
Efficient and Complete Centralized Multi-Robot Path Planning

Ryan Luna and Kostas E. Bekris

Abstract— Multi-robot path planning is abstracted as the
problem of computing a set of non-colliding paths on a graph
for multiple robots. A naive search of the composite search
space, although complete, has exponential complexity and
becomes computationally prohibitive for problems with just
a few robots. This paper proposes an efficient and complete
algorithm for solving a general class of multi-robot path
planning problems, specifically those where there are at mostn-
2 robots in a connected graph ofn vertices. This paper provides
a full proof of completeness. The algorithm employs two
primitives: “push”, where a robot moves toward its goal until
no progress can be made, and “swap”, that allows two robots
to swap positions without altering the position of any other
robot. Additionally, this paper provides a smoothing procedure
for improving solution quality. Simulated experiments compare
the proposed approach with several other centralized and
decoupled planners, and show that the proposed technique
improves computation time and solution quality, while scaling to
problems with 100s of robots, solving them in under 5 seconds.

I. I NTRODUCTION

Multi-robot path planning [1], [2] requires the computation
of paths for multiple robots on a graph, where the robots
must move from their start positions to unique goals while
avoiding collisions. An efficient solution to this problem is
relevant in many applications, such as warehouse manage-
ment, intelligent transportation, (dis)assembly, autonomous
mining, space exploration, as well as computer games.

A. Background

Traditional solutions to the multi-robot planning problem
consider either a coupled or decoupled approach. In coupled
techniques, the robots are considered a single composite
system with many degrees of freedom, and the solution is
found by searching the composite roadmapGn = G ×
G × . . . × G, whereG is the original graph andn is the
number of robots. The coupled approach guarantees not
only completeness, but optimality as well [3], [4]. These
approaches, however, have exponential complexity in the
number of robots. This complexity has inspired a number
of approaches that attempt to prune the search space while
maintaining completeness. One such method splits the multi-
robot problem into a sequence of fully-coupled subcompo-
nents where each subcomponent can be solved independently
of all others [2]. A hybrid technique plans for each robot
given future paths, and employs a coupled approach for
choosing goals and avoiding deadlocks [5]. For graphs with
specific topologies, efficient and complete approaches exist

R. Luna and K. E. Bekris are with the Department of Computer Science
and Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS
171, Reno, NV, 89557{rluna, bekris}@cse.unr.edu

g3

g1

g2

3

1 2

(a)

Push
2

1

3

(b)

Swap

3

12

(c)

Push

12

3

(d)

Swap

Push

12 3

(e)

Swap Push

12

3

(f)

Fig. 1. A complete example of Push and Swap. (a) Start and goal
configurations. (b) Robot 1 pushes to its goal, moving robot 2.(c) Robot 2
is blocked by 1. 2 swaps with 1. (d) Robot 2 pushes to its goal. (e) Robot 3
pushes and is blocked by 1. 3 swaps position with 1. (f) Robot 3is blocked
by 2. 3 swaps position with 2, and reaches its goal.

by searching a minimum spanning tree of the roadmap [1],
or restricting the problem domain in grid-worlds (i.e., 4 or
8 connectivity) [6]. It is possible to take advantage of ad-
hoc networks formed when robots are within communication
range by sharing information and utilizing a coupled planner
to compute trajectories for each connected component of the
network [7].

In contrast, decoupled approaches compute individually
optimal paths, and settle conflicts between the paths as they
arise. These approaches compute sub-optimal solutions and
are not usually complete. However, decoupled methods are
typically able to compute solutions in times that are orders
of magnitude faster than coupled planners, making them
prevalent in the multi-robot literature. Prioritized planners
compute paths sequentially for different robots in order of
priority. Paths of high priority robots are considered moving
obstacles that must be avoided by those of lower priority
[8]. The choice of priorities has a significant impact on the
solution quality [9], and searching the space of priorities
can improve performance [10]. Another typical decoupled
approach considers tuning the velocities of robots along the
precomputed trajectories to avoid collisions [11], [12]. These
approaches have evolved over time, and are now able to com-
pute collision free paths for systems with dynamic constraints
[13]. Decoupled approaches suffer from deadlocks, and a
number of planners were created in order to reduce this.
Techniques using incremental planning [14] or coordination
graphs [15], [16] have shown to reduce these deadlocks.

A modern heuristic-search technique for solving multi-
robot path planning considers a dynamic priority scheme
for the robots during replanning, and windows the search

in combination with a backwardsA∗ heuristic in order to
improve search time and scalability [17]. This method was
further improved with spatial abstraction for faster heuristic
computation and lower memory requirements [18]. Other
search techniques take advantage of the discrete space by cre-
ating a flow network within grid-worlds [19], or decompose
the roadmap into subgraphs with specific properties [20].

B. Contribution

This paper proposes a new method for multi-robot path
planning that is computationally efficient and complete fora
very general class of problems, i.e., all instances where there
are at mostn− 2 robots in a graph withn vertices.

The proposed method (Figure 1) is orders of magnitude
faster when compared to traditional coupledA∗. In compar-
ison to existing complete alternatives, the proposed method
provides completeness for a much wider problem class.
Furthermore, it makes no assumptions about the topology
of the underlying graph [19], [6], [1]. Compared to a
general decoupled algorithm [17], an efficient and complete
centralized planner [1], and a coupled planner utilizing
optimal decoupling[2], the proposed technique exhibits
competitive solution times with no dependence on parameter
selection. Empirical results show that the proposed approach
consistently solves multi-robot path planning problems in
times significantly faster than several existing coupled and
decoupled approaches, and returns higher quality solutions.

The approach employs two basic primitives. The first
primitive, “push”, forces robots to clear a specified path for
a robot to get to its goal. In harder instances, robots may
be required to switch positions along their shortest paths.
This is addressed by the second primitive called “swap”.
Once a robot cannot make progress towards its goal by
pushing, it must swap positions with the next robot along
its shortest path. This operation may force other robots to
move in response; potentially all of them. Eventually, all the
robots must be returned to their original positions, with just
two robots swapping positions. This work shows that if it
is not possible to execute a “swap” for two robots, then the
problem is not solvable.

II. SETUP AND NOTATION

Consider a graphG(V, E) and n robotsR, wheren ≤
|V| − 2. An assignmentA : [1, n] → V places the robots
in unique vertices:∀i, j ∈ [1, n], j 6= i : A[i] ∈ V, A[i] 6=
A[j]. The starting assignment is denoted asS, and the goal
assignment is denoted asT . An actionπ(Aa,Ab) is a change
between two assignmentsAa andAb so that only one robot
moves between neighboring vertices in the two assignments,
i.e., ∃ i ∈ [1, n] and∀j ∈ [1, n], j 6= i :

Aa[i] 6= Ab[i], (Aa[i],Ab[i]) ∈ E ,Aa[j] = Ab[j].

A pathΠ = {A0, . . . ,Ak} is a sequence of assignments, so
that for any two consecutive assignmentsAi andAi+1 in Π
there is an actionπ(Ai,Ai+1). The objective of multi-robot
path planning is to compute a solutionΠ∗ = {S, . . . , T },
which is a sequence initiated withS and ending withT .

III. PUSH AND SWAP

The PUSH AND SWAP method sets the current assignment
A to the starting oneS and starts building the solution path
Π∗ by insertingS into Π∗ (line 1). It also initializes the set
U to the empty set. This set will be used throughout this
description, indicating a set of static vertices that are treated
as obstacles. It contains vertices of robots that have reached
their goals. Then for each robotr, PUSH AND SWAP tries
first to pushr to its goalT [r] by clearing its path from other
robots (lines 2-5). If the push operation fails (line 5), then
a swap operation is initiated with the robot that is blocking
r’s path (line 6). If the swap also fails, then the problem
is not solvable (line 7). Ifr has not reached its goal, then
the algorithm keeps applying push and swap operations (line
3). Whenr reaches its goalT [r], A[r] is inserted to the set
U of static robots, whose position must be respected by all
push operations (line 8). Eventually the algorithm returnsΠ∗,
which is constructed by the calls toPUSH and SWAP.

Algorithm 1 PUSH AND SWAP (G,R,S, T)
1: A ← S, Π∗ ← {S}, U ← ∅
2: for all r ∈ R do
3: while A[r] 6= T [r] do
4: p = SHORTESTPATH (G,A[r], T [r])
5: if PUSH(Π∗,G,A, r, p,U) == FALSE then
6: if SWAP(Π∗,G,A, T , r,U) == FALSE then
7: return ∅ (i.e., Failure)
8: U ← U ∪A[r]
9: return Π∗ (i.e., Success)

A. Push Primitive

PUSH (Algorithm 2) attempts to move robotr along a
given pathp∗. This operation will incrementally move any
robot occupying a vertex inp∗ away from this path, as long
the occupied vertex doesn’t belong to the setU . A graphical
example of the operation is shown in Figure 2.

Algorithm 2 PUSH(Π∗,G,A, r, p∗,U)
1: t = last vertex inp∗

2: v ← vertex inp∗ afterA[r]
3: while A[r] 6= t do
4: advancer along p∗ until blocked, inserting interme-

diate actions intoΠ∗

5: if A[r] 6= t then
6: Mark A[r] andU as blocked onG
7: ve ← reachable empty vertex tov on G

8: p← SHORTESTPATH(G, v, ve)
9: if p == ∅ then returnFALSE

10: Mark A[r] andU as free onG
11: move robots onp towardve; insert actions intoΠ∗

12: returnTRUE

PUSH iterates as long asr has not reached the end of the
given path (line 3), and it can still make progress without
any need for swapping (line 9). If the vertices alongp∗

are not occupied, thenr is moved along these vertices and
the corresponding intermediate assignments are stored on
the solution path (line 4). At this point, ifr has traversed

g1
2 31

(a)

2 31

(b)

3

2

1

(c)

2

31

(d)

Fig. 2. Illustration of the push primitive. (a) Robot 1 advances along the
empty vertices in its shortest path. (b) Robot 2 is pushed up, allowing 1 to
advance. (c) Robot 3 is pushed forward, allowing robot 1 to reach its goal.

the entire path , the subproblem forr is solved (line 5).
Otherwise, the next vertexv along p∗ of r is occupied by
another robot. In this case, the algorithm considers whether
it is possible to push the robot blocking the pathp∗ out of
the way of r, without altering the position ofr or any of
the robots inU (lines 6-11). To do this,PUSH computes the
shortest pathp between the robot occupying vertexv and the
closest reachable empty vertexve to v on G. The vertexve
is considered reachable if there exists a path betweenv and
ve that does not pass through any vertex in the setU , or the
vertex occupied by robotr (lines 6-8). If no path is found
(line 9), then robotr cannot push the blocking robot out of its
shortest path, and further progress cannot be made without
swapping. If a path is found (line 10), then all of the robots
along the shortest path betweenv and ve are pushed one
vertex forward towardsve alongp. In this wayv is cleared
for r to occupy. The pushing process is then repeated, given
the new assignment of all robots.

B. Swap Primitive

SWAP switches the position of a robotr with the robots
adjacent tor alongr’s shortest path. AfterSWAP is finished,
the only robots that have changed position arer ands.

Algorithm 3 SWAP (Π∗,G,A, T , r,U)
1: p∗ ← SHORTESTPATH (G,A[r], T [r])
2: s← robot on first vertex inp∗ afterA[r]
3: success =FALSE
4: S ← {Vertices of degree≥ 3, sorted by dist. fromr}
5: while S 6= ∅ and success ==FALSE do
6: v = S.POP (), Π← ∅
7: p←SHORTESTPATH(G,A[r], v)
8: if PUSH (Π,G,A, {r, s}, p, ∅) == TRUE then
9: if CLEAR (Π,G,A,A[r],A[s]) == TRUE then

10: success= TRUE

11: if success ==FALSE then returnFALSE
12: Π∗ = Π∗ +Π
13: EXECUTE SWAP (Π∗,G,A[r],A[s])
14: Π = Π.REVERSE(), exchanging paths forr ands
15: Π∗ = Π∗ +Π
16: if T [s] ∈ U then
17: return RESOLVE (Π∗,G,A, T ,U , p∗, r, s)
18: return TRUE

To switch two robots,SWAP selectss, which is adjacent
to r along r’s shortest path (lines 1-2). For a vertexv in G
with degree≥ 3, the algorithm computes the shortest path
from A[r] to v (line 7). Then,SWAP attempts to pushr and

rs

(a)

r

s

(b)

s

r

(c)

r s

(d)

Fig. 3. Illustration of the swap primitive. Robotsr ands swap positions.

s to v and one of its neighboring vertices (line 8). This is
achieved by a call to the functionPUSH, which will move
the composite agent composed of adjacent agentsr and s,
that can also move all other agents indiscriminately; the set
of static vertices passed toPUSH here is empty(line 8). If the
pushing succeeds, thenA[r] = v andA[s] is adjacent tov.
For r ands to swap positions atv, two adjacent vertices of
v (excluding the vertex occupied bys) must be evacuated
(line 9). This is the objective ofCLEAR, detailed later in this
section. If two adjacent vertices ofv cannot be cleared, then
it is impossible forr ands to exchange positions atv, and
another vertex must be checked.

If all vertices of degree≥ 3 are exhausted andr and
s cannot reach such a vertex with two empty neighbors,
SWAP returns failure (line 11). If the swap can take place,
the actions computed byMULTIPUSH and CLEAR are added
to the global solution (line 12), and the swap is performed
(line 13). The swap is shown in Figure 3. Once the swap
is executed, the actionsΠ computed byMULTIPUSH and
CLEAR must be reversed so that robots already at their goal
will return there after the swap. Care must be taken during
reversal not to undo the swap ofr ands; paths executed byr
will be executed bys and vice versa (line 14). The reversed
set of actions is then added toΠ∗ (line 15). Finally, it may
happen thats occupies a vertex in the setU , indicatings was
already at its goal (line 16). After the swap,r and s have
switched positions, ands must be moved back to its goal to
maintain the swap invariant. This is achieved byRESOLVE

(line 17), detailed later in the section.
1) Clear Operation:The CLEAR operation (Algorithm 4)

attempts to free two neighbors of a vertexv so that robots
r ands can swap positions with one another. There are two
cases to consider when freeing the neighborhood ofv.

If there are already two empty neighbor vertices ofv,
then the clearing is trivially achieved (lines 1-2). Otherwise,
PUSH is used to evacuate the neighbors. During the first step,
CLEAR attempts to push all occupied neighbor vertices ofv

to other neighbors excludingv (Figure 4(a), lines 5-9). If two
neighbors ofv are freed during this process,CLEAR succeeds
(line 8). Otherwise, if all neighbors ofv are exhausted but
there exists a single empty neighbor ofv (Figure 4(b)),
the algorithm considers moving an occupied neighbor ofv

throughv and an empty neighbor where it may be possible
to push further. Only if there is one empty neighbor is this
feasible; note that if it is not possible to push a single robot
away fromv, it will not be possible to push a second one. To

a b

s r

(a)

a

s

b

r

(b)

a

r

b

s

(c)

s

ba

r

(d)

Fig. 4. CLEAR operation at vertexv (shaded). (a) Case 1. (b-d) Case 2.

achieve this, the vertexv itself must be cleared (Figure 4(c),
lines 10-11). Then all occupied neighbors ofv are checked
to see if it is possible to clear them via an empty vertex of
v (Figure 4(d), lines 14-17). If a single push succeeds, then
two neighbors have been successfully cleared.CLEAR can
then move the robots formerly occupyingv and its neighbor
back to their original positions and return success (line 18).
If both steps 1 and 2 fail, then it is not possible to clear vertex
v without additional swapping. Section IV details why these
two cases are sufficient for clearing the neighborhood ofv.

Algorithm 4 CLEAR (Π∗,G,A, v, v′)

1: E ← {free neighbors ofv}, U ← {v, v′, E}
2: if |E| ≥ 2 then returnTRUE
3: for all n ∈ NEIGHBORS (v) \ {E , v′} do
4: for all n′ ∈ NEIGHBORS (n) \ {E , v} do
5: p←SHORTESTPATH (G, n, n′)
6: if PUSH(Π∗,G, ROBOT(G, n), p,U) then
7: E ← E ∪ {n}
8: if |E| == 2 then returnTRUE
9: else if |E| == 1 then break

10: p←SHORTESTPATH (G, v, v′)
11: if PUSH(Π∗,G, ROBOT(G, v), p, E) then
12: v′′ = vertex held by robot that formerly heldv′

13: U ← {v, v′, v′′, E}
14: for all n ∈ NEIGHBORS (v) \ {E , v′} do
15: for all n′ ∈ NEIGHBORS (E) \ v do
16: p←SHORTESTPATH (G, n, n′)
17: if PUSH(Π∗,G, ROBOT(G, n), p,U ∪ {n}) then
18: move ROBOT(G, v′)to v, ROBOT(G, v′′)to v′

19: returnTRUE
20: returnFALSE

2) Resolve Operation:TheRESOLVEoperation repairs the
case inSWAP where a robot switches positions with another
robot already at its goal.RESOLVE returns the robots to its
goal, while allowingr to make further progress.

g5

g4
2 3 4

1

5

6

7

(a)

2 4 3

1

5

7

6

(b)

2

1

34

7

5

6

(c)

2

1

34

7

5

6

(d)

3

1

42

7

5

6

(e)

3

1

42

7

5 6

(f)

2 4 3

1

5

7

6

(g)

2 4 3

1

5

7

6

(h)

Fig. 5. RESOLVE: Vertices inU ′ are shaded. (a) After robots 1,2 and 3
have planned. (b) Robot 4 swaps with 3. (c) Resolve is invoked(3 was at
goal). 4 swaps with 5 and reaches its goal. (d) Resolve calledfor 3 and 5;
5 swaps with 4. (e) 5 swaps with 2 invoking Resolve again. (f) 5pushes to
its goal; third Resolve is successful. (g) 4’s goal is freed;second Resolve
is successful. (h) 3’s goal is free; first Resolve is complete.

RESOLVE first attempts to push robotr further along its
shortest path (lines 2-5). If the push succeeds, then the goal
of s will be free, allowings to move to it. If this push fails,
then r will have to swap positions again along its shortest
path (line 8). After a successful swap, robots can attempt to

push from its current position to its goal (line 9).r continues
to swap along its shortest path until the push fors succeeds.
Under some circumstances,r may swap to its goal. In this
case,r has swapped with a robotr′ that was occupying its
goal; r′ must then continue the resolution process in order
to free the goal ofs. This is achieved with a recursive call
to RESOLVE, replacingr with r′ (lines 11-15).

Algorithm 5 RESOLVE (Π∗,G,A, T ,U , p∗, r, s)

1: t = vertex inp∗ afterA[r], U ′ ← {U ∪{A[s]}}\{T [s]}
2: p =SHORTESTPATH (G,A[r], t)
3: if PUSH (Π∗,G,A, r, p,U ′) then
4: moves from A[s] to T [s]
5: returnTRUE
6: else
7: r′ = r, ps ← {A[s], T [s]}
8: while SWAP (Π∗,G,A, T , r′,U ′) do
9: if A[s] == T [s] or PUSH (Π∗,G,A, s, ps,U ′) then

10: returnTRUE
11: else ifA[r′] == T [r′] then
12: U ′ ← U ′ ∪ {T [r′]}
13: r′ = robot r′ just swapped with
14: p∗ =SHORTESTPATH (G,A[r′], T [r′])
15: return RESOLVE (Π∗,G,A, T ,U ′, p∗, r′, s)
16: returnFALSE

C. Post Processing

Post processing the sequenceΠ∗ PUSH AND SWAP can
yield significant improvements in path quality.Π∗ may have
redundant paths due to multiple calls toSWAP and subse-
quent reversals required for the swap invariant. InSMOOTH

(algorithm 6), if a robot leaves a vertexv at stept, and returns
at t+ j, and no other robot occupiesv during (t, t+ j), then
the robot is free to remain atv during (t, t+ j).

Algorithm 6 SMOOTH (Π)
1: removed= TRUE

2: while removed== TRUE do
3: removed= FALSE

4: for all π ∈ Π.REVERSE () do
5: r = ROBOT(π), v = last vertex inπ
6: π′ ←next path inΠ.REVERSE () containingv
7: if π′ 6= ∅ and r ==ROBOT(π′) then
8: for all π′′ ∈ Π(π′, π] do
9: if ROBOT (π′′) == r then

10: remove (π′′) from Π
11: remove portion of π′ after v
12: removed= TRUE

13: returnΠ

SMOOTH accepts a solution pathΠ, and iterates over each
action π ∈ Π in reverse order (line 4). For each actionπ,
the actions afterπ in the reversed sequence are checked for
an occurrence of the final vertexv in π. If such an action
π′ exists, andπ and π′ are executed by the same robotr

(lines 7-8), then all actions executed byr betweenπ′ andπ′

(includingπ) are removed fromΠ (lines 9-11). Additionally,
π′ is cut to end at vertexv (line 12). The smoothing process

continues until the entire solution sequence has been iterated
through.SMOOTH continues to iterate overΠ in reverse order
until no paths are removed during an entire iteration.

IV. A NALYSIS

This section proves the completeness ofPUSH AND SWAP

for instances where the number of robots is≤ |V| − 2.
Theorem 4.1:PUSH AND SWAP is complete for multi-

robot path planning problems where the number of robots
n is less than or equal to|V| − 2.

To prove this theorem, it must be shown that if two
adjacent robots cannot swap vertices, then the planning
problem itself has no solution. This implies thatSWAP must
be able to bring two agents to a degree of 3 or more
and free two neighboring vertices in each solvable instance.
Additionally, it must be shown that progress is always made
when applyingPUSH or SWAP and that a solvable instance
will never become unsolvable with those primitives.

Lemma 4.2:PUSHcan transfer a composite robotR made
up of two adjacent robots to a vertexv in G if such a transfer
is possible and necessary forSWAP.

Proof: Consider a composite robotR, a destination
v for R on G and p a path fromR to v. If there exists an
alternate pathp′ from v to R, not passing through an internal
vertex of p, thenv belongs to a loop that includesR. If v

belongs to such a loop, and this loop contains at least an
empty vertex or there is an empty vertex reachable from the
loop, thenR can simplyPUSH the robots along its shortest
path around the loop to reachv.

Otherwise if v does not belong to a loop withR, but
there exists a single pathp from the initial position ofR
to v, then letρ be the number of vertices reachable fromv
without passing through any internal vertex ofp, andη be
the number of robots alongp. If ρ ≥ η, then it is possible
to push all robots blockingp into vertices reachable byv.
This completely freesp for R, allowing the composite robot
to reachv. Otherwise, ifρ < η then it is not possible forR
to reachv; there are no free vertices to push the robots inp.

vR v’

Fig. 6. A redundant loop
from R’s vertex tov. Using
PUSH to moveR to v is
unnecessary for SWAP (v′

is closer thanv).

If there are multiple paths from
the initial position ofR to v, then
there must be at least one internal
loop insideG that intersects a path
from R to v. At this intersection,
a vertex v′ of degree 3 or more
exists. For SWAP, this vertex is
closer than the given destination
vertex v, and will be expanded first. In this case,v′ either
belongs to a loop containingR, or a single path exists from
the initial position ofR to v′, both of which are discussed
earlier in this proof. Figure 6 shows this case.

Lemma 4.3:CLEAR considers all essential cases when
evacuating two vertices in the neighborhood of a vertexv

for the purposes of swapping robotsr ands at v. If CLEAR

fails, then freeingv’s neighborhood forSWAP is not possible.
Proof: There are 3 cases to consider when evacuating

a robota in the neighborhood ofv, (Figure 7): 1) Pusha
toward a neighbor vertex that is notv or an empty neighbor

of v. 2) Pusha throughv and an empty neighbor ofv: v′.
Robot a should end at a neighbor ofv′, excludingv or an
empty neighbor ofv. 3) Swapa with robotsr ands in order
to occupy a vertex oppositer ands.

PUSH can be used in case 1 by fixing the positions ofr, s,
and any free neighbor ofv sincePUSH exhaustively searches
for reachable empty positions. Case 2 can also utilizePUSH,
oncev itself is cleared by having robotr push towards one
vertex, placing any free neighbor ofv in U . After v is free,a
can be moved throughv to the empty neighbor to attempt a
PUSH. For thisPUSH the setU is populated with the vertices
occupied by robotsr ands, and the vertexv.

Case 3

Case 1

Case 2

Case 2

(unnecessary)

a

rs

Fig. 7. Evacuatinga from
the neighborhood of a ver-
tex v (shaded).

Case 3 is an extension of case 2,
where robota attempts to evacu-
ate the neighborhood ofv through
the vertices occupied by robotsr
and s. This evacuation, however,
requiresa to swap position withr
and s. If it is possible to swapa
with r ands at v, then there must
be two free vertices in the neighborhood ofv, and it is not
necessary to evacuatea. Therefore, fora to swap with r
and s, a second swap vertex,v̇ must be used. Note, if it is
possible fora to swap withr ands at v̇, thenr ands could
also swap aṫv. Similarly, it may be possible fora to swap
with r at v, and then swap withs at v̇. If it is feasible fora
ands to swap atv̇, it is also possible forr ands to swap at
v̇. BecauseSWAP searches all possible vertices of degree 3
or more,v̇ will be checked, making case 3 unnecessary.

Lemma 4.4:A multi-robot path planning problem is solv-
able if and only ifSWAP can bring robotsr ands to a vertex
v with a degree≥ 3 along with two empty vertices.

Proof: Consider the sequence of vertices along the
shortest path ofr to its goal T [r], where s is positioned
betweenr and T [r]. The ordering ofr and s along this
string of vertices has to be swapped in order for the problem
to be solved. Even ifr follows a different path to reach its
goal T [r], the ordering ofr and s along the shortest path
will change if the problem is solvable. Thus, the problem is
solvable if and only if the two robots can be swapped.

SWAP exhaustively searches all the vertices of degree 3
or more, checking whether it is feasible for adjacent robots
r and s to reach a vertex usingPUSH, apply CLEAR at the
vertex, and execute a swap. From lemmas 4.2 and??, if
SWAP is unable to move two adjacent robots to a vertexv of
degree three or more to execute a swap operation, then the
multi-robot path planning problem is not solvable.

Lemma 4.5:After a successful call toSWAP, the robots
in U are assigned to the same vertices they were assigned
before the call toSWAP, and at least one robot outside ofU
has made progress toward its goal.

Proof: SWAP attempts to switch the positions of a
robot r not in U with the robots blocking r’s shortest path.
Assuming a swap is possible, the swap will result withr

ands switching positions, leaving all other robots intact. The
other robots are guaranteed to be at the vertices they started
in because the actions computed duringSWAP is reversed.

Becauser is swapped along its shortest path, it will make
progress toward its goal. In the case thats belongs toU ,
RESOLVE is employed to progressr further along its path to
free the goal ofs. BecauseRESOLVE is recursive, more than
one robot may make progress towards its goal.

With these lemmas, the proof of Theorem 4.1 is as follows:
Proof: When planning for a robotr, the algorithm first

attempts to mover towards its goal by pushing robots not
in U away from its shortest path.U contains the vertices
of robots that have previously reached their goals. IfPUSH

succeeds, thenr reaches its goal. However, ifr cannot make
progress usingPUSH, then there exists a robots adjacent to
r alongr’s shortest path that must be swapped withr.

To swap robotsr ands, it is necessary to move both to a
vertexv with degree≥ 3, and clear two vertices neighboring
v so that a swap (Figure 3) can be performed.SWAP requires
two empty vertices in the neighborhood ofv (achieved by
CLEAR), and forms the basis for the constraint that at least
two empty vertices must exist inG for completeness.SWAP

performs these steps, and from Lemma 4.4, if aSWAP cannot
be executed, then the problem cannot be solved.

Since PUSH never moves robots already at their goals,
and Lemma 4.5 shows thatSWAP allows r to make progress
without moving any robot already at its goal, repeated calls
to PUSH and SWAP will eventually bring robotr to its goal
position, leaving those already at their goal intact.

Corollary 4.6: A robot r′ may be pushed away from its
initial vertex during the planning of other robots. Becauseof
this displacement, it may seem that there is no path forr′

to travel from its current vertex to its goal. Note, however,
that it is possible forr′ to get from its initial vertex to the
current vertex using a series ofPUSH and SWAP operations,
and a similar set of operations will allowr′ to return to its
initial vertex. If the initial configuration is solvable, then it is
possible forr′ to reach its goal. The solvability of an instance
depends only on the initial configuration; any configuration
achieved throughPUSH AND SWAP can be reversed.

V. EVALUATION

This section evaluatesPUSH AND SWAP, and compares its
performance against:

a) A coupledA∗ planner which considers the fully com-
posite robot when planning, and expands actions for a single
robot at a time. This change allows the solution computed
to be directly compared toPUSH AND SWAP, which also
returns a sequential set of actions.

b) WHCA* [17], a modern decoupled planner that consid-
ers a planning window where a prioritized search takes place.
This approach periodically changes the priority of each robot
to avoid worst-case assignments. It also employs a backwards
A∗ heuristic to select the path that “best” completes the
planning window during each replanning cycle.

c) A complete planner that considers movement through
a spanning tree ofG [1]. This planner is fast, deterministic,
and complete for problems where the number of leaves in
the spanning tree is greater than the number of robots.

CoupledA∗ WHCA*(5) Sp. Tree Push/Swap
Problem Time Size Time Size Time Size Time Size

Tree 2.54 15 1.18 34.4 1.56 15 0.42 18
Corners 3882 36 0.90 36 ∞ n/a 0.88 50
Tunnel 413 53 ∞ n/a ∞ n/a 2.68 81
String 198 20 1.46 36.1 1.97 38 0.42 26
Cycles 305 19 1.14 30.5 ∞ n/a 0.53 34

Loop ∞ n/a ∞ n/a ∞ n/a 8.45 350
Connect ∞ n/a ∞ n/a ∞ n/a 2.63 86

TABLE I

THE COMPUTATION TIME (MS) AND SOLUTION LENGTH FOR THE

BENCHMARKS. ∞ REPRESENTS A FAILURE TO COMPUTE A SOLUTION.

d) A technique that separates teams of robots into a
sequences of fully coupled sub-components [2]. Each sub-
component can be solved independently of the others by
treating the current positions of all other robots as obstacles.

To evaluate the proposed approach, a series of challenging
instances of multi-robot path planning were created. These
problems include a set of small benchmarks as well as larger
instances. All experiments are performed on a Core 2 Duo
2.5GHz machine with 4GB of memory. Results are given in
terms of solution quality, computational feasibility, andal-
gorithmic scalability. All computations forPUSH AND SWAP

include the path smoothing process shown in section III-C.

A. Benchmark Problems

A series of small, benchmark problems (Figure 8) were
created, ranging in size from 3 to 16 robots. Because of
the small-scale of these problems, a comparison of the
PUSH AND SWAP technique with the coupled A* as well as
the decoupled WHCA* can be shown. The spanning tree
planner is also applicable in some problems because number
of leaves in the tree is greater than the number of robots.

Computation Time:Table I shows the time needed for
the four approaches to compute their respective solutions.
Times of more than 10 minutes are deemed a failure. The
coupled approach computes high quality solutions for small
problems, but becomes infeasible as the number of robots
grows. WHCA* quickly computes solutions for 3 of the
benchmarks, but the success rate for those problems is less
than 50%. WHCA*’s inability to solve other problems can
be attributed to a high degree of coordination necessary to
compute the solution. The spanning tree planner can solve
certain instances, but it has difficulty addressing these bench-
marks because there are too few leaves in the spanning tree.
In contrast,PUSH AND SWAP approach is able to quickly
compute solutions to all of the benchmark problems.

Path quality:The solutions returned byPUSH AND SWAP

and WHCA* are sub-optimal. WHCA* does poorly in the
tree and string problems, computing solutions 2.5 times
longer than the optimal. Only in thecornersproblem is the
solution competitive with the other techniques. The spanning
tree approach does well in thetreebenchmark, but as the size
of the environment increases, the quality of the solution de-
cays considerably. The spanning tree approach had the poor-
est quality in thestring benchmark.PUSH AND SWAP can
solve all problems in single milliseconds, while achievinga
solution comparable to the other suboptimal approaches.

1

2

3

3

4

1

2
4

3

2

1

3

4

1

2

5

6

1 2 3 4

5 3

1

2

4

6

5

7 2

4

3

1 5

6

Fig. 8. A set of small benchmark problems. From left: Tree, Corners, Tunnel, String, Cycles, Loop, Connect. Arrows indicatedesired goal positions.

WHCA*(5) Push and Swap
Robots Time (s) Path Length Time (s) Path Length

24 0.011 1.86 0.001 2.00
48 0.152 2.00 0.009 2.00
72 0.909 2.10 0.029 2.00
96 3.56 2.07 0.067 2.00

TABLE II

ROTATION PROBLEM: TIME (SECONDS) AND PATH LENGTH.

B. Large Scale Problems

As the number of robots grows, the coupled approach
becomes intractable, and decoupled planners suffer from
deadlocks due to incompleteness.

Rotation Problem: The first large scale experiments test
an environment with the robots arranged in a circular pattern,
with the interior of the environment free (Figure 9(a)). The
goal for each robot is adjacent to the start, with the final result
achieving a rotation of all robots by one vertex. The spanning
tree planner is not applicable because the graph does not
generate enough leaves in a spanning tree. The configuration
of the robots isfully-coupledand cannot be separated into
smaller subsets, making the coupledA∗ planner infeasible
even for the smallest problem with 24 robots.

Table II shows the computation time for WHCA* with
a window size of 5 compared withPUSH AND SWAP.
PUSH AND SWAP computes virtually the same quality so-
lutions as WHCA*, but in substantially less time. All ex-
periments are averages over 20 runs. There was at least one
failure for each WHCA* experiment due to randomness.

Random Problem: The next large-scale experiments
evaluate the CoupledA∗, WHCA*, Spanning Tree, and
PUSH AND SWAP techniques over a randomly populated grid
world with 20% obstacle coverage. Robots are placed in
random, mutually exclusive start and goal vertices. Figure
9(b) shows an example of this experiment with 100 robots.
Similar to the rotation problem, the direct application of
the coupledA∗ is computationally infeasible. However, the
random placement of the robots allows the problem to be
split into a sequence of optimally decoupled composite
robots [2]. Results given in this experiment for the coupled
A∗ approach include costs for optimal decoupling [2].

Computation time:Figure 10 (left) shows the time needed
to compute solutions to the random problem with varying
numbers of robots. WHCA* was executed with two window
sizes, 8 and 16.PUSH AND SWAP shows a slight computa-
tional advantage over WHCA* with the window size of 8.
However, the small window quickly degrades in its ability
to compute a solution, and fails with 50 or more robots.
WHCA* (16) is able to solve much larger numbers of robots,
but suffers from the same decay as the number of robots

24

2 3 4 5 6 7

8

9

10

11

12

13141516171819

20

21

22

23

1

(a)

S34

G58

S23

S92

S45

G95

G67

S5

G94

G22

G12

S58

S32

G18

S2

S59

S54

G81

S48

G23

G11

G55

S64

S53

G25

G19

G98

G62

S74

G87

S56

S96

S3

S69

S97

S4

G27

S99

S0

G8

S85

S49

G82

G61

S87

G41

G30

S12

S80

G51

S98

S24

S79

S28

S35

G44

S18

S50

G92

G76

S70

G15

G35

S15

S7

S8

G46

S65

G13

S41

S88

S62

G20

G79

S83

G24

S21

S67

S43

S44

S63

G40

S82

G64

G71

G31

G78

G2

S26

G50

S66

G32

S52

G69

G43

S17

G33

G86

S68

S16

G6

S31

S13

S33

G47

S57

G0

S47

S6

G38

G14

G7

S78

G36

S39

G1

S42

S1

S14

G54

G3

G49

G21

S46

S94

S95

S22

S75

S81

G93

G72

G48

S51

G34

G70

S72

S20

S93

G60

S25

S11

G73

G91

S76

G59

G85

S9

S89

S71

S27

G83

G29

S90

G57

G45

G17

S77

S30

G68

S73

S84

G63

S91

G88

G89

S40

G77

G90

G39

G66

S61

S19

G52

S86

G42

G9

G97

G65

G84

G26

G37

G16

G75

G99

G10

G53

S37

S38

G5

S36

S55

G80

G28

S29

G74

G56

G96

S10

S60

G4

(b)

Fig. 9. Large-scale experiments: (a) Rotation problem with 24 robots. (b)
Random assignment of 100 robots. Roboti moves from Si to Gi.

increases. Additionally, the larger window size needs much
more computation time due to the larger planning horizon.

When using the CoupledA∗ planner, optimal decoupling
[2] significantly improves computability by separating the
problem into a sequence of largely singular composite robots.
Even so, the optimal decoupling process has exponential
complexity in the size of the roadmap and number of robots.
This approach begins to decay after 50 robots, requiring sub-
stantial amounts of memory and computation time. Results
for coupledA∗ are given for problems with up to 50 robots.

The spanning tree planner is able to effectively operate
in the random environment, solving the 100 robot instance
in under 11 seconds. However, this time is still more than
double the time ofPUSH AND SWAP, which solves the 100
robot instance in about 4.5 seconds.PUSH AND SWAP was
able to solve all instances of the random assignment problem
in times faster than the other planners tested against.

It is important to note that WHCA* is not a complete
algorithm. Figure 10 (middle) shows the percentage of
successful random experiments for WHCA* compared to
PUSH AND SWAP. The spanning tree technique is complete,
and also has a 100% success rate. Optimal decoupling [2]
has 100% success as well, but suffers from computational
infeasibility after 50 robots.

Path Quality: PUSH AND SWAP achieves a solution qual-
ity that is noticeably better than the WHCA* and span-
ning tree approaches. Figure 10 (right) shows the ratio of
the solution lengths for the various planners against the
paths computed byPUSH AND SWAP. This graph shows that
PUSH AND SWAP consistently achieves an average solution
length 20% shorter than WHCA*, and more than three times
shorter than the spanning tree approach.

With optimal decoupling, [2] the coupledA∗ approach is
not expected to compute the optimal solution for the entire
problem, but each composite robot will yield its individually
optimal solution. Surprisingly, using this approach does not

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

T
im

e
(s

)

Number of Robots

Push and Swap
WHCA*(8)

WHCA*(16)
Coupled

Spanning Tree

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 S
uc

ce
ss

Number of Robots

Push and Swap
WHCA*(8)

WHCA*(16)
0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

R
at

io

Number of Robots

WHCA*(16)
WHCA*(8)

Coupled
Spanning Tree

Fig. 10. Random grid experiment. All values are averages of 20runs. (left) Computation time for varying numbers of robots using different techniques.
(middle) Success rate for WHCA∗. (right) The ratio of solution lengths for various techniques against those computed by PUSHAND SWAP.

significantly improve solution quality. ThePUSH AND SWAP

approach computes solutions just 3% longer.

VI. D ISCUSSION

This paper presented an efficient and complete approach
for multi-robot path planning problems with at least two
empty vertices in the graph. Through the combination of
two basic primitives, the algorithm solves a broad set of
problems at least as fast as a well established decoupled
planner and a sophisticated complete approach without rely-
ing on parameter selection or graph topology. Experiments
verify the advantages of the proposed technique against both
coupled and decoupled approaches, showing improvements
in computation time as well as solution quality. In compar-
ison with a coupledA∗ alternative combined withoptimal
decoupling[2], an efficient and complete approach [1], and
a general decoupled method [17],PUSH AND SWAP exhibits
computation times faster than all of these approaches, with
path quality comparable to the optimal coupledA∗ solution.

The proposed algorithm can potentially be extended to
solve problems where there is only a single empty vertex
by taking advantage of redundant loops in the graph (e.g.,
the 15-puzzle problem). This requires an extension to the
swap primitive to use redundant loops while maintaining the
invariant for all robots not involved in the swap.

The PUSH AND SWAP approach computes only a sequen-
tial solution and does not provide an optimal solution, but
the solutions computed are comparable to a coupled planner.
A significant extension of this work involves computing an
optimal solution in terms of the total number of moves. It
is interesting to investigate if an optimal solution can be
achieved at a competitive computational cost. There are,
however, competing notions of path optimality in multi-robot
path planning, such as the sum of the path costs for all robots,
or ideas related to Pareto optimality [21] which can be used
to evaluate the quality of a solution.

REFERENCES

[1] M. Peasgood, C. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,”IEEE
Transactions on Robotics, vol. 24, no. 2, pp. 282–292, 2008.

[2] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in Robotics: Science and Systems V, 2009.

[3] J.-C. Latombe,Robot Motion Planning. Boston, MA: Kluwer
Academic Publishers, 1991.

[4] S. M. LaValle, Planning Algorithms. Cambridge, 2006.
[5] S. Qutub, R. Alami, and F. Ingrand, “How to solve deadlock situations

within the plan-merging paradigm for multi-robot cooperation,” in
Proc. of the Inter. Conf. on Intelligent Robots and Systems (IROS),
vol. 3, 1997, pp. 1610–1615.

[6] K.-H. C. Wang and A. Botea, “Tractable Multi-Agent Path Planning
on Grid Maps,” inProceedings of the International Joint Conference
on Artificial Intelligence IJCAI-09, Pasadena, CA, USA, 2009, pp.
1870–1875.

[7] C. Clark, S. Rock, and J.-C. Latombe, “Motion planning formultiple
robot systems using dynamic networks,” inProc. IEEE Int. Conf. on
Rob. and Autom. (ICRA), 2003, pp. 4222–4227.

[8] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” in
IEEE Intern. Conference on Robotics and Automation (ICRA), 1986,
pp. 1419–1424.

[9] J. van den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” inIEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2005, pp. 2217–2222.

[10] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing
solvable priority schemes for decoupled path planning for mobile
robots,” Robotics and Autonomous Systems, vol. 41, no. 2, pp. 89–
99, 2002.

[11] K. Kant and S. Zucker, “Towards efficient trajectory planning: The
path-velocity decomposition,”International Journal of Robotics Re-
search (IJRR), vol. 5, no. 3, pp. 72–89, 1986.

[12] P. O’Donnell and T. Lozano-Perez, “Deadlock-free and collision-free
coordination of two robot manipulators,” inIEEE Int. Conf. Robotics
and Automation (ICRA), 1989, pp. 484–489.

[13] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,”Int. Journal of Robotics Research,
vol. 24, no. 4, pp. 295–310, 2005.

[14] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” inIEEE/RSJ Int’l Conference on Intelligent Robots and
Systems (IROS), 2006, pp. 5960–5963.

[15] Y. Li, K. Gupta, and S. Payandeh, “Motion planning of multiple agents
in virtual environments using coordination graphs,” inIEEE Int. Conf.
Robotics and Automation (ICRA), 2005, pp. 378–383.

[16] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decentralized planner
that guarantees the safety of communicating vehicles with complex
dynamics that replan online,” inIEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2007, pp. 3784–3790.

[17] D. Silver, “Cooperative pathfinding,” inThe 1st Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment(AIIDE’05),
2005, pp. 23–28.

[18] N. Sturtevant and M. Buro, “Improving collaborative pathfinding using
map abstraction,” inThe Second Artificial Intelligence for Interactive
Digital Entertainment Conference (AIIDE’06), 2006, pp. 80–85.

[19] K.-H. C. Wang and A. Botea, “Fast and Memory-Efficient Multi-Agent
Pathfinding,” inInternational Conference on Automated Planning and
Scheduling (ICAPS), Sydney, Australia, 2008, pp. 380–387.

[20] M. R. K. Ryan, “Graph decomposition for efficient multi-robot path
planning,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2007, pp. 2003–2008.

[21] R. Ghrist, J. M. O’Kane, and S. M. LaValle, “Pareto optimal coordi-
nation on roadmaps.” inWorkshop on the Algorithmic Foundations of
Robotics (WAFR), 2004.

