September 3, 2017

Advanced Robotics mcr astar

To appear in Advanced Robotics
Vol. 00, No. 00, September 2017, 1-16

FULL PAPER

Tradeoffs in the Computation of
Minimum Constraint Removal Paths for Manipulation Planning

Athanasios Krontiris® and Kostas E. Bekris®*

@ Rutgers, The state University of New Jersey, New Jersey, USA

(September 2017)

The typical objective in path planning is to find the shortest feasible path. Many times, however,
such paths may not be available given constraints, such as movable obstacles. This frequently happens
in manipulation planning, where it may be desirable to identify the minimum set of movable obsta-
cles to be cleared to manipulate a target object. This is a similar objective to that of the Minimum
Constraint Removal (MCR) problem, which, however, does not exhibit dynamic programming prop-
erties, i.e., subsets of optimum solutions are not necessarily optimal. Thus, searching for MCR paths
is computationally expensive. Motivated by this challenge and related work, this paper investigates
approximations for computing MCR paths in the context of manipulation planning. The proposed
framework searches for MCR paths up to a certain length of solution in terms of end-effector distance.
This length can be defined as a multiple of the shortest path length in the space when movable ob-
jects are ignored. Given experimental evaluation on simulated manipulation planning challenges, the
bounded-length approximation provides a desirable tradeoff between minimizing constraints, compu-
tational cost and path length.

Keywords: Shortest path; Constraint removal; Manipulation planning; Multiple objects;
Rearrangement;

1. Introduction

The classical version of the path planning problem involves computing the shortest feasible path
for a given start and goal. This is typically computed over an underlying state space, which is
frequently abstracted as a graph. In many situations, however, there are constraints that cause
no solution path to exist. In such scenarios, a complete path planner will keep searching for all
possible alternative paths in the state space and, upon failure, it will exit reporting its inability to
compute a solution. In many application domains, however, it may be possible to apply changes
in the underlying state space so that a solution will become feasible.

In particular, consider robot manipulation and rearrangement challenges [1-5], such as the
one shown in Figure 1. In this setup, a robotic arm needs to transfer an object from the left side
of the shelf to the right side. This problem turns out to have no collision-free path, as the goal
is not reachable given the placement of obstacles. A desirable behavior is for the manipulator
to detect the lack of a solution and identify the minimum changes that it has to apply in the
environment in order for the problem to become solvable. These changes can correspond to the
transferring obstacles that can be removed from the scene.

Thus, a new problem can be formulated as a possible way to address such situations: what is the
minimum number of movable obstacles that can be removed to make the problem feasible? This

*Kostas E. Bekris. Email: kostas.bekrisQcs.rutgers.edu

September 3, 2017

Advanced Robotics mcr astar

Shortest Path MCR Path

- N

Figure 1. A minimum constraint removal problem in manipulation planning given a Baxter robot. Dashed line: The shortest
path that ignores movable obstacles can be computed quickly but go over many constraints/movable obstacles. Solid line:
The minimum constraint path will return the path with the minimum number of constraints but it is more expensive to
compute.

problem has received attention recently and is referred to as the minimum constraint removal
(MCR) problem [6, 7].

Beyond manipulation, there are many other application domains that can benefit from solu-
tions to the MCR problem. In particular, it is helpful so as to provide minimal and humanly
understandable explanations regarding the infeasibility of a challenge [8]. In multi-agent path
finding[9], the MCR path of a moving agent can provide the minimum set of other agents that
need to evacuate its path. Some of these algorithms do search in a way that reasons about con-
straints along solution paths [10]. In planning under uncertainty, paths that minimize collision
probability could correspond to those that minimize the number of colliding volumes given a
particle representation for detected objects in the world. Block sliding puzzles [11], such as the
“Move it!” puzzle, may also involve MCR subproblems.

While important in many applications, the MCR challenge is harder than searching for the
shortest path. The issue arises because MCR paths do not satisfy dynamic programming prop-
erties. In particular, a subset of an optimal solution is not necessarily an optimal solution itself.
Examples of this complication are provided in this paper. Furthermore, MCR. can be seen as a
generalization of the task of determining the non-existence of a path between two points, which
is known to be a hard challenge [12, 13].

This paper reviews possible solutions for the MCR problem: (i) a naive approach, that exhaus-
tively searches all paths and is computationally infeasible, (ii) a greedy strategy, which is not
guaranteed to return the correct solution but brings the promise of computational efficiency, (iii)
an exact approach, which takes advantage of the problem structure to prune paths that cannot
be solutions. Similar to existing work on the subject [6, 14], the experimental results show that
while incomplete in the general case, the greedy strategy frequently computes solutions with the
same number of constraints to be minimized as the exact approach. But the improvement in
computational performance is shown here to be small in a robot manipulation setup.

Given the above techniques, this work proposes bounded path length approaches as an al-
ternative for MCR[15]. The proposed methods bound the length of MCR paths they search
for, given a multiple of the shortest path length in a constraint-free version of the space. The
evaluation shows that the computational improvement is more significant relevant to the greedy
approach, while the number of constraints found is close to what is found by the exact approach.
Furthermore, the bounded-length approximation can also provide an anytime solution, where
the bound on path length can incrementally increase, resulting in solutions of improving quality
given the availability of additional computational resources. Relative to the earlier version of

September 3, 2017

Advanced Robotics mcr astar

this work [15], the current paper provides additional evaluation, more extensive coverage of the
related literature and more detailed description of the algorithms.

2. Background

Related challenges to the problem considered in this work are disconnection proving, excuse-
making and minimum constraint removal problems. The applications of disconnection proving
correspond primarily to feasibility algorithms that try to detect if a solution exists given certain
constraints in the environment [12, 13, 16, 17]. Nevertheless, this is a computationally expen-
sive operation, where practical solutions are limited to low-dimensional or geometrically simple
configuration spaces. A related challenge is to consider excuse-making in symbolic planning prob-
lems. In these approaches the “excuse” is used to change the initial state to a state that will
yield a feasible solution [8].

MCR formulations can be useful in the context of navigation among movable obstacles
(NAMO), [18-20], as well as manipulation in cluttered environments [21], where it is neces-
sary to evacuate a set of obstacles for an agent to reach its target. Such challenges were shown
to be hard if the final locations of the obstacles are unspecified and PSPACE-hard when specified
[20]. It is even NP-hard for simple instances with unit square obstacles [22]. Thus, most efforts
have dealt with efficiency [23, 24] and provide completeness results only for problem subclasses
[18, 19]. NAMO challenges relate to the Sokoban puzzle, for which search methods and proper
abstractions have been developed [25, 26].

Similar work to the computation of MCR, paths has addressed violating low priority tasks for
multi-objective tasks specified in terms of LTL formulas [27]. An iteratively deepening task and
motion planning method uses similar ideas in order to add and remove constraints on motion
feasibility at the task level [28].

In the minimum constraint removal problem, the goal is to minimize the amount of constraints
that have to be displaced in order to yield a feasible path [6, 14, 15]. Different approaches have
been proposed in the related literature. A computationally infeasible approach that searches
all possible paths, as well as a faster greedy, but incomplete strategy were presented together
with the formulation of the problem in the context of robotics challenges [6, 14]. The minimum
constraint removal problem is proven to be NP-hard, even when the obstacles are restricted to
being convex polygons [7].

The focus of the authors’ work has been on balancing computational efficiency with the ca-
pability of returning paths with a small number of constraints by bounding the length of the
possible solutions relative to the shortest length path that ignores removable constraints [15].
Finding the Minimum Constraint Removal path (MCR) can be useful in many applications, such
as rearranging objects using a manipulator [2, 29]. The idea is to identify the minimum set of
obstacles to be cleared from the workspace to manipulate a target object.

3. Problem Setup and Notation

Frequently, motion planning challenges do not have a solution, given the presence of constraints
in the environment. In scenarios where the path is blocked by movable objects, the minimum
constraint removal problem asks for the minimum set of constraints, which if removed from the
scene, they provide a feasible solution.

3.1 Abstract Problem

September 3, 2017

Advanced Robotics mcr astar

Consider a graph G(V,€) that represents
the connectivity of a state space. Each node
corresponds to a state of the manipulator,
while an edge expresses a local trajectory
between two states. The weight of an edge
is set equal to the distance between the two
nodes defining the edge in the manipula-
tor’s state space. Moreover, it is possible
to define for each edge e € £ a set of con-
straints c.. The objective is to compute a
path on G that minimizes the number of
constraints that the path traverses. Figure
2 describes a relevant setup.

The constraints along a path 7(v,u) =
{e1,...,e,} will be denoted as c(mw(v,u))

Figure 2. An example of a graph embedded in a space with
constraints. The dark areas correspond to regions with con-

and correspond to the union of the con- straints, which if removed they allow for a feasible path along
straints along the edges of the path: c(7r) = the graph.
UiCe, -

Minimum Constraint Removal Path: Consider a graph G(V,), where for each edge e € £
a set of constraints c. is defined. Then, given a start s € V and a target node t € V, compute
the minimum constraint removal path 7 = {e1,...,e,} on G that connects s and ¢, so that the
number of unique constraints on the path c(7) = U;c., are minimized over all paths between s
and t.

3.2 The case of manipulation
Consider the following setup in a 3D workspace:

e A robotic manipulator, that is able to acquire configurations ¢ € Q, where Q is the
manipulator’s configuration space.

e A set of static obstacles S. Given the presence of S it is possible to define the subset of Q
that does not result in collisions with the static obstacles: Q frec.

e A set of movable rigid-body objects O, where each object 0; € O can acquire a pose
pi € SE (3)

e A target object o, which is located in a starting pose p® € SE(3) and needs to be transferred
to a target pose p' € SE(3). The target object o does not belong in the set O.

Given the pose p of object o, it is possible to define a grasping configuration ¢(p) € Q for
the manipulator. For instance, this can be achieved through the use of inverse kinematics. The
underlying manipulation challenge considered here is to find a path for the robot manipulator,
which starts from a given grasping configuration ¢(p®) € Qe for the start pose p® of object o
and transfers the object to a target pose p' given a grasping configuration ¢(p') € Qfree- The
relative pose between the robot’s end-effector and the object - i.e., the grasp - is the same given
the arm configuration/object pose pairs (q(p*), p*) and (q(p'),p'), so no in-hand manipulation
is necessary to transfer the object.

Beyond the static geometry, the problem is further complicated by the presence of the movable
objects 0. Each object 0; € O at pose p; defines a subset of manipulator configurations Q% C
Qfree that result in a collision between object 0; and the manipulator or the transferred object
o given the grasp. The focus is on situations where there is no solution path that takes the
manipulator carrying the object o from q(p®) to q(p') without intersecting any of the sets Q%
where 0; € O. In this context, the objective is then adapted so as to identify the minimum set of
movable objects 0; that need to be removed from the scene so as to be able to solve the original
manipulation objective.

September 3, 2017

Advanced Robotics mcr astar

To deal with this objective and along the lines of the abstract MCR, problem definition, this
work assumes that a graph structure in the collision-free configuration space Q. of the manip-
ulator, i.e., a roadmap, is computed first in order to compute paths for the manipulator. This can
be done either by using sampling-based planners that sample nodes and edges of a roadmap in
the configuration space, such as with a PRM approach or other sampling-based planners [30-33],
or search-based methods that implicitly consider a discretization of the configuration space and
directly search over it [1].

Such a roadmap for the manipulator can be seen as the equivalent to the graph G(V,) consid-
ered in the abstract MCR definition. The nodes V of the roadmap correspond to configurations
of the manipulator in Qf,.. and the edges £ to straight-line paths in Q... that connect pairs
of nodes. The roadmap can be used to search for transfer paths for the object o by placing the
object at the end-effector given the grasp defined according to ¢(p®) to q(p') during query res-
olution. Then, traversing an edge e of the graph G(V, &), corresponds to a sequence of motions
for the manipulator carrying the object o, which are collision-free with the static geometry S
but may intersect a subset of the Q% configuration sets.

Intersections with one of the Q% along an edge e € £ are equivalent to the edge e having a
constraint that needs to be avoided in the context of MCR. The set of constraints of an edge
e of the roadmap will be denoted as c., and correspond to the set of objects in O that cause a
collision with the manipulator or the carried object o along the edge e. An example is shown
in Figure 2, where a graph is embedded in the configuration space Qf.. and the gray regions
correspond to constraints arising from different movable obstacles.

Then, similar to the abstract problem, the objective is to find the path 7 = {e1,...,e,}
along the graph G(V, £) storing manipulator configurations, which has the minimum number of
constraints. This path will correspond to the minimum number of objects O that need to be
removed in order for the manipulator to be able to move the object o; from pose p* to pose pt.

Note that a solution to this MCR problem can be easily applied both to the computation of
transit and transfer paths. In transit problems the manipulator is not holding an object and
needs to move between two configurations in Q... The experimental evaluation of this work
includes both transit and transfer challenges.

4. Search for Minimum Constraint Removal Paths

The basic framework for finding MCR paths corresponds to a best-first search methodology
over the graph G(V, £), which makes use of a priority queue (. The priority queue holds search
elements u = {v,m, ¢, f}, which correspond to the following information:

e u.v: The corresponding graph node u.v € V for this search element.

e u.m: The path from the start graph node s to graph node u.v corresponding to this search
element. The length of the path is denoted as |u.7|.

e u.c: The set of constraints along the path u.7, which corresponds to a sequence of edges
{e1,...,en} from the set £. The set of constraints for 7 is the union of individual constraints
along the edges of the path w.m, i.e., ¢; = Uvei€7r Ce; -

e u.f: An evaluation function for the search element, which typically depends on the length of
the path |u.7w| and potentially a heuristic estimate h(u.v,t) of the length of the shortest path
from u.v to the target graph node ¢. For instance, for uniform-cost search, the evaluation
function will be u.f = |u.7| but for A* it will be u.f = |u.7| + h(u.v,t).

4.1 Best-First Search for Finding the Shortest Path

Consider first the traditional objective of computing the shortest path on graph G and ignoring
the constraints u.c of the search elements. This base case will be used to emphasize what is
different when the constraints are taken into account and make clear the experimental results,

September 3, 2017

Advanced Robotics mcr astar

which include an implementation of a shortest-length path algorithm as a comparison point.

In this setup, the priority queue is using only the evaluation function w.f to order search
elements. During each iteration of the algorithm, the top search element u;,, is removed from
the priority queue @ and expanded. The expansion step considers the neighbors vy,e;q4, of node
Ugop-v on the graph, i.e., Vpeigh € Adj(G, Utop-Vneigh). For the neighbors vyeign, there is an edge
e(Utop-V, Vneigh) On the set of edges £. Denote as ¢, the constraints of this edge. Every time that
a neighbor v,,;gy is evaluated, one of following happens:

e The graph node v,;4n, has not been previously encountered, in which case a new search
element ;g5 is added to the queue, which corresponds to the following tuple:

- the graph node vyeign;

the path Upeigh-m = Utop-T|€(Utop-V, Vneigh), Where the operand | denotes concatena-
tion;
the set of constraints Utop-C U Ce;

- and the evaluation function u.f = |tuneigh-T| + M(Vneighst)-

e There is already a search element u,cis, in the queue that stores graph node vyeign, in
which case:

- if the path wpeign.7 on the search element is longer than the path to vyeign via ugep.v,
then the search element is updated to store the shorter alternative path; similarly,
the constraints and evaluation function get updated and the queue is resorted;

- otherwise, the queue is not affected.

The above process results in having an efficient algorithm and relates to the dynamic program-
ming structure of shortest length paths. In other words, every time a new path to an already
visited node vy,¢;¢p is discovered that is longer than an existing path, it is known that this cannot
be part of the optimal path to the target ¢.

4.2 Ezxhaustive and Greedy Search for MCR

At first glance, it may appear that the exact same process can be used to compute MCR paths.
The MCR version of the algorithm would require alterations to the ordering of the priority queue
and the criterion that determines when new search elements are added to the queue. Instead of
the evaluation function usp. f, it is possible to order elements based on the number of constraints
|utop-c| and promote the selection of search elements that have a small number of constraints.
Ties can be broken by making use of the evaluation function w;ep. f. Furthermore, every time
that a neighboring node vy,;gp is reached, for which a search element 1,4, already exists in the
queue, if the number of constraints in the existing search element upeigs.c is less than those of
the newly discovered path via .y, then the new path is discarded.

This paper, as previous work on the topic [6], refers to the above methodology as a “greedy”
approach for computing MCR paths. The greedy algorithm will prune a newly discovered path
7' to node v when |c(7’(s,v))| > |c(7(s,v))|, where 7 is an already discovered path to v.

Unfortunately, the dynamic programming property is not true if the objective is to compute
the path with the minimum set of constraints from s to ¢. The issue is illustrated in Figure 3.
Consider the two highlighted paths from s to node v. The first one m; goes through only one
constraint o1. The second one 7o, goes through two constraints 02 and o3. Evidently, the optimal
MCR path up to node v among the two is m;. This means, that if the above greedy best-first
process is used, once 7o is considered at node v it will be discarded.

Notice, however, that all paths from node v to node ¢ go through the constraints oo and os3.
This means that if one considers extending path o to node ¢, the final number of constraints
will be 2, corresponding to the constraints oo and o3. If one extended path 7 to node %, the
final number of constraints will be 3, corresponding to all three constraints in this space. Thus,
the optimal solution to node t is the one that extends path my. But the greedy search procedure
prunes path mo at node v because locally it is suboptimal. In this way, it is not able to discover

September 3, 2017

Advanced Robotics mcr astar

mn, (c: 0,,0,,0,)

Figure 3. Left: Two paths, 71 and ma, from s to node v. w2 has two constraints: o2, 03, while 71 has only one: 01. At node
v, the optimum path is 1. Right: Two paths to the target node, which are extensions of 71 and m2. The optimum MCR
solution is the extension of path 72, with only two constraints versus three for the alternative.

the globally optimal path to the target node t.

One naive complete solution that addresses the above issue is to exhaustively consider all
simple paths in the space, i.e., those without loops, as shown in Figure 2. This means that every
time a neighbor v;,¢;4y, is discovered by the best-first procedure, a corresponding search element
is always added to the queue @), unless v,,¢;gp is already included in the path to usep.v. Obviously,
this is a very expensive process that does not scale well, since there is an exponential number of
paths to the target node. Nodes of the graph will have to be expanded multiple times in order
to compute all the possible paths to each node.

There is no experimental evaluation of the “naive” solution accompanying this paper as the
running time is orders of magnitude slower than alternatives. The greedy approach is evaluated,
however, and it is shown that it can frequently find satisfactory solutions.

4.3 More Efficient Exact Search

There is an alternative to the naive complete solution, which performs some pruning of paths
and is able to find the exact number of minimum constraints.

As it has been argued above, a suboptimal path to a node v may be a subset to an optimal
path at the target node ¢ (Fig.3). Not all suboptimal paths, however, can be subsets of optimal
solutions. In particular, if the set of constraints of a path is dominating the set of constraints
of another path to the same node, then the first one cannot possibly be a subset to an optimal
solution. This means that a new path ' approaching v will be pruned only if the set of the
constraints of 7’ is super-set of the constraints of a path 7 already reaching node v, i.e., if
c(m(s,v)) C c(n'(s,v)). If the set of the constraints is exactly the same, the new path approaching
v will be pruned only if the length of the path will be longer than previously discovered.

This algorithm will also result in expanding multiple times the same node of the graph. This
is because paths with different combination of constraints can reach each node v. Although, it
is slower than the greedy algorithm, it is guaranteed to return the MCR solution and is faster
than the exhaustive search because it prunes dominated paths. For example, in Figure 3 the
algorithm will not prune away any of the m; and 7y paths, since none dominates the other. As a
result, node v will be expanded twice. In this way, the algorithm will detect that the suboptimal
path my will eventually yield the true optimal MCR solution path.

Algorithm 1 describes the EXACT_MCR approach and the overall best-first framework. The
algorithm uses a priority queue, which prioritizes search elements that have a low number of
constraints |c|. Ties are broken in favor of elements with a small evaluation function f. The
queue is initialized with a search element corresponding to the start node (line 1).

While there are nodes in the queue (line 2), the algorithm will pop the highest priority search

September 3, 2017 Advanced Robotics mcr astar

Algorithm 1: ExACT_MCR(G(V,E), s,t)

1 Q + NEW_ELEMENT(s, 0, ,0);

2 while Q) not empty do

3 | Uop < Q-pop();

4 if ugop.v ==1 then

5 L return uzey.T;

6 for each Vyeign € Adj(G, utop.v) do
7 C 4 Utop-C U €(Utop-V, Vneigh)-C;

8 if IS_ZNEW_SET(Vyeign-C, ¢) then
9 T 4= Utop-T | €(Utop-V; Vneigh);
10 f — |7T| + h(vneigha t);
11 Q < NEW_ELEMENT(Vpeigh, T, C, f);
12 | return §;

element wu,, from @ (line 3) and it will check if the corresponding graph node is equal to the
target node ¢ (line 4). If the nodes are equal then the algorithm will return the path that is
stored in the search element (line 5). Otherwise, all the adjacent graph nodes Vneigh Of Utop.V
will be considered (line 6).

The algorithm will first generate the new set of constraints corresponding to the path to vyeign
via utop.v (line 7). Then, the function 1S_.NEW_SET will check if the new set of constraints c is
a subset of any of the constraints of paths that have already been generated for node vyeigh.
In order to speed up implementation, each graph node can keep track of the different sets
of constraints, C, for each path that has reached the node, and the corresponding evaluation
functions f. The operation of the approach IS_.NEW_SET is the following:

e If there is a constraint set ¢’ € C, where ¢’ C ¢, then the algorithm will return false and
the node will not be added in the queue Q.

e If there is a constraint set ¢’ € C, where ¢ = ¢/, then the algorithm will compare the f
values. If the new f’ value is smaller than the existing one, IS_.NEW_SET will return true.

e If there is a constraint set ¢’ € C, where ¢ C ¢/, then the set ¢ will be replaced by ¢ and
the algorithm will return true.

e If none of the above is true, then the algorithm will return true and ¢ will be added in the
C list of the graph node.

If Is_.NEW_SET decides that the constraints set is a new set of constraints, then the algorithm
will create a new search element and will update the corresponding graph node with the new
information, using the NEW_ELEMENT function (lines 9-11).

4.4 Bounded-Length Search

In most applications, and specifically in the manipulation setup considered in this paper, the
search space is significantly larger than the space that the approach needs to search in order
to find a reasonable solution to the problem. The previously described algorithms can waste a
lot of time searching away from the solution before searching along the target. Figure 4 depicts
a scenario where both the greedy algorithm and the exact algorithm will waste a lot of time
searching over the collision-free edges before moving through the objects towards the target.
Note that this situation arises frequently in manipulation, where a target object may be located
in a shelf or a cabinet.

This paper proposes an approximate method that is faster than both the exact and greedy
algorithms, while balancing a trade-off in terms of the number of constraints identified. In par-

September 3, 2017 Advanced Robotics mcr astar

Figure 4. Left: A case where the Bounded-Length algorithm will not waste a lot of time to check the collision free areas,
before moving towards the target.Right: If there is more time available for searching a path with less constraints could be
detected by increasing the searching area.

ticular, the Bounded-Length version of the EXACT_MCR approach is shown in Algorithm 2. This
version allows to incrementally increase a threshold on the length of the path discovered by the
search process until there is convergence to the true optimal MCR. The threshold is computed
based on the shortest path ignoring any constraints and a multiplying factor. For instance, if the
length of the shortest path, which ignores the effects of constraints (i.e., the movable obstacles)
is X, and the multiplying factor is £, then the algorithm will search only paths of length up to
(F x X). It is straightforward to consider an incremental search approach where the multiply-
ing factor F' is incrementally increased resulting in an anytime solution for the computation of
minimum constraint removal paths.

Algorithm 2: BL.MCR(G(V, &), s, t, threshold)

1 Q + NEW_ELEMENT(s, 0,0, 0);

2 while Q) not empty do

3 | Uop < Q-pop();

4 if ugop.v ==1 then

5 L return ue,.7;

6 for each Vyeign € Adj(G, utop.v) do

7 T 4= Utop-T | €(Utop-V; Vneigh);

8 if |7| < threshold then

9 C 4= Utop-C U e(Utop.V, Vneigh)-C;
10 if IS_.NEW_SET(Vyeign-C, c) then
11 f — |7T| + h(vneighat);
12 Q < NEW_ELEMENT(Vpeigh, T, C, f);
13 | return (;

Algorithm 2 works similar to Algorithm 1 with the difference that the new algorithm first
checks in lines 7-8 if the path has length greater than the threshold. If the path is within the
threshold, the BL_MCR approach will execute the same steps as in EXACT_MCR. The proposed
algorithm with a small threshold will be able to search through short length paths that violate
constraints fast without concentrating time searching through constraint-free nodes far from the
shortest length paths. The algorithm cannot guarantee to return the optimum MCR path for a
fixed length search. In practice, however, it returns good solutions, close to those of the exact
approach for MCR and with paths that are of known length relative to the shortest.

In the implementation accompanying this paper, the threshold is provided as input to the

September 3, 2017

Advanced Robotics mcr astar

algorithm. The corresponding path quality and achieved constraints are reported. As indicated
in the paper, it is straightforward to implement an incremental search approach where the
multiplying factor is incrementally increased (Figure 4(right)) resulting in an anytime solution for
the computation of minimum constraint removal paths. Similarly, it is also possible to execute the
algorithm by specifying as input only the available computation time. In this case, the algorithm
can maintain all the nodes in the queue and expand only those nodes that are within a certain
threshold. If the queue does not have more nodes to expand below the threshold and if there is
more time available, then the threshold is increased and the search continues with the algorithm
popping from the queue additional nodes on the frontier of the search space. Experiments show
that thresholds in the order of 1.5 times the length of the shortest path return a path close to
optimal minimum constraint path, but two orders of magnitude faster than the exact algorithm.

5. Evaluation

The methods have been tested in the setup
of Figure 1, as well as in two different
scenarios in a cluttered shelf with limited
maneuverability as in Figures 5 and 6. A
model of a Baxter arm is used for testing.
For the initial benchmark environment, the
Baxter arm has to move a target object
from the left side to the right side, while
9 objects are blocking the straight transfer
path for the arm. For the shelf, 10 to 20
cylinders are placed randomly. In the first
variation of the shelf challenge, the arm will
start outside the shelf (Fig.5 a,b) and try to detect the minimum number of cans that it has to
move in order to transit and grasp a beer can at the back of the shelf.

For the second scenario the objective is

to find the MCR paths for the objects to
(a) Transfer: Initial state (b) Transfer: Final state

(a) Approach: 10 objects

(b) Approach: 20 objects

Figure 5. A setup for the “transit” scenario inside a shelv-
ing unit. The problem is to compute the minimum constraint
removal path that allows the robotic arm to move from out-
side the shelf until a grasping configuration for the beer. (a)
10 objects or (b) 20 objects are present in the shelf and are
blocking the manipulator’s path.

be placed on a grid (Fig.6 a,b). The Baxter
arm starts from a state where it grasps one
of the objects in its initial grasping config-
uration ¢(p®). The algorithm will be called
to compute a path for the arm to place the

Figure 6. A setup for the “transfer” scenario inside a shelf,
where (a) provides the initial arrangement of the objects and
(b) provides the final one. For this benchmark, the algorithm
is called as many times as the number of objects in the scene
(in the figure, the case of 20 object is displayed). For each
object, the objective is to compute the minimum constraint
removal path from a grasping configuration of the arm at the
object’s initial pose to a grasping configuration of the arm at
the object’s final pose. All other objects are assumed to be at
their initial location during the computation of the path.

object in its target pose at configuration
q(p'). Note that in this scenario there is a
high probability for the arm to be in colli-
sion at the initial state.

Four methods are tested: (a) shortest
length path, (b) the greedy algorithm, (c)
the exact search approach and (d) the

bounded-length version of the exact ap-
proach with different values for the threshold. The numbers 1.3,1.5,2 after the name of the
bounded-length algorithm correspond to the different multiplying factors for computing the
threshold. As indicated above, the threshold is a multiple of the length of the shortest path.
Taking advantage of object symmetry in the corresponding experimental setup, five parallel
grasps were randomly sampled for each cylindrical object. The grasps are such so that the
midpoint between the two fingers of the parallel gripper is placed at the center of the object.
Furthermore, the orientation of the gripper is always perpendicular to the axis of the cylindrical
object. This leaves one degree of freedom undefined, which is the angle of the gripper about

September 3, 2017

Advanced Robotics mcr astar

Computation Time for Approach

Number of Objects
i Shortest & BL_MCR1.3 « BL_MCR1.5 & BL_MCR2 & Exact “ Greedy

Computation Time (sec)

©C000O0 ®
HTwh ‘

Figure 7. Computation time for the transit scenario in the shelf environment for all the algorithms.

the object’s axis. If the angle 0 corresponds to the approach of the gripper from the side of
the object facing outside the shelf, then this value is sampled from the range of [—1, 1] radii.
50 experiments were performed for each combination of method and environment. The shortest
length path algorithm ignores the movable objects. It computes the shortest length path and
the number of constraints are reported for comparison.

Table 1. Benchmark

Variables Time Constraints
SHORTEST_PATH 0.093 7
BL_-MCR1.3 0.195 7
BL_MCR1.5 0.201 5
BL_MCR2 0.454 5
BL-MCR3 0.814 3
EXACT_MCR 1.86 3
GREEDY_MCR 1.552 3

Average computation time and the number
of constraints for all the algorithms in the
initial benchmark environment of Figure 1.

A transfer and a transit roadmap have been precomputed for this challenge and they contain on
each edge the set of objects poses that lead to collisions. This allowed to speed up the execution
of multiple experiments so that each path is computed in sub-second time. If this preprocessing
is not available, then the computation time for each algorithm is approximately two orders of
magnitude larger, since collision checking needs to be performed online. But this change affects
all algorithms uniformly. Furthermore, a manipulation algorithm for rearranging all the objects
from their initial (Fig.6a) to their target (Fig.6b) poses, needs to make thousands of MCR calls.
This means that small changes in the running time of MCR, approach can have a significant
impact on the cost of an object rearrangement solution.

Table 1 shows the results of a single run for the benchmark environment (Fig.1). In this
example, the manipulator has to find a path to grasp the object, transfer the object to its
target pose and finally return to its initial state. For this task, if the manipulator is using the
shortest path while ignoring constraints, then it has to go through seven movable objects in the
environment.

When the proposed bounded length algorithm is used with a path length multiplier of 1.3,
then the returned path still includes seven constraints as in the case of the shortest path. By
increasing the multiplier to 1.5 or 2 the algorithm is able to find a better path with fewer
constraints. It can do so faster than both the greedy and the exact algorithms, which are able

September 3, 2017

Advanced Robotics mcr astar
Path Length for Approach Constraints for Approach
16 5.00 & ¢ & ¢
[] 5.67 7.11 8.09 9.26
15 , 450
2 4 1 £ 4.00
214 — . % 3.50
£ . £
¥13 e © 3,00
c A A,
3 r—— T 5 2.50
£12 — | g~
P £ 2.00
11 5 1.50 u
1 —«& A 4 \ 4 L 4 \ 4 $— 1.00
10 12 14 16 18 20 10 12 14 16 18 20
Number of Objects Number of Objects
<“Shortest WBL_MCR1.3 ©BL_MCR1.5 =BL_MCR2 =Exact “Greedy oShortest @BL_MCR1.3 “BL_MCR1.5 =BL_MCR2 *Exact UGreedy

Figure 8. Left: Path length ratio relative to the shortest length path discovered for all the algorithms for the transit scenario
in the shelf environment. Right: The average number of constraints for each algorithm in the transit scenario in the shelf.

to detect a solution with only three constraints. The exact method has to search more before
it finds a solution relative to the greedy, which manages to expand fewer nodes than the exact
method. The greedy solution, however, is slower than the proposed bounded length one. If the
threshold for the bounded-length variant is increased even further, e.g., for a multiplier of 3, then
the same number of constraints as the exact method will be discovered in 0.814 seconds, which
is still twice as fast relative to the exact and greedy algorithms. Overall, the trade-off provided
by the proposed solution clearly arises. As the threshold for the bounded-length version becomes
smaller, the algorithm becomes faster in finding a solution but returns additional constraints.

The first scenario in the shelf environment examines the case where a set of movable objects
blocks reaching a target object. The task for the first test is to find a path with the minimum
number of constraints in order to move the manipulator from its initial state to grasp the brown
object. For this test a probabilistic roadmap is built using uniform sampling. This typically
results in a graph that has more nodes outside the shelf and fewer inside the shelf, given the
narrow environment inside the shelf. As explained before, the exact and greedy algorithms will
have to search the collision free graph before start considering paths with constraints. The
computation time results of Figure 7 show again the computational advantages of the bounded-
length solutions. The shortest length path does not check for collisions with the movable objects
and returns solutions faster than alternatives. For all the other algorithms, the computation time
increases. The exact method takes the longest time. Although the greedy algorithm expands fewer
nodes, the computation time is almost the same. Nevertheless, the bounded-length variants result
in faster computation of the solution. The difference in time between the algorithms relates to
the issue described in Figure 4. The greedy and the exact algorithm will waste a lot of time
searching over the collision-free edges before moving through the objects, a situation that arises
often in manipulation. The proposed method will avoid expanding nodes that are far away from
the target. In summary, it appears that a threshold of 1.5 results in solutions with a similar
number of constraints as the exact algorithm but considerably faster.

In the context of the same challenge, Figure 8(right) shows that the shortest length path
returns a significant number of constraints, although it is the shortest in length according to
Figure 8(left). The remaining algorithms return fewer constraints and close to those of the exact
solution, with the exception of BL_MCR using the smallest threshold. As the threshold is relaxed,
the number of constraints approaches that of the exact. The exact and the greedy methods
return the longest paths with the fewer constraints. The difference between the exact and the
greedy is more visible when the manipulator is colliding with the same obstacle in different parts
of a path. Given that the objects in this example are relatively thin, the arm collides with each
object on average once, as a result these two algorithms do not have a big difference. Figure
8(left) depicts the ratio of the path lengths with respect to the shortest path. As the threshold
for the bounded length version decreases, the path returned is closer to the shortest path, but

September 3, 2017

Advanced Robotics mcr astar

Computation Time for Transfer

o©
e N ©
N W

Computation Time (sec)
o
[y
(9]

0.1
0'05 ‘l |
5) |
Objects: 10 12 14 16 18 20

i Shortest & BL_MCR1.3 “ BL_MCR1.5 & BL_MCR2 &« Exact “ Greedy

Figure 9. Computation time for the transfer scenario in the shelf environment for all the algorithms. The number of objects
corresponds to how many movable objects are on the shelf.

generates more constraints.

The task for the second test is for the manipulator to move an object that it is already
grasped from an initial pose to a target pose in a way that minimizes constraints, i.e., minimizes
collisions with other objects in the environment. For the second test, a biased sampling approach
is used for the construction of the probabilistic roadmap so as to increase the density of nodes
inside the shelf. This helps solution times for the various methods relative to the first test case.
The computation time for the second test in the shelf is provided in Figure 9. Similar results
with the previous scenarios are achieved: the shortest length path returns solutions faster than
the alternatives, the greedy and the exact are the slowest, while the BL_MCR achieves better
computation time. In this example most of the graph is within the boundaries of the shelf in
order to be able to connect initial and target poses for the objects inside the shelf. There is only
a small part of the graph outside the shelf. Although the exact and the greedy algorithms do
not have to search outside of the shelf given this setup, they are still the slowest algorithms to
come up with a solution.

The exact and the greedy methods are not only taking more time to find a solution, they
also return the longest paths. Figure 10 Left: depicts the ratio of the paths with respect to the
shortest path. As the threshold for the bounded length version decreases, the path returned is
closer to the shortest path. This results in more constraints for the returned path as Figure 10
Right: shows, but significantly lower than the number of constraints on the shortest path. The
shortest length path involves a lot of constraints. Again, as before, as the solutions approach the
shortest length path, they result in an increased number of constraints.

Combining the above results for the shelf, it appears that a threshold of 2 tends to return
solutions with a similar number of constraints as the exact algorithm in this setup but faster. In
particular, the 2 times bounded-length version returned solutions faster across all experiments
for this benchmark with better path quality and a similar number of constraints to the exact
and the greedy solutions.

6. Discussion

This work studies the computation of “minimum constraint removal” (MCR) paths, which can
impact robot manipulation planning challenges. This is a computationally hard problem in the
general case as such paths do not exhibit dynamic programming properties. Various algorithmic

September 3, 2017

Advanced Robotics mcr astar
Path Length for Transfer Constraints for Transfer
1.7 6 10.90 12.02
. ~ L 4 L4 A4 v
‘.—/\/ ~ 6.85 8.46 9.62
1.6 255 563
B ot =
215 e T 5
Y4 - / ﬁ
a < 4.5 “
s14 Y \ , S -
? 3
1.3 ; : — e
:'-_=: _—_———'___,_————'4 = 235
©1.2 e " — £
a ; i - S 3
- - 2
1.1 2.5
1 & & & & & & 2
10 12 14 16 18 20 10 12 14 16 18 20
Number of Objects Number of Objects
<“Shortest WBL_MCR1.3 ©:BL_MCR1.5 *==BL_MCR2 *=Exact “Greedy <“Shortest WBL_MCR1.3 ©:BL_MCR1.5 =BL_MCR2 *=Exact “Greedy ‘

Figure 10. Left: Path length ratio relative to the shortest length path for all the algorithms in the transfer scenario. Right:
The average number of constraints for each algorithm in the transfer scenario.

alternatives are described in this paper, varying from approximate solutions to exact algorithms.
Approximate solutions that bound the path length of the considered path seem to provide a
desirable trade-off in terms of returning solutions with a low number of constraints, relatively
short path lengths and low computation time.

The description in this paper did not discuss what are the grasps and manipulation paths
that can be used in order to remove the movable objects. Some of them may not be directly
removable and this may result in an iterative computation of MCR paths. Nevertheless, the
proposed approximate methods for the computation of MCR paths have been used in the context
of more general rearrangement task planning solutions [2], where they have been shown to be
benefit the computation of scalable paths for rearranging many objects.

The considered solutions can also be applied in the context of pick-and-place paths for general
objects, where the arm first identifies the grasp necessary to pick up an object and transfer it to
a desired target pose. In this case, the additional complication that can arise is that there may
be many valid grasps at p* and p’, which may result to a different number of objects that need
to be removed so that the problem becomes solvable. Iterating over different grasps and then
using the solutions for the MCR problem discussed here is one way to solve such challenges.

It is interesting to compare against a different version of the problem, which satisfies dynamic
programming principles, such as treating the movable obstacles as soft constraints that only
introduce an increased cost for the corresponding edges but do not invalidate them. In this
version of the problem, the choice of the cost for the soft constraints is rather arbitrary and can
result in a variety of solutions. Furthermore, one could consider the use of trajectory optimization
methods in this context. Such solutions could be used to initialize the global search for the
minimum constraint removal path.

Acknowledgements

The authors are with the Computer Science Dept. at Rutgers University, NJ, USA. Their work is
supported by NSF awards 11S-1617744, 11S-1451737, CCF-1330789. Any opinions, findings and
conclusions or recommendations expressed in this paper do not necessarily reflect the views of
the sponsors.

References

[1] Cohen JB, Chitta S, Likhachev M. Single- and dual-arm motion planning with heuristic search.
International Journal of Robotic Research. 2014;33(2):305-320.

[2] Krontiris A, Bekris KE. Dealing with difficult instances of object rearrangement. In: Robotics: Science
and Systems (RSS). Rome, Italy. 2015 July.

September 3, 2017

Advanced Robotics mcr astar

3]

28]

[29]

Krontiris A, Bekris KE. Efficiently solving general rearrangement tasks: A fast extension primitive for
an incremental sampling-based planner. In: International Conference on Robotics and Automation
(ICRA). Stockholm, Sweden. 2016 05/2016.

Krontiris A, Shome R, Dobson A, Kimmel A, Bekris KE. Rearranging similar objects with a ma-
nipulator using pebble graphs. In: IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS). Madrid, Spain. 2014 11/2014.

Shuai H, Stiffler N, Krontiris A, Bekris KE, Yu J. High-quality tabletop rearrangement with overhand
grasps: Hardness results and fast methods. In: Robotics: Science and Systems (RSS). Cambridge,
MA. 2017 07/2017.

Hauser K. The minimum constraint removal problem with three robotics applications. The Interna-
tional Journal of Robotics Research. 2013;.

FErickson LH, LaValle SM. A Simple, but NP-Hard Motion Planning Problem. In: AAAT Conference
on Artificial Intelligence. 2013.

Gobelbecker M, Keller T, Eyerich P, Brenner M, Nebel B. Coming up with good excuses: What to
do when no plan can be found. In: International Conference on Automated Planning and Scheduling.
2010.

Sharon G, Stern R, Felner A, Sturtevant N. The Conflict-based Search Algorithm for Multi-Agent
Pathfinding. Artificial Intelligence Journal (ALJ). 2015;:40-66.

Sharon G, Stern R, Felner A, Sturtevant N. Conflict-based Search for Optimal Multi-agent Path
Finding. AAAI 2012;.

Hearn R, Demaine E. P-Space Completeness of Sliding-block Puzzles and other Problems through
the Non-Deterministic Constraint Logic Model of Computation. Theoretical Computer Science. 2005;
343(1):72-96.

Zhang L, Kim Y, Manocha D. A Simple Path Non-Existence Algorithm using C-Obstacle Query. In:
Workshop on the Algorithmic Foundations of Robotics (WAFR). 2008.

McCarthy Z, Bretl T, Hutchinson S. Proving Path Non-Existence using Sampling and Alpha Shapes.
In: TEEE International Conference on Robotics and Automation (ICRA). 2012. p. 2563-2569.
Hauser K. Minimum Constraint Displacement Motion Planning. In: RSS. 2013.

Krontiris A, Bekris KE. Computational tradeoffs of search methods for minimum constraint removal
paths. In: Symposium on Combinatorial Search (SoCS). Dead Sea, Israel. 2015 June.

Basch J, Guibas LJ, Hsu D, Nguyen AT. Disconnection proofs for motion planning. In: IEEE Inter-
national Conference on Robotics and Automation. Vol. 2. 2001. p. 1765-1772.

Bretl T, Lall S, Latombe JC, Rock S. Multi-step Motion Planning for Free-Climbing Robots. In:
WAFR. 2004.

Stilman M, Kuffner J. Navigation among Movable Obstacles: Realtime Reasoning in Complex Envi-
ronments. In: Humanoid Robotics. 2004. p. 322-341.

Stilman M, Kuffner JJ. Planning Among Movable Obstacles with Artificial Constraints. In: WAFR.
2006.

Wilfong G. Motion Planning in the Presence of Movable Obstacles. In: Annual Symp. of Computa-
tional Geometry. 1988. p. 279-288.

Dogar M, Srinivasa S. A Push-Grasping Framework in Clutter. In: RSS. 2011.

Demaine E, O’Rourke J, Demaine ML. Pushpush and push-1 are NP-hard in 2D. In: Canadian Conf.
on Computational Geometry. 2000. p. 211-219.

Chen PC, Hwang YK. Practical Path Planning Among Movable Obstacles. In: ICRA. 1991. p. 444—
449.

Nieuwenhuisen D, Frank van der Stappen A, Overmars MH. An Effective Framework for Path Plan-
ning amidst Movable Obstacles. In: WAFR. 2006.

Botea A, Muller M, Schaffer J. Using Abstraction for Planning in Sokoban. Computers and Games.
2002;:360-375.

Pereira AG, Ritt MRP, Buriol LS. Finding Optimal Solutions to Sokoban Using Instance Dependent
Pattern Databases. In: Symposium on Combinatorial Search (SoCS). 2013.

Reyes Castro LI, Chaudhari P, Tumova J, Karaman S, Frazzoli E, Rus D. Incremental sampling-
based algorithm for minimum-violation motion planning. In: Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on. IEEE. 2013. p. 3217-3224.

Dantam NT, Kingston ZK, Chaudhuri S, Kavraki LE. Incremental task and motion planning: a
constraint-based approach. In: Proceedings of robotics: science and systems. 2016.

Kaelbling LP, Lozano-Pérez T. Implicit belief-space pre-images for hierarchical planning and execu-

September 3, 2017

Advanced Robotics mcr astar

tion. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE. 2016. p.
5455-5462.

[30] Kavraki LE, Svestka P, Latombe JC, Overmars M. Probabilistic Roadmaps for Path Planning in
High-Dim. Configuration Spaces. IEEE TRA. 1996;.

[31] LaValle SM, Kuffner JJ. Randomized Kinodynamic Planning. IJRR. 2001;.

[32] Berenson D, Srinivasa SS, Kuffner JJ. Task Space Regions: A Framework for Pose-Constrained
Manipulation Planning. IJRR. 2012;30(12):1435-1460.

[33] Alami R, Siméon T, Laumond JP. A Geometrical Approach to Planning Manipulation Tasks. In:
ISRR. 1989. p. 113-119.

