {A,..., A} is a sequence of assignments, s@iven path (line 3), and it can still make progress without
that for any two consecutive assignmeptsand.A; ., in II any need for swapping (line 9). If the vertices alopy
there is an actiom(A4;,.4;+1). The objective of multi-robot are not occupied, then is moved along these vertices and
path planning is to compute a solutidfi* = {S,...,7}, the corresponding intermediate assignments are stored on
which is a sequence initiated with and ending with7. the solution path (line 4). At this point, if has traversed

(@) (b)
(a) (b) (©) (d)
O@(T:W O@Ogm
(© (d)
Fig. 2. lllustration of the push primitive. (a) Robot 1 advasalong the

empty vertices in its shortest path. (b) Robot 2 is pushed llgwiag 1 to
advance. (c) Robot 3 is pushed forward, allowing robot 1 sxineits goal.

Fig. 3. lllustration of the swap primitive. Robotsand s swap positions.

s to v and one of its neighboring vertices (line 8). This is
achieved by a call to the functionusH, which will move
the composite agent composed of adjacent agerasd s,
that can also move all other agents indiscriminately; the se
. . _ of static vertices passed tawsHhere is empty(line 8). If the
the entire path , the subproblem foris solved (line 5). pushing succeeds, thed[r] = v and A[s] is adjacent tov.

Otherwise, the next vertex along p” of r is occupied by ., 304 to swap positions at, two adjacent vertices of
another robot. In this case, the algorithm considers Wrnethg (excluding the vertex occupied by) must be evacuated

it is possible to.push the r'obot b|°Ck”,19 the pathout of (line 9). This is the objective ofLEAR, detailed later in this
the way Of.r’ W'.thOUt altering the ppsmon of or any of section. If two adjacent vertices ofcannot be cleared, then
the robots i/ (lines 6-11). To do th'SPU_SH computes the it is impossible forr and s to exchange positions at and
shortest pattp between the robot occupying vertexand the another vertex must be checked.

closest reachable empty vertexto v on G. The vertexv, If all vertices of degree> 3 are exhausted and and

is considered reachable if there exists a path betweand s cannot reach such a vertex with two empty neighbors,
ve that does _not pass through any vertex in theZ/E,_ed)r the SWAP returns failure (line 11). If the swap can take place,
vertex occupied by robot (lines 6-8). If no path is found o 4ctions computed byuLTIPUSH and CLEAR are added
(line 9), then robot cannot push the blocking robot out of itsto the global solution (line 12), and the swap is performed
shortest path, and further progress cannot be made WithQHﬁe 13). The swap is shown in Figure 3. Once the swap

swapping. If a path is found (line 10), then all of the rob0t§S executed, the actionH computed byMULTIPUSH and
along the shortest path betweenand Ve are pqshed ON€ | EAR must be reversed so that robots already at their goal
vertex forward towards. alongp. In this waywv is cleared iy reyym there after the swap. Care must be taken during
for r to occupy. The pushing process is then repeated, 9VeD\ersal not to undo the swap ofinds; paths executed by

the new assignment of all robots. will be executed bys and vice versa (line 14). The reversed
set of actions is then added I&* (line 15). Finally, it may
happen that occupies a vertex in the s&f indicatings was
already at its goal (line 16). After the swap,and s have
switched positions, ang must be moved back to its goal to
maintain the swap invariant. This is achieved R§SOLVE
(line 17), detailed later in the section.

B. Swap Primitive

SWAP switches the position of a robetwith the robots
adjacent ta- alongr’s shortest path. Afteewap is finished,
the only robots that have changed position arend s.

Algorithm 3 swap (11%,G, A, T, r, U)

1: p* < SHORTESTPATH (G, A[r], T[r]) 1) Clear Operation: The CLEAR operation (Algorithm 4)

2: s + robot on first vertex irp* after A[r] attempts to free two neighbors of a vertexso that robots

3: success FALSE r ands can swap positions with one another. There are two
4. § «+ {\Vertices of degree> 3, sorted by dist. from'} cases to consider when freeing the neighborhood. of

5: while S #) and success =FALSE do If there are already two empty neighbor vertices 1of

6: v=38.POP(), I+ 0 then the clearing is trivially achieved (lines 1-2). Othesmy

7. p «SHORTESTPATH(G, Ar],v) PUSHIs used to evacuate the neighbors. During the first step,
8 if PUSH(II, G, A, {r, s}, p,0) == TRUE then CLEAR attempts to push all occupied neighbor vertices of
9: if CLEAR (I, G, A, A[r], A[s]) == TRUE then to other neighbors excluding(Figure 4(a), lines 5-9). If two
10: success= TRUE neighbors oy are freed during this processl, EAR succeeds

11: if success =FALSE then return FALSE (line 8). Otherwise, if all neighbors aof are exhausted but
12: ITI* = 11" 4+ 11 there exists a single empty neighbor of (Figure 4(b)),

13: EXECUTESWAP (IT*, G, A[r], A[s]) the algorithm considers moving an occupied neighbov of
14: 11 = TI.REVERSE(), exchanging paths for and s throughv and an empty neighbor where it may be possible
15 II* = 11" + 11 to push further. Only if there is one empty neighbor is this
16: if T[s] € U then feasible; note that if it is not possible to push a single tobo
17: returnReESOLVE (IT*, G, A, T, U, p*, 7, s) away fromo, it will not be possible to push a second one. To

18: return TRUE

To switch two robotsswap selectss, which is adjacent
to r alongr’s shortest path (lines 1-2). For a vertexn G

from A[r] to v (line 7). Then,swAp attempts to push and

O
(d)

Fig. 4. CLEAR operation at vertex (shaded). (a) Case 1. (b-d) Case 2.

achieve this, the vertex itself must be cleared (Figure 4(c), push from its current position to its goal (line @)continues
lines 10-11). Then all occupied neighborstofire checked to swap along its shortest path until the push f@ucceeds.

to see if it is possible to clear them via an empty vertex ofnder some circumstances,may swap to its goal. In this

v (Figure 4(d), lines 14-17). If a single push succeeds, thetase,r has swapped with a robet that was occupying its
two neighbors have been successfully clear®d=AR can goal; v’ must then continue the resolution process in order
then move the robots formerly occupyimgand its neighbor to free the goal ofs. This is achieved with a recursive call
back to their original positions and return success (ling 18to RESOLVE, replacingr with 7’ (lines 11-15).

If both steps 1 and 2 fail, then it is not possible to clearesert _
v without additional swapping. Section IV details why thesdtlgorithm 5 Resowve (II*,G, A, T, U, p*, 7, s)

two cases are sufficient for clearing the neighborhood.of 1: t = vertex inp* after A[r|, U’ <= {U{ U{A[s]}} \{T [s]}

Algorithm 4 CLEAR (II*,G, A, v,v") ; ﬁ?i:g?ﬂssgtpzm (gif;[ﬂ{é?}
1: € « {free neighbors ob}, U < {v,v, &} ' AR

¢ 4: moves from Als] to

2: if |€] > 2 then return TRUE 5. returnSTRUE s} to Tls]
3: for all n € NEIGHBORS (v) \ {£,v'} do 6 else
4: for all n/ c NE|GHBORS(TL) \ {5,’1}} do 7: 7"’ —r ps « {A[S} T[S]}
5 p ¢ SHORTESTPATH (G.n.n) & whie Swap (I, A, T+ 44) do
& W PUSHIE, 9, RoBOTIG,n),p,U) then o if Als] == T[s] or PUSH(IT*, G, A, s, p*, ') then
v & EU{n} 10: return TRUE
8: if |£] == 2 then return TRUE 11 else if A[r'] == T[] then
9: else if |€] == 1 then break 12 U — U ULTI

. / :
10: p «~SHORTESTPATH (G, v, ') 13: ' = robotr’ just swapped with
11: if P},JSH(H*’Q ROBOT(G, v),p, £) then 14: p* =SHORTESTPATH (G, A[r'], T[r'])
123 v’ = verteix r)/eld by robot that formerly held 15 return RESOLVE (IT*, G, A, T, U', p*. 7", s)
18 U+ {v,0', 0", &} 16: return FALSE
14: for all n € NEIGHBORS (v) \ {&,v} do
15: for all n’ € NEIGHBORS (5) \ v do C. Post Processing
16: p < SHORTESTPATH (G, n,n’) .
17 if PUSHTI*, G, ROBOT(G, n), p,U U {n}) then Post processing the sequendé PUSHAND_SWAP can
18j move RO;30'T(Q V)to 1’} R'OB’OT(Q v Yto v/ yield significant improvements in path qualify:* may have
19: return TRUE ’ ' ’ redundant paths due to multiple calls sovap and subse-

20: return FALSE quent.reversa_ls required for the swap invariantskimooOTH
, : - (algorithm 6), if a robot leaves a vertexat stept, and returns

2) Resolve OperauonTheRE_SOLVEope_rgtmn repairs the att+ j, and no other robot occupiesduring (¢, ¢ + j), then
case inswAP where a robot switches positions with anothegy o obot is free to remain atduring (¢,¢ + j)

robot already at its goaRESOLVE returns the robot to its .
goal, while allowingr to make further progress. Algorithm 6 smooTH (1)
1: removed= TRUE

@9 (5)4) @ (> (2) 2. while removed== TRUE do
% .x@ .x@ 3: removed= FALSE
- - - . for all 7 € II.REVERSE() do
@ (b) :

r = ROBOT(7), v = last vertex inx

4
5

6 7’ <—next path in[I.REVERSE() containingv
7: if 7’ # (0 and r ==RoOBOT(7’) then

8 for all 7" € II(n’, 7] do

9 if ROBOT (7”") == r then

10: remove (7”’) from II

() 11: remove portion of =’ after v

Fig. 5. RESOLVE: Vertices id’ are shaded. (a) After robots 1,2 and 3 12: removed= TRUE
have planned. (b) Robot 4 swaps with 3. (c) Resolve is invd@edias at ~ 13: returnlIl

goal). 4 swaps with 5 and reaches its goal. (d) Resolve c&died and 5; . .

5 swaps with 4. (e) 5 swaps with 2 invoking Resolve again. (fuShes to SMOOTH acgepts a solution paﬂ], and iterates over _eaCh

its goal; third Resolve is successful. (g) 4's goal is freseond Resolve action 7 € II in reverse order (line 4). For each actian

is successful. (h) 3's goal is free; first Resolve is complete. the actions afterr in the reversed sequence are checked for
RESOLVE first attempts to push robat further along its an occurrence of the final vertexin «. If such an action

shortest path (lines 2-5). If the push succeeds, then thie ged exists, andr and n’ are executed by the same robot

of s will be free, allowings to move to it. If this push fails, (lines 7-8), then all actions executed bypetweenr’ andn’

thenr will have to swap positions again along its shortes{including) are removed froniI (lines 9-11). Additionally,

path (line 8). After a successful swap, robatan attempt to =’ is cut to end at vertex (line 12). The smoothing process

continues until the entire solution sequence has beenetéraof v. 2) Pusha throughv and an empty neighbor af: v’.
through.sMOOTH continues to iterate ovéf in reverse order Robota should end at a neighbor aef, excludingv or an
until no paths are removed during an entire iteration. empty neighbor of. 3) Swapa with robotsr ands in order
to occupy a vertex opposite and s.
PUSH can be used in case 1 by fixing the positions-of,
This section proves the completenes®0EHAND_SWAP and any free neighbor af sincePusH exhaustively searches
for instances where the number of robots<igV| — 2. for reachable empty positions. Case 2 can also utitizeH,
Theorem 4.1:PUSHAND _SWAP is complete for multi- oncew itself is cleared by having robot push towards one
robot path planning problems where the number of roboigertex, placing any free neighbor ofin /. After v is free,a
n is less than or equal tp/| — 2. can be moved through to the empty neighbor to attempt a

To prove this theorem, it must be shown that if twopusH For thispusH the set/ is populated with the vertices
adjacent robots cannot swap vertices, then the plannirgcupied by robots ands, and the vertex.

problem itself has no solution. This implies th&awaP must Case 3 is an extension of case 2, cCase 1\ Case 2
be able to bring two agents to a degree of 3 or mor@here robota attempts to evacu-
and free two neighboring vertices in each solvable instancgte the neighborhood af through (Sase3 |
Additionally, it must be shown that progress is always madghe vertices occupied by robois
when applyingpusH or SWAP and that a solvable instance and s. This evacuation, however,
will never become unsolvable with those primitives. requiresa to swap position with .
. . . . ig. 7. Evacuating: from
Lemma 4.2:PusHcan transfer a composite robBtmade and s. If it is possible to swap: the neighborhood of a ver-
up of two adjacent robots to a vertexn G if such a transfer with » and s at v, then there must texv (shaded).
is possible and necessary fewAP. be two free vertices in the neighborhoodwgfand it is not
Proof: Consider a composite robd?, a destination necessary to evacuate Therefore, fora to swap withr
v for R on G andp a path fromR to v. If there exists an ands, a second swap vertex, must be used. Note, if it is
alternate patlp’ from v to R, not passing through an internal possible fora to swap withr ands at o, thenr and s could
vertex ofp, thenv belongs to a loop that include®. If v also swap at. Similarly, it may be possible foa to swap
belongs to such a loop, and this loop contains at least &fith » at v, and then swap with at o. If it is feasible fora
empty vertex or there is an empty vertex reachable from thend s to swap atp, it is also possible for ands to swap at
loop, thenR can simplypusH the robots along its shortest . Becauseswap searches all possible vertices of degree 3
path around the loop to reach or more,v will be checked, making case 3 unnecessamy.
Otherwise if v does not belong to a loop witli®, but Lemma 4.4:A multi-robot path planning problem is solv-
there exists a single path from the initial position of R able if and only ifsSwAP can bring robots ands to a vertex
to v, then letp be the number of vertices reachable frem » with a degree> 3 along with two empty vertices.
without passing through any internal vertexm@fandn be Proof: Consider the sequence of vertices along the
the number of robots along. If p > 5, then it is possible shortest path of- to its goal 7[r], where s is positioned
to push all robots blocking into vertices reachable by. betweenr and 7[r]. The ordering ofr and s along this
This completely freep for R, allowing the composite robot string of vertices has to be swapped in order for the problem
to reachv. Otherwise, ifp < 7 then it is not possible fol? to be solved. Even if follows a different path to reach its
to reachv; there are no free vertices to push the robots.in goal 77[r|, the ordering ofr and s along the shortest path

IV. ANALYSIS

If there are multiple paths from 5 will change if the problem is solvable. Thus, the problem is
the initial position ofR to v, then m solvable if and only if the two robots can be swapped.
there must be at least one internal@®-O-«-O-O-O-@-O swaP exhaustively searches all the vertices of degree 3
loop insideg that intersects a path or more, checking whether it is feasible for adjacent robots

from R to v. At this intersection, F9-6. \er;‘i‘iggf’gs:ggp r ands to reach a vertex usingusH, apply CLEAR at the
a vertexv’ of degree 3 or more pysH 1o moveR to v is Vertex, and execute a swap. From lemmas 4.2 2Rdif
exists. For SWAP, this vertex is unnecessary for SWAP/(swaP is unable to move two adjacent robots to a ventef
closer than the given destinations closer tham). degree three or more to execute a swap operation, then the
vertex v, and will be expanded first. In this cas€, either multi-robot path planning problem is not solvable. m
belongs to a loop containing, or a single path exists from |emma 4.5:After a successful call t&waP, the robots
the initial position of R to v/, both of which are discussed in ¢/ are assigned to the same vertices they were assigned
earlier in this proof. Figure 6 shows this case. B pefore the call taswaP, and at least one robot outside if
Lemma 4.3:CLEAR considers all essential cases wherhas made progress toward its goal.
evacuating two vertices in the neighborhood of a vertex Proof: sSwaP attempts to switch the positions of a
for the purposes of swapping robotsands atv. If CLEAR robotr not in2/ with the robots blocking r’s shortest path.
fails, then freeing’s neighborhood foswaP is not possible. Assuming a swap is possible, the swap will result with
Proof: There are 3 cases to consider when evacuatirends switching positions, leaving all other robots intact. The
a robota in the neighborhood of, (Figure 7): 1) Puslu other robots are guaranteed to be at the vertices theydtarte
toward a neighbor vertex that is notor an empty neighbor in because the actions computed durg\gAp is reversed.

e . . . Coupled A* WHCA*(5) Sp. Tree Push/Swap
Becauser is swapped along its shortest path, it will make popiem | Time | size | Time | Size | Time | Size | Time | Size

progress toward its goal. In the case tkabelongs tolf, Tree | 254 | 15 | 1.18 | 344 | 156 | 15 | 042 | 18
RESOLVEis employed to progressfurther along its path to ~ Corners | 3882 | 36 | 0.90 | 36 | oo nfa | 0.88 | 50

. . Tunnel | 413 | 53 () nfa | oo nfa | 2.68 | 81
free the goal ok. BecauseRESOLVE s recursive, more than String | 198 | 20 | 1.46 | 36.1| 1.97 | 38 | 042 | 26

one robot may make progress towards its goal. [] Cycles | 305 | 19 | 1.14 | 305 | oo nfa | 053 | 34
With these lemmas, the proof of Theorem 4.1 is as follows: _Loop | oo | nfa | oo | nfa |oco | na | 845 | 350
Connect| oo n/a 0 n/a 00 n/a 2.63 | 86

Proof: When planning for a robat, the algorithm first
attempts to move: towards its goal by pushing robots not
in U away from its shortest patfi/ contains the vertices
of robots that have previously reached their goalseUusH
succeeds, thenreaches its goal. However,#fcannot make
progress usinguUsH, then there exists a robetadjacent to
r alongr’s shortest path that must be swapped with

To swap robots ands, it is hecessary to move both to a
vertexv with degree> 3, and clear two vertices neighboring
v so that a swap (Figure 3) can be performg@dapr requires
two empty vertices in the neighborhood of(achieved by
CLEAR), and forms the basis for the constraint that at lea
two empty vertices must exist ifi for completenessswapr
performs these steps, and from Lemma 4.4,3frap cannot
be executed, then the problem cannot be solved.

Since PUSH never moves robots already at their goals
and Lemma 4.5 shows thatvap allows r to make progress
without moving any robot already at its goal, repeated call§ genchmark Problems

to PusH and swapP will eventually bring robotr to its goal)]
position, leaving those already at their goal intact. m A series of small, benchmark problems (Figure 8) were

Corollary 4.6: A robot ' may be pushed away from its created, ranging in size from 3 to 16 robots. Because of

initial vertex during the planning of other robots. Becange the small-scale of these problems, a compfrison of the
this displacement, it may seem that there is no path-for PUSHAND_SWAP technique with the coupled A* as well as

to travel from its current vertex to its goal. Note, howeverth® decoupled WHCA* can be shown. The spanning tree

that it is possible for to get from its initial vertex to the Planneris also applicable in some problems because number
current vertex using a series pEISH and SWAP operations, of leaves in _the tr_ee is greater than the nl_meer of robots.
and a similar set of operations will allow to return to its Computation Time:Table | shows the time needed for
initial vertex. If the initial configuration is solvable,ah itis the four approaches to compute their respective solutions.
possible for to reach its goal. The solvability of an instance’!mes of more than 10 minutes are deemed a failure. The

depends only on the initial configuration; any configuratioffoUPled approach computes high quality solutions for small
achieved througPUSHAND_SWAP can be reversed. problems, but becomes infeasible as the number of robots

grows. WHCA* quickly computes solutions for 3 of the
V. EVALUATION benchmarks, but the success rate for those problems is less
than 50%. WHCA*'s inability to solve other problems can
This section evaluatesusHAND _SWAP, and compares its be attributed to a high degree of coordination necessary to
performance against: compute the solution. The spanning tree planner can solve
a) A coupledA* planner which considers the fully com- certain instances, but it has difficulty addressing thesele
posite robot when planning, and expands actions for a singhearks because there are too few leaves in the spanning tree.
robot at a time. This change allows the solution computegh contrast,PUSH.AND_SWAP approach is able to quickly
to be directly compared t®@USHAND_SWAP, which also compute solutions to all of the benchmark problems.
returns a sequential set of actions. Path quality: The solutions returned byuSHAND _SWAP
b) WHCA* [17], a modern decoupled planner that considand WHCA* are sub-optimal. WHCA* does poorly in the
ers a planning window where a prioritized search takes placeee and string problems, computing solutions 2.5 times
This approach periodically changes the priority of eactotob longer than the optimal. Only in theornersproblem is the
to avoid worst-case assignments. It also employs a baclkwarsblution competitive with the other technigues. The spagni
A* heuristic to select the path that “best” completes th&ee approach does well in theebenchmark, but as the size
planning window during each replanning cycle. of the environment increases, the quality of the solution de
c) A complete planner that considers movement througtays considerably. The spanning tree approach had the poor-
a spanning tree off [1]. This planner is fast, deterministic, est quality in thestring benchmark.PUSHAND_SWAP can
and complete for problems where the number of leaves solve all problems in single milliseconds, while achieving
the spanning tree is greater than the number of robots. solution comparable to the other suboptimal approaches.

TABLE |
THE COMPUTATION TIME (MS) AND SOLUTION LENGTH FOR THE
BENCHMARKS. co REPRESENTS A FAILURE TO COMPUTE A SOLUTION

d) A technigue that separates teams of robots into a
sequences of fully coupled sub-components [2]. Each sub-
component can be solved independently of the others by
treating the current positions of all other robots as olistac

To evaluate the proposed approach, a series of challenging
instances of multi-robot path planning were created. These
é)troblems include a set of small benchmarks as well as larger
instances. All experiments are performed on a Core 2 Duo
2.5GHz machine with 4GB of memory. Results are given in
terms of solution quality, computational feasibility, aat
gorithmic scalability. All computations faPUSH AND _SWAP
include the path smoothing process shown in section IlI-C.

Fig. 8. A set of small benchmark problems. From left: Tree, Carn€unnel, String, Cycles, Loop, Connect. Arrows indicaésired goal positions.

WHCA*(5) Push and Swap

Robots | Time (s) | Path Length| Time (s) | Path Length

24 | 0.011 1.86 0.001 2.00

48 | 0.152 2.00 0.009 2.00

72 | 0.909 2.10 0.029 2.00

96 | 3.56 2.07 0.067 2.00

TABLE Il
ROTATION PROBLEM: TIME (SECONDSY AND PATH LENGTH.
B. Large Scale Problems

As the number of robots grows, the coupled approach
becomes 'ntraCtat_)le’ and decoupled planners suffer fl’Oﬁ’b. 9. Large-scale experiments: (a) Rotation problem withrébots. (b)
deadlocks due to incompleteness. Random assignment of 100 robots. Robohoves from $to Gi.

Rotation Problem: The first large scale experiments test
an environment with the robots arranged in a circular patterincreases. Additionally, the larger window size needs much
with the interior of the environment free (Figure 9(a)). Themore computation time due to the larger planning horizon.
goal for each robot is adjacent to the start, with the finalltes ~ When using the Coupled* planner, optimal decoupling
achieving a rotation of all robots by one vertex. The spagnin[2] significantly improves computability by separating the
tree planner is not applicable because the graph does mpblem into a sequence of largely singular composite mbot
generate enough leaves in a spanning tree. The configuratio¥en so, the optimal decoupling process has exponential
of the robots isfully-coupledand cannot be separated intocomplexity in the size of the roadmap and number of robots.
smaller subsets, making the coupléd planner infeasible This approach begins to decay after 50 robots, requiring sub

even for the smallest problem with 24 robots. stantial amounts of memory and computation time. Results
Table Il shows the computation time for WHCA* with for coupledA* are given for problems with up to 50 robots.
a window size of 5 compared witlPUSHAND_SWAP. The spanning tree planner is able to effectively operate

PUSHAND_SWAP computes virtually the same quality so-in the random environment, solving the 100 robot instance
lutions as WHCA¥*, but in substantially less time. All ex-in under 11 seconds. However, this time is still more than
periments are averages over 20 runs. There was at least ¢lagible the time oPUSHAND_SwAP, which solves the 100
failure for each WHCA* experiment due to randomness. robot instance in about 4.5 secon@SHAND_SWAP was
Random Problem: The next large-scale experimentsable to solve all instances of the random assignment problem
evaluate the Coupledd*, WHCA*, Spanning Tree, and in times faster than the other planners tested against.
PUSHAND_SWAP techniques over a randomly populated grid It is important to note that WHCA* is not a complete
world with 20% obstacle coverage. Robots are placed ialgorithm. Figure 10 (middle) shows the percentage of
random, mutually exclusive start and goal vertices. Figursuccessful random experiments for WHCA* compared to
9(b) shows an example of this experiment with 100 robot®USHAND_SWAP. The spanning tree technigque is complete,
Similar to the rotation problem, the direct application of and also has a 100% success rate. Optimal decoupling [2]
the coupledA* is computationally infeasible. However, thehas 100% success as well, but suffers from computational
random placement of the robots allows the problem to bi@feasibility after 50 robots.
split into a sequence of optimally decoupled composite Path Quality: PUSHAND _SWAP achieves a solution qual-
robots [2]. Results given in this experiment for the coupledty that is noticeably better than the WHCA* and span-
A* approach include costs for optimal decoupling [2]. ning tree approaches. Figure 10 (right) shows the ratio of
Computation timeFigure 10 (left) shows the time neededthe solution lengths for the various planners against the
to compute solutions to the random problem with varyingaths computed byusHAND_SWAP. This graph shows that
numbers of robots. WHCA* was executed with two windowPUSHAND _SWAP consistently achieves an average solution
sizes, 8 and 16PUSHAND_SWAP shows a slight computa- length 20% shorter than WHCA*, and more than three times
tional advantage over WHCA* with the window size of 8.shorter than the spanning tree approach.
However, the small window quickly degrades in its ability With optimal decoupling, [2] the coupled* approach is
to compute a solution, and fails with 50 or more robotsnot expected to compute the optimal solution for the entire
WHCA* (16) is able to solve much larger numbers of robotsproblem, but each composite robot will yield its individiyal
but suffers from the same decay as the number of robotgtimal solution. Surprisingly, using this approach does n

Push and Swap

100

60 |- Coupled /—»—
Spanning Tree/ —s— -

@
S

IS
3

60

w
S

40

Computation Time (s)
Percent Success

N
S

20

Push and Swap —+—
WHCA*(8) —e—
WHCA*(16) —*—

i&'

Ratio
N

I R
WHCA*(16) —*—
WHCA*(8) —e—
Coupled —*—
Spanning Tree —=—

0
10 20 30 40 50 60 70 80 90
Number of Robots

100 10 20 30 40 50 60
Number of Robots

70 80 90

100 10 20 30 40 50 60 70 80 90
Number of Robots

100

Random grid experiment. All values are averages afuB8. (left) Computation time for varying numbers of robotsgsilifferent techniques.

(middle) Success rate for WHCA (right) The ratio of solution lengths for various techréguagainst those computed by PUSHND _SWAP.

Fig. 10.
significantly improve solution quality. THRUSHAND _SWAP [4]
approach computes solutions just 3% longer. [5]

VI.

This paper presented an efficient and complete approadh]
for multi-robot path planning problems with at least two
empty vertices in the graph. Through the combination of
two basic primitives, the algorithm solves a broad set off7]
problems at least as fast as a well established decoupled
planner and a sophisticated complete approach without reI)TS]
ing on parameter selection or graph topology. Experiments
verify the advantages of the proposed technique againbt boi9
coupled and decoupled approaches, showing improvemené
in computation time as well as solution quality. In compar-
ison with a coupledA* alternative combined wittoptimal ~ [10]
decoupling[2], an efficient and complete approach [1], and
a general decoupled method [1P}JSHAND_SWAP exhibits
computation times faster than all of these approaches, witht!
path quality comparable to the optimal coupléd solution.

The proposed algorithm can potentially be extended ta2]
solve problems where there is only a single empty vertex
by taking advantage of redundant loops in the graph (e.q18
the 15-puzzle problem). This requires an extension to the
swap primitive to use redundant loops while maintaining thFl4
invariant for all robots not involved in the swap.]

The PUSH.AND_SWAP approach computes only a sequen-
tial solution and does not provide an optimal solution, butS]
the solutions computed are comparable to a coupled planner.
A significant extension of this work involves computing an16]
optimal solution in terms of the total humber of moves. It
is interesting to investigate if an optimal solution can be
achieved at a competitive computational cost. There arpy]
however, competing notions of path optimality in multi-obb
path planning, such as the sum of the path costs for all robojgg
or ideas related to Pareto optimality [21] which can be used
to evaluate the quality of a solution.

DIscuUssION

[19]
REFERENCES

[1] M. Peasgood, C. Clark, and J. McPhee, “A complete and blmla [20]
strategy for coordinating multiple robots within roadmapHZEE
Transactions on Roboticyol. 24, no. 2, pp. 282-292, 2008.

[2] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Calited
path planning for multiple robots: Optimal decoupling int@sential
plans,” in Robotics: Science and Systems2@09.

[3] J.-C. Latombe,Robot Motion Planning Boston, MA: Kluwer
Academic Publishers, 1991.

[21]

S. M. LaValle, Planning Algorithms Cambridge, 2006.

S. Qutub, R. Alami, and F. Ingrand, “How to solve deadloitkations
within the plan-merging paradigm for multi-robot cooperatioin
Proc. of the Inter. Conf. on Intelligent Robots and SystelROE)
vol. 3, 1997, pp. 1610-1615.

K.-H. C. Wang and A. Botea, “Tractable Multi-Agent Patlhafning
on Grid Maps,” inProceedings of the International Joint Conference
on Atrtificial Intelligence 1JCAI-09 Pasadena, CA, USA, 2009, pp.
1870-1875.

C. Clark, S. Rock, and J.-C. Latombe, “Motion planning foultiple
robot systems using dynamic networks,”®moc. IEEE Int. Conf. on
Rob. and Autom. (ICRAR0O03, pp. 4222-4227.

M. Erdmann and T. Lozano-Perez, “On multiple moving objgdts
IEEE Intern. Conference on Robotics and Automation (IGRAB6,
pp. 1419-1424.

J. van den Berg and M. Overmars, “Prioritized motion plagnfor
multiple robots,” inlEEE/RSJ International Conference on Intelligent
Robots and Systems (IRQ3P05, pp. 2217-2222.

M. Bennewitz, W. Burgard, and S. Thrun, “Finding and iopzing
solvable priority schemes for decoupled path planning for ifeob
robots,” Robotics and Autonomous Systemwal. 41, no. 2, pp. 89—
99, 2002.

K. Kant and S. Zucker, “Towards efficient trajectory mféng: The
path-velocity decomposition,International Journal of Robotics Re-
search (IJRR)vol. 5, no. 3, pp. 72-89, 1986.

P. O’'Donnell and T. Lozano-Perez, “Deadlock-free andision-free
coordination of two robot manipulators,” ilEEE Int. Conf. Robotics
and Automation (ICRA)1989, pp. 484-489.

] J. Peng and S. Akella, “Coordinating multiple robotshwktnodynamic

constraints along specified pathgjt. Journal of Robotics Research
vol. 24, no. 4, pp. 295-310, 2005.

M. Saha and P. Isto, “Multi-robot motion planning by iearental
coordination,” inlEEE/RSJ Int'l Conference on Intelligent Robots and
Systems (IROS2006, pp. 5960-5963.

Y. Li, K. Gupta, and S. Payandeh, “Motion planning of niplkt agents
in virtual environments using coordination graphs,1HEE Int. Conf.
Robotics and Automation (ICRA2005, pp. 378-383.

K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decealized planner
that guarantees the safety of communicating vehicles with tmp
dynamics that replan online,” iItEEE/RSJ International Conference
on Intelligent Robots and Systems (IRO&X)07, pp. 3784-3790.

D. Silver, “Cooperative pathfinding,” ifhe 1st Conference on Arti-
ficial Intelligence and Interactive Digital Entertainme(AIIDE’05),
2005, pp. 23-28.

N. Sturtevant and M. Buro, “Improving collaborative pihding using
map abstraction,” iThe Second Artificial Intelligence for Interactive
Digital Entertainment Conference (AlIDE’062006, pp. 80-85.

K.-H. C. Wang and A. Botea, “Fast and Memory-Efficient MiAgent
Pathfinding,” inInternational Conference on Automated Planning and
Scheduling (ICAPS)Sydney, Australia, 2008, pp. 380-387.

M. R. K. Ryan, “Graph decomposition for efficient multibot path
planning,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2007, pp. 2003-2008.

R. Ghrist, J. M. O’Kane, and S. M. LaValle, “Pareto optincaordi-
nation on roadmaps.” ilVorkshop on the Algorithmic Foundations of
Robotics (WAFR)2004.

