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Abstract— Safety concerns arise when planning for systems
with dynamics among moving obstacles, where a collision-
free trajectory leads to an Inevitable Collision State (ICS).
Identifying whether a state is ICS, however, is computationally
challenging. This has led to approximations, varying from
conservative schemes, which never characterize an ICS as a
safe state, to schemes with weaker guarantees but fast online
resolution of an ICS query. The computational cost of the
approach is critical in problems that require replanning. This
report presents various alternatives for identifying whether
a state is ICS from the related literature. It also discusses
different ways for integrating such schemes with sampling-
based planners in safe replanning frameworks so as to reduce
the computational overhead of avoiding ICS.

I. INTRODUCTION

It becomes increasingly important to reason about the
dynamics of robots during planning so as to achieve a higher
degree of autonomy by produing plans that can be safely
and directly followed. Examples of motion constraints that
have to be respected are bounds in velocity and acceleration
that cause drift. At the same time, in many realistic tasks,
robots have only partial information about their environment.
Examples incude planning among unknown static obstacles,
exploration and planning in dynamic environments. Solving
such problems requires an interleaving of sensing, planning
and execution. This means that a planner is called frequently
and has finite time to replan a trajectory.

This report focuses on the safety concerns that arise when
replanning for systems that exhibit non-trivial kinodynamic
constraints. Safety becomes an issue because a collision-free
trajectory may still bring a dynamical system close to an ob-
stacle region with high-velocity and no possible maneuver to
avoid collisions into the future as Figure 1 illustrates. Similar
problems also arise when planning in dynamic environments,
even for systems without challenging dynamics, because the
obstacles may block escaping maneuvers. Such challenges
were identified early on in the motion planning literature.
Collision-free states that inevitably lead to collisions have
been referred to in the past as Obstacle Shadows [1], or
Regions of Inevitable Collision [2] or Inevitable Collision
States (ICS) [3]. This work follows the ICS terminology.

Over the last decade, sampling-based planners that con-
struct a tree data structure of feasible trajectories, suchas
RRT [2] and its variants [4], [5], have become popular for
planning with dynamic constraints. Thus, it is important to
show how ICS avoidance can be achieved effectively in the
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Fig. 1. A collision-free trajectory may still lead to anICS.

context of tasks that require replanning using sampling-based
algorithms. Nevertheless, identifying whether a state is ICS
or not is computationally challenging for most realistic prob-
lems. For moving obstacles, it also requires knowledge of
the obstacles’ paths. This report reviews various alternatives
from the related literature for avoiding ICS and how these
schemes can be integrated with sampling-based planners.

Some methods for ICS avoidance employ machine learn-
ing offline or approximation methods in order to construct
an ICS identifier that can be used online to prune those
states identified as ICS. These methods have the advantage
of being fast in their ICS determination during the online
step but they can misclassify states. Thus, these methods do
not provide safety guarantees even for simpler replanning
tasks, such as planning among unknown static obstacles.
Conservative alternatives identify a state as safe by explicitly
computing the ICS set and reasoning over an infinite time
horizon. These methods provide stronger safety guarantees,
which is highly desirable, but they also require more online
computations, which can also effect the practical safety of
the approach. A slow planner delays taking into account new
sensing information, while a faster planner provides a more
diverse set of plans in the same amount of time.

The speed of a replanning scheme that aims to avoid
ICS does not only depend on the computational cost of the
method for identifying ICS. It also depends on how many
calls to an ICS-identification method are made by the high-
level replanning approach. This report surveys alternative
schemes for safe replanning and discusses their computa-
tional efficiency.



II. BACKGROUND

There are two high-level approaches for problems that re-
quire online recomputation of a robot’s path: (i) reactive ap-
proaches and (ii) replanning using a global planner. Reactive
methods determine the motion the robot should execute so as
avoid collisions and are designed for unknown or dynamic
environments. An early, successful reactive method was the
Vector Field Histogram approach [6], which, however, did
not reason about robot dynamics. More recent alternatives
do reason about dynamics and include the Nearness Diagram
Navigation [7], the Dynamic Window Approach [8]–[10] and
Velocity Obstacles [11], [12]. The first two assume static
obstacles, while the later typically assumes obstacles with
constant linear velocity. Path deformation methods compute
a flexible path, which is adapted on the fly so as to avoid
moving obstacles [13].

The focus of this report is on replanning by iteratively
calling a global planner. For problems where the state space
can be effectively discretized, the D* family of algorithms
are very effective [14], [15]. Sampling-based planners, pop-
ularized by the Probabilistic Roadmap Method [16] and the
Rapidly-Exploring Random Tree (RRT) approach [2], are
effective in exploring state spaces that cannot be effectively
discretized otherwise. Methods that construct trees of fea-
sible trajectories, such as RRT, are especially effective in
planning with dynamics. Various methods have been pro-
posed in the literature for adapting sampling-based planners
to replanning tasks [17]–[23]. Some of these methodologies
focus on systems with dynamics and consider the safety
issues that arise [3], [4], [24]–[32]. The following discussion
details the contributions of these later approaches.

Wikman et al. [24] worked on controllers that maintained
systems with dynamics in the collision-free part of the space
for static scenes. The approach employed braking maneuvers
to evaluate whether states led to inevitable collisions or not.
Frazzoli et al. [25] proposed a real-time kinodynamic planner
for dynamic environments. They formulated the concept of
τ -safety as a guarantee of no collision duringτ seconds for
each node of a tree created with a sampling-based algorithm.
Hsu et al. [4] proposed a kinodynamic sampling-based plan-
ner that calculated an escape maneuver in case it failed to find
a complete trajectory to the goal during the allotted time. The
escape maneuver brought the system to a collision-free state
given the dynamic obstacles. The approach was tested on real
air-cushioned robots. Bruce and Veloso extended previous
work on replanning for kinematic systems [18] by employing
a controller for generating motion commands that respected
constraints together with a procedure for searching safe paths
by incorporating braking maneuvers [27].

Alami at al. [26] limited the planning within the robot’s
visibility region and employed worst-case assumptions that
its boundary was defined by moving obstacles. The planner
computed a path and a maximum velocity profile such that
the robot can decelerate to a halt before colliding with
moving obstacles. A similar approach is followed by the
recent work by Vatcha and Xiao [32] for higher-DOF robots.

Fraichard and collaborators [3], [33]–[38] have provided
a comprehensive study of Inevitable Collision States (ICS)
over the last few years. In particular, Fraichard and Asama
[3] presented a formalization and discussed how to acquire
conservative approximations of the ICS set. They applied
their approach on navigation among unexpected obstacles,
where braking maneuvers are sufficient. Petti et al. [33]
integrated this ICS avoidance approach with a Partial Motion
Planning framework, which employed sampling-based algo-
rithms, and applied it to planning in dynamic environments.
Parthasarathi et al. [34] proposed imitating maneuvers for
problems involving car-like obstacles and vehicles. This
work has been extended to general planar robots [36].

Fraichard [35] also emphasized 3 criteria for motion
safety. A robot should consider (i) its own dynamics, (ii) the
environment objects’ future behavior and (iii) reason over
an infinite-time horizon, to achieve safety. A technique that
avoids ICS will satisfy these criteria and is guaranteed safety.
Nevertheless, traditional approaches for reactive navigation
fail to provide motion safety in dynamic environments. The
Nearness Diagram Navigation and the Dynamic Window
approaches do not reason about the motion of obstacles. Ve-
locity Obstacles do not reason over an infinite-time horizon.
Similarly, τ -safety does not provide safety. Experimental
comparisons [37], [38] have also shown the practical ad-
vantages of ICS-avoidance against other reactive navigation
schemes [10], [12]. A recent variation of Velocity Obstacles
does reason about the time horizon [39].

Bekris and Kavraki [28] proposed an integration of a
kinodynamic sampling-based planner with ICS avoidance
schemes. They applied the approach on an exploration prob-
lem in a static environment using breaking maneuvers. The
focus was on minimizing the computational overhead of
providing safety guarantees by reducing the number of states
along the sampling-based tree that have to be shown safe.
This is an issue discussed in detail in section V.

Kalisiak and Van den Panne [29] have proposed avoiding
ICS during one-shot planning for systems with dynamics
to speed up the process. They’ve employed learning-based
methods to identify the set of ICS. They have also utilized
ICS in order to maintain safety when a dynamical system is
controlled by a human user [40].

Tsianos and Kavraki [30] have used replanning to con-
struct an efficient kinodynamic planner by incrementally
computing safe trajectories. They tested their approach on
a Segway-like system moving among dynamic obstacles.

Kuffner and collaborators [31] have proposed ICS ap-
proximations to improve overall planning safety and speed.
The domain was a simulated underactuated spaceship ve-
hicle with momentum that must navigate through moving
obstacles, similar to the game of “Asteroids”. The work by
Zucker [41] describes similar approximation for computing
state×time space obstacles.

The following section will present a formulation of ICS,
while section IV details alternative methods for detecting
whether a state is ICS or not. Section V covers different ways
to integrate ICS-avoidance with sampling-based planning.



III. INEVITABLE COLLISION STATES

Consider aworkspaceW(t), which is either dynamic or
partially known to a robot and discovered through sensing.
These assumptions result in a time dependent representation.
An individual obstacle in the workspace at timet will be
denoted asOi(t), while the entire subset ofW(t) that corre-
sponds to obstacles will beO(t). For dynamic environments,
the assumption is that the future path of eachOi is known.

The focus is on robots with interesting dynamics that have
to deal with inertia and potentially additional constraints,
e.g., underactuated, non-holonomic systems. In particular,
assume arobot A whose motion is governed bẏx = f(x, u)
and g(x, ẋ) ≤ 0, where x ∈ X is a state, ẋ is its time
derivative,u ∈ U is a control and f, g are smooth.X and
U respectively denote thestate spaceand thecontrol space
of A. Xf (t) denotes the collision-free part of the state space
at time t givenO(t).

A plan is a time-sequence of controls

p(dt) = {(u1, dt1), . . . , (un, dtn)}

where dt =
∑

i dti. Then the set of all possible plans of
duration dt is denoted asP(dt). When a planp(dt) is
executed at statex(t), it defines atrajectory :

π(x(t), p(dt)).

A trajectory is the sequence of states propagated according
to ẋ = f(x, u), and which also respectsg(x, ẋ) ≤ 0. A state
along a trajectoryπ at time t′ ∈ [t : t + dt] is denoted as
xπ(t′). A trajectoryπ(x(t), p(dt)) is collision-free if

∀ t′ ∈ [t : t + dt] : xπ(x(t),p(dt))(t′) ∈ Xf (t′).

Given the above notation, it is now possible to define what
constitutes anInevitable Collision State (ICS). A statex(t)
is ICS givenP(∞) andO(t) if and only if:

∀ p(∞) ∈ P(∞),∀ Oi(t) : ∃ dt ∈ [t,∞) so that

xπ(x(t),p(∞))(dt) /∈ Xf (dt). (1)

Then it is possible to define the setICS(O(t),P(∞)),
which contains all the statesx(t) for which Eq. 1 is true.
Conversely, asafe statex(t) is not in ICS(O(t),P(∞)).
This means thatx(t) is safe if and only if:

∃ p(∞) ∈ P(∞), so that

∀ Oi(t),∀ dt ∈ [t,∞) : xπ(x(t),p(∞))(dt) ∈ Xf (dt).

IV. IDENTIFYING AND AVOIDING ICS

Computing whether a statex(t) is in ICS(O(t),P(∞)) is
infeasible, since it requires to consider all plans inP(∞),
the infinite set of all possible plans of infinite duration out
of x(t)! This section describes the methods that have been
developed in the literature for evaluating state safety. Such
modules can be used as black-boxes within a motion planner
to detect and avoid ICS, the same way a collision-checker is
traditionally employed to detect states that are in collision.

A. Conservative Approximation of the ICS set

While the computation ofICS(O(t),P(∞)) is not feasi-
ble, it is possible to define a conservative approximation of
this set that in many cases can be computed effectively. Con-
sider a set of maneuversΓ(∞), referred to ascontingencies
here, which is a subset of the entire space of infinite duration
plansP(∞). Then it is true [3] that:

ICS(O(t),P(∞)) ⊂ ICS(O(t),Γ(∞)).

So all the states at timet that are not inICS(O(t),Γ(∞))
are safe. If the setΓ(∞) is a discrete set, then it is possible
to enumerate all of the plansγ(∞) ∈ Γ(∞). Given this
idea, Fraichard and collaborators [34], [36] have proposed
the following scheme for checking whether a statex(t) is
safe or not:

1) SelectΓ(∞).
2) ComputeICS(Oi(t), γ(∞)) for every obstacleOi(t)

and contingencyγ(∞) ∈ Γ(∞).
3) Compute for every contingency:

ICS(O(t), γ(∞)) = ∪Oi(t)∈O(t)ICS(Oi(t), γ(∞)).

4) Compute the overall ICS set:

ICS(O(t),Γ(∞)) = ∩γ(∞)∈Γ(∞)ICS(O(t), γ(∞)).

5) Determine whetherx(t) ∈ ICS(O(t),Γ(∞)). If so
return “not safe”, otherwise return “safe”.

For replanning problems in static environments (e.g., plan-
ning among unexpected obstacles, exploration of an un-
known static environment), braking maneuvers, where the
robot decelerates as much as possible, are sufficient for
the setΓ(∞) [3], [24], [28]. For a moving obstacleOi

with a known future plan, imitating maneuvers have been
proposed where the robot tries to achieve and maintain
a zero-relative velocity with regard toOi [34]. If there
are multiple obstacles, then the setΓ(∞) can contain one
imitating maneuver per obstacle together with a fixed number
of braking maneuvers [34].

The computation ofICS(Oi(t), γ(∞)), requires to com-
pute all the statesx(t) that lead to a collision withOi(t)
if the plan γ(∞) is executed fromx(t). This is still
an expensive computation. For planar robots, however, a
methodology has been proposed that brings the promise of
computational efficiency [34], [36]. The idea is to focus on
a 2D projection of the state space that corresponds to the
Cartesian coordinates of the robot. The obstacles are grown
so as to represent the robot as a single point. For example,
for a statex =< cx, cy, θ, v, φ > of a second-order car-
like system, the approach defines the 2D projection ofX on
Cartesian coordinates for the values< θ, v, φ > of x. Then
for every pointoi on the surface of an obstacleOi, either
static or moving, it is possible to compute for a maneuver
γ(∞) the subset of the 2D projection that corresponds to
ICS. In order to define the ICS for a polygonal obstacle,
it is then possible to take the union of the ICS sets for all
the points on the obstacle’s boundary. This procedure has an
infinite time horizon and provides safety guarantees.



Fig. 2. The ICS set over an infinite horizon for a moving point obstacle
and (left) a braking maneuver and (right) an immitating maneuver[34].

Furthermore, the approach is amenable to offline compu-
tation, by discretizing the non-Cartesian coordinates (e.g.,
< θ, v, φ >) and precomputing the ICS set for differ-
ent values of these parameters, contingencies and obstacle
configurations. This discretization, however, results in an
approximation that is not conservative anymore so it might
be desirable to compute the ICS sets online. Furthermore,
computing the unions and intersections of ICS sets has to
be executed online. Note that the overall approach becomes
increasingly more difficult to execute as the robotic system
becomes more complex (e.g., 3D problems).

B. Simulating Contingencies

The previous approach first constructs the set
ICS(O(t),Γ(∞)) (at least in a 2D projection ofX )
and then computes whether a specific statex(t) is part of
this set. This requires the computation of the preimage of a
state for a specific maneuver, which for incresingly more
complex system it becomes increasingly more challenging
to compute. An alternative is to compute the trajectories
π(x(t), γ(∞)) that result by executing the contingencies
γ(∞) at x(t) and then whether these trajectories collide
with the future paths of the obstacles. Then the following
procedure can be defined:

1) SelectΓ(∞).
2) Compute the trajectoriesπ(x(t), γ(∞)) for all contin-

genciesγ(∞) ∈ Γ(∞).
3) Then compute the intersection of eachπ(x(t), γ(∞))

with the path of each obstacleOi.
4) If there is a pathπ(x(t), γ(∞)) that does not collide

with any path of any obstacle, then return “safe”,
otherwise return “not safe”.

At a high level, this is the approach that has been used in
many of the existing efforts towards the computation of safe
paths [4], [25], [28], [30], where the intersection of pathsis
executed in an incremental fashion by sampling along the
trajectories, the same way that traditional collision checking
is executed in sampling-based algorithms. None, however, of
these implementations considers contingency trajectories of
infinite duration, thus not providing safety by violating the
third criterion of motion safety [35].

Consequently, the challenge is how to execute conserva-
tive collision checking between two trajectories of infinite

duration for two general systems. One direction is to bound
at each statexπ(x(t),γ(∞))(dt) along the robot’s contingency
trajectory, wheredt ∈ [t,∞), the subset of the space
that A can occupy after timedt. For example, consider a
contingency maneuver that forces an airplane-like robot to
execute circular paths. Then the subset ofX that can be
occupied by the robot is bounded by a disk (for a planar
problem - the reasoning extends to higher dimensions as
well). Similar bounds can be computed for an obstacle
assumed to move along a path with constant linear velocity,
the typical assumption in reactive navigation (e.g., Velocity
Obstacles). At each state the obstacle will never again reach
the half-plane behind it defined by the line that goes through
its position and perpendicular to its velocity vector. Given
such bounds, it is possible to guarantee collision-avoidance
between the systems without having to execute an infinite
number of collision-checking calls.

Alternatively it is possible to conservatively approximate
the swept volumes defined by the robot’s contingency and
the obstacle’s path. If the swept volumes do not intersect,
collision avoidance is guaranteed. If they do intersect, then
it is possible to check whether the corresponding systems
arrive at the intersection point at the same point in time. If
appropriate bounds cannot be found easily for two trajecto-
ries, then they can be considered as colliding, which results
in a conservative computation ofICS(O(t),Γ(∞)).

This implies that the selection of the contingency maneu-
vers is again critical. It is important to consider maneuvers
which quickly bound the space that the robot can occupy
into the future or for which it is easy to compute a con-
servative approximation of the swept volume. Thus, braking
or circling maneuvers are appropriate, since they limit the
space a robot can visit to a local region ofW. Similarly,
maneuvers that move the robot along a straight line path
are also appropriate as they quickly exclude a large part
of the workspace and lead to easy definitions of the swept
volume. The effectiveness of this approach depends on the
complexity of the obstacles’ paths. A complex obstacle path
that does not easily provide any meaningful bound or an
easy swept volume computation will be harder to address.
Furthermore, although the bounds for prespecified maneuvers
can be computed offline, this approach again requires a lot
of the computations to occur online. This approach has the
prospect of generalizing to complex systems as it depends
only on forward integration of controls.

C. Relaxing Guarantees and Simplifying Computation

The above approaches aim to provide a conservative
approximation of the setICS(O(t),P(∞)). This means that
no state in this set would be returned as safe. This guarantee
comes at the expense of computational cost. Thus, it might be
appropriate in certain cases to relax the guarantees provided
and simplify the computation of the ICS set. This is the
methodology followed by Kuffner and collaborators [31],
[41].

This approach does not make use of a set of con-
tingency maneuvers but instead tries to compute directly



ICS(O(t),P(∞)) for all possible plans of infinite duration.
It employs the following tools to approximate the set:
a) In the general case, the setICS(O1(t) ∪ O2(t),P(∞))
is not equal to the union ofICS(O1(t),P(∞)) and
ICS(O2(t),P(∞)). The approximation employed is to ig-
nore this issue, and represent the full ICS set as the union
of the individual ICS sets calculated for each individual
obstacle. This means that ICS states might be returned as
safe by the approach [31].

b) If a statex(t + dt) is shown to be safe, then any prede-
cessor statex(t), for which there exists a planp(dt) so that
x(t+ dt) = xπ(x(t),p(dt))(t+ dt) is also safe. The approach
searches for safe successor states of statex(dt) only within
a limited time horizon. Although limiting the time horizon
when checking for collisions to prove that a state is ICS is
problematic (violates the third criterion of motion safety),
the opposite, to limit the time horizon when checking for
an escape route, is a conservative approximation and does
not affect planner safety [31].
The approach also precomputes tables of ICS sets through

a discretized representation for different configurationsof
individual obstacles relative to the robot. These reachability
sets for all the obstacles are then transformed online given
the parameters of a specific state. If a state belongs to at least
one ICS set for an individual obstacle, it is marked as an ICS
overall. The precomputation assists in reducing the online
overhead of the approach but introduces new approximations.

Finally, this method introduces two additional concepts:
the Region of Potential Collision (RPC) and the Region of
Near-Collision (RNC). States in the RPC are those for which
there exist plans that lead to a collision. States in the RNC
will result in a collision unless the vehicle acts within a
certain limited window of time. The approach proposes to
heuristically avoid such states during the planning process.
This additional level of granularity in the definition of safe
states has experimentally shown good results.

D. Learning Approximations

If weak safety guarantees are acceptable, then it is also
possible to utilize machine learning algorithms for charac-
terizing ICS sets. This is the approach followed in the work
by Kalisiak and Van de Panne [29], [40].

The idea is to train an ICS model using examples of safe
states collected through experiments offline and utilize it
during the online identification of ICS states. The input for
the training procedure are descriptors of the form:(x, s),
wherex is the state of the robot ands is descriptor of the
robot’s local surroundings. In the work by Kalisiak et al. [29],
the focus was on static environments ands corresponded to
the distance from the agent to the nearest obstacle along
the robot’s velocity vector. The environment descriptor can
potentially be extended for the case of moving obstacles to
include the velocity of obstacles in the vicinity of the robot.

In order to collect examples of safe states it is possible
to make use of very long random-walk trajectories, created
by applying random control actions at each time step, and
backtracking upon failure. Every state along the random walk

that is followed by a collision-free trajectory of sufficient
duration is considered to be an example of a safe state. Thus,
this training approach does not yield examples of ICS but
only of safe states. Furthermore, it only provides approximate
examples of safe states given a limited time horizon. In the
existing work [29] a learning procedure using SVMs was
employed because it has the capability to learn even when
the examples belong to only one class.

The advantage of this procedure is that once the learned
model has been constructed, then it is really fast during
the online planning to get an answer to the question of
whether a state is safe or not. It is interesting to investigate,
however, the level of accuracy in ICS identification that such
learning-based approaches can potentially achieve, especially
for problems involving moving obstacles.

E. Trade-offs

The above alternatives have divergent objectives. The first
two aim to provide a conservative approximation of the ICS,
so that every state that is deemed safe by the technique is
truly safe and an available contingency maneuver of infinite
duration can be provided that avoids collisions, at least for
problems where the motion of dynamic obstacles is known.
The last two methods relax their guarantees, so they may be
wrong in the identification of a safe state, but they aim to
provide a toolbox that quickly answers ICS queries.

Providing stronger guarantees is clearly preferable and
desirable. Nevertheless, the scalability of all the proposed
schemes in complex high-dimensional systems and challeng-
ing dynamics scenes remains to be shown. Moreover, the
speed with which a technique can identify ICS online is
of critical importance for the practical safety of a robotic
system. For example, consider a robot that operates in the
safe subset of the state space. Then a new moving obstacle
appears in the workspace. The robot has to be able to
quickly recompute the newICS(O(t),P(∞)), otherwise it
may quickly enter this set and will not be able to avoid
collisions. Benchmarks and experimental comparisons be-
tween the discussed alternatives are needed to evaluate the
relative effectiveness of the various techniques, including
setups where the assumption that the motion of the obstacles
is known is violated.

One direction could be a combination of the current
approaches. During the online operation of a planner, a
fast technique could be first employed, either learning-based
or approximation-based, to quickly prune potentially unsafe
states. Then for states deemed to be safe, the conservative
but slower methods can be used to guarantee safety.

V. SAFE REPLANNING

Checking whether a state is ICS or not has a computational
overhead, which is typically higher than the overhead of
computing whether a state is collision-free or not. Thus it
is important to minimize the number of calls to the ICS-
identification module during replanning. What is, however,
the minimum number of states which a replanning process
has to check for ICS to guarantee safety?



This section describes various alternatives from the related
literature for replanning with a global planner so as to
compute safe trajectories. Since sampling-based algorithms
are popular for such problems, the discussion starts by an
outline of these methods, which will assist the description
of their integration into safe replanning frameworks.

A. Sampling-based Planning for Systems with Dynamics

Sampling-based algorithms incrementally construct a tree
data structure that stores trajectories inX with the objective
to quickly cover the state space as quickly as possible. The
description here follows the popular RRT method [2]. The
tree is rooted at the initial statex0(t0) of the robot. Then
at each iteration, the algorithm randomly samples a state
xr ∈ X . Given a distance metric inX , the closest statexc(tc)
along the currently expanded tree of trajectories can be deter-
mined. A set ofn constant control plans{p1(ǫ), . . . , pn(ǫ)}
are then applied fromxc(tc) for a durationǫ each, yielding
n candidate local trajectoriesπi(xc(tc), pi(ǫ)). Out of these
trajectories, typically only one is kept, the one with the
resulting statexπi(xc(tc),pi(ǫ))(tc + ǫ) which is closer to
xr according to the distance metric inX . For single-shot
planning, this process is repeated until one of the states
xπi(xc(tc),pi(ǫ))(tc + ǫ) falls within the goal region.

B. Partial Motion Planning Framework

For the dynamic problems considered in this report, a
robot has to plan a motion given a limited amount of time
and execute it in order to remain safe. Let’s denote asδc the
duration of a planning cycle during which the robot much
calculate a new motion. During each cycle, it is possible
to employ a sampling-based planner to compute a partial
plan given the current model of the world. Unfortunately,
sampling-based planners are only probabilistically (or res-
olution) complete. This means that they do not provide
any running-time upper bound: there is no guarantee that
a complete solution can be found within timeδc.

Fraichard and collaborators [33] have proposed a Partial
Motion Planning (PMP) framework that avoids ICS given the
existence of a module for the identification of such states.
The scheme assumes that the initial state ofA is ICS-free.
Then during the cycle(ti, ti+1), whereti+1 = ti + δc, the
following steps are executed:
1. An updated model of the workspace is acquired.
2. A tree data structure of feasible trajectories is createdby
an algorithm similar to the one described in V-A. The tree is
rooted at statex(ti+1), the initial state ofA in the beginning
of the next cycle.

3. During the expansion of the tree, every resulting state
xπi(xc(tc),pi(ǫ))(tc+ǫ) of a local propagation step is checked
whether it is ICS. If it is, then the corresponding trajectory
πi(xc(tc), pi(ǫ)) is pruned and not inserted in the tree. In
this way, the entire tree stores only safe trajectories.

4. As time approachesti+1, the current cycle is over and
the best safe partial trajectoryπ(x(ti+1), p(δc)) is selected
so as to best complete the current task.

Fig. 3. A collision-free trajectory may still lead to anICS.

5. If the planning process failed to produce any safe trajec-
tory and the statex(ti+1) was safe, the robot can follow
the firstδc part of a contingency maneuverγ(∞) ∈ Γ(∞)
defined for statex(ti+1).
The state of the robot in the beginning of each planning

cycle is guaranteed to be safe, because the algorithm selects
either safe paths or contingencies, which are also safe. Thus,
a maneuverγ(∞) ∈ Γ(∞) will always exist atti+1. Thus,
the PMP framework guarantees safety as long as the ICS-
identification module can truly prune all the ICS state (i.e.,
satisfy the three criteria for motion safety, including to reason
over an infinite time horizon). This framework, however,
checks all the nodes of the tree for safety. This is also the
approach employed in the work by Frazzoli et al. [25], where
all the nodes of the tree are checked for safety, alas without
reasoning over an infinite time horizon.

C. Minimizing the Number of ICS Checks

Bekris and Kavraki [28] follow a similar high-level ap-
proach for replanning like the Partial Motion Planning frame-
work. Instead of step 3 in the previous subsection, however,
their approach checks a different, smaller set of states for
ICS in order to provide safety guarantees. The idea is that it
is not necessary to guarantee the safety of the entire tree but
only those states along the tree that are potential initial states
during the next planning cycle. After all, the safety of the



PMP framework depends only the existence of a contingency
at the beginning of the next planning cycle.

Thus, the step 3 from the previous procedure can be
replaced by the following operations.
• For every candidate trajectoryπi(xc(tc), pi(ǫ)) during
the expansion of the tree, check whether this trajectory
intersects the beginning of the next planning cycle. That
is check whetherti+2 ∈ [tc, tc + ǫ]. If this is true, then
checkxπi(xc(tc),pi(ǫ))(ti+2) for ICS. If this state is deemed
to be ICS then prune the corresponding trajectory.
Note that the statexπi(xc(tc),pi(ǫ))(ti+2) is not necessarily

a node of the tree, most of the time it actually occurs along
an edge. Furthermore, the number of states along the tree
which intersect a particular point in time are guaranteed
to be less than the number of nodes along the tree. Thus,
this approach calls the ICS-identification procedure fewer
times than the original PMP framework. Moreover, this is the
minimum number of states that have to be checked in order
to provide safety guarantees in the context of replanning with
a sampling-based algorithm.

Care, however, has to be taken during the selection of the
path given this change. In the original PMP framework, it
was also possible to select a trajectory of durationδ shorter
than the duration of the planning cycle (δ < δc). This is
because the resulting state of such a short trajectory (i.e.,
a node of the tree data structure) is checked for safety.
The robot can execute the corresponding plan up to time
δ and then switch to the corresponding contingency for the
resulting state, which was used to prove its safety. This is
not possible in the scheme by Bekris and Kavraki [28], since
trajectories stored along the tree of durationδ < δc have not
been checked for safety. So step 4 of the PMP framework has
to be slightly adapted. In step 4, a solution trajectory must
be at least of durationδc before selected. Such trajectories
have been checked for safety.

Moreover, the above procedure results in a tree where all
the trajectories within the interval[ti+1, ti+2] are safe but
future trajectories are not guaranteed to be safe. This does
not cause any issues as long as during the next cycle the
tree construction starts from scratch. It is possible, however,
to consider an optimization step, where in the beginning of
a new planning cycle[ti+1, ti+2], the algorithm retains the
part of the tree computed during the previous cycle[ti, ti+1]
that is still valid, which is the part of the tree past timeti+2

reachable fromx(ti+2. Since this part of the tree was not
guaranteed to be safe during the previous cycle, it has to be
checked during the tree retainment step. Again the algorithm
will check only those states along the retained tree which
occur in the beginning of the consecutive cycle, that isti+2.

An alternative scheme has been employed by Tsianos and
Kavraki [30], which also utilizes the idea that only states that
occur in the beginning of a planning cycle have to be checked
for safety. The idea is to split the planning cycle of a robot
into two steps: the tree expansion step and the safety check
step. During the tree expansion procedure, no safety check is
executed. During the safety check procedure, the algorithm
starts from the last state along the tree that intersects the

beginning of a planning cycle. So if the tree is expanded
during the planning cycle[ti, ti+1], then the algorithm will
consider states that occur on{ti+2, ti+3, ti+4, . . .} but in
reverse order. Checking first future states aims to utilize the
property discussed in section IV-C: if a statex(t + dt) is
determined to be safe, then any predecessor statex(t) along
a feasible trajectory is also safe. Consequently, if a state
x(ti+2) along the tree is a predecessor of a statex(ti+4)
which is shown to be safe, thenx(ti+2) does not have to be
checked for safety.

The last approach does not have to execute additional
safety checking during tree retainment. An argument can be
made, however, that it actually checks a larger number of
states for safety than the first alternative in this subsection.
Furthermore, the further into the future, the less reliablethe
model of the world, especially in dynamic environments, so
the less reliable the ICS-identification procedure.

VI. DISCUSSION

This report reviewed in detail methods from the literature
for (i) identifying Inevitable Collision States (ICS) and (ii)
properly integrating ICS-identification modules with replan-
ning frameworks that employ sampling-based algorithms.
The overall objective is to assist in the development of safe
methods for sampling-based replanning that are also com-
putationally efficient by (a) reducing the cost of identifying
whether a state of a system is ICS and (b) minimizing the
number of states that have to be checked for ICS during
a replanning process. A step towards this direction will
be the experimental comparison of many of the described
techniques on a common set of benchmarks, in a similar
fashion to recent work that compared the effectiveness of
ICS-based tools versus reactive navigation schemes [38].

The tools described in this report can be used in many
interesting applications where robots with non-trivial dynam-
ics have to recompute their path on the fly, such as planning
among unknown static obstacles, exploration of completely
unknown environments and especially for planning in dy-
namic environments. While the discussion focused mostly
on such single-agent challenges, some of the techniques
discussed here have also been successfully applied in motion
coordination problems for multi-robot teams [42]. It is also
interesting to investigate the importance of ICS-based work
in the context of pursuit-evasion games for systems with dy-
namics, where competing agents that can effectively reason
about Inevitably Evading States will have an advantage over
their opponent.
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