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Abstract— Tensegrity robots, which combine both rigid and
soft elements, provide exciting new locomotion capabilities
but introduce significant control challenges given their high-
dimensionality and non-linear nature. This work first defines
an effective parameterization of a spherical tensegrity for
generating rhythmic gaits based on Central Pattern Generators
(CPG). This allows the definition of periodic and rhythmic
control signals, while exposing only five gait parameters. Then,
this work proposes a framework for optimizing such gaits by
exploring the parameter space through Bayesian Optimization
on an underlying Gaussian Process regression model. The
objective is to provide gaits that allow the platform to move
along different directions with high velocity. Additionally, kNN
binary classifiers are trained to estimate whether a parameter
sample will result in an effective gait. The classification biases
the sampling toward subspaces likely to yield effective gaits.
An asynchronous communication layer is defined between the
optimization and classification processes. The proposed gait dis-
covery process is shown to efficiently optimize the parameters of
gaits defined given the novel CPG architecture and outperforms
less holistic approaches and Monte Carlo sampling.

I. INTRODUCTION & RELATED WORK

Tensegrities are made up of rigid elements interconnected
with flexible, dynamic modules, such as cables. Tensegrity
robots, an example of hybrid soft-rigid robots, can dy-
namically control the lengths and tensions of the dynamic
elements. In this way, they can dynamically adapt their global
shape and rigidity, as well as locomote [1], [2]. This allows
them to adapt to different terrains [3], distributed forces
throughout their structure and achieve high durability. They
are ideally suited for planetary exploration [4], [5], which
involves navigating unstructured and unknown terrains.

Tensegrity systems introduce their own set of challenges
that complicate the development of robust locomotion strate-
gies. They are high dimensional, both in terms of state
and control variables, highly nonlinear and exhibit complex
contact dynamics. Furthermore, they do not have direct
control of their position but only of their shape.

This work focuses on a gait generation problem [6]
for a prototypical spherical tensegrity platform, known as
SUPERBall and shown in Fig. 1. This system and physics
engine modeling the system were developed at NASA Ames
[2]. This work proposes a parameterization for this platform
that allows the generation of rhythmic gaits. Furthermore,
a data-efficient optimization method for generating effective
gaits is defined.
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Fig. 1. (left) The SUPERBall prototype at NASA Ames is composed of
rigid rods connected by tension cables. Cable lengths are actively adjusted
to achieve deformations and varying rigidity. This work develops periodic,
stable gaits with predefined motions, given a physics engine that models the
system. (right) Two example gaits: one moving the center of mass along a
straight line (top) and one resulting in a tight rotation (bottom).

A. Gait Generation for Complex Systems

Gait generation involves designing curves in a robot’s
base space, i.e., the space representing its shape [6]. This
often results in significant computation cost. Discretizing
the control space and exhaustively searching it or sampling
random controls, does not scale for the 12-actuated tensegrity
robot of Fig. 1. Computational requirements are further
increased when expensive calls to a physics engine [7] are
needed to express effects of contact forces.

Prior work has provided control policies via Monte Carlo
search and evolutionary algorithms for the target robot
focused at removing the platform from craters [8]. This
work generates gaits that are more dynamic in nature and
provides a data-efficient process for optimizing these gaits
given an appropriate robot parameterization. To the best of
the author’s knowledge, the resulting gaits are the fastest
generated for the system’s simulated version.

A popular idea for gait generation is dimensionality re-
duction. Early work has shown that by utilizing symmetries
it is possible to project system dynamics onto the shape
space [9], [10], [11]. Analytical expressions can be defined in
certain cases expressing the relationship between shape and
position velocities giving rise to a non-linear control system.
Such analytical expressions, however, are difficult to define
for systems as complex as tensegrities. Reducing problem
dimensionality and achieving periodic controls, however, are
important for generating gaits.

B. Central Pattern Generator Control Structures

A popular paradigm for gait generation comes from
biomimicry [12], [13], [14]: biological snakes locomote by
undulating their bodies, and many bacteria locomote by
changing their shapes. Central Pattern Generators (CPG)



Fig. 2. The 12 actuated cables of the SUPERBall are color-coded and mapped to nodes of the CPG architecture. Locomotion is achieved by periodically
contracting and expanding the lengths of the longest actuation chain (orange/center ring). This action shifts the system’s CoM and causes it to “roll” onto
the next surface. Steering is achieved by contracting the cables on the system’s sides (green, blue), which causes a lateral motion. In light gray: the nodes
and interconnections of the CPG. In black: The free parameters of the reduced-dimensionality CPG control, and the nodes they affect.

is as an oscillatory gait generation mechanism specifically
explored for redundant, bio-inspired systems. The framework
has been widely adopted in the control of snake robots [15],
[16], [17]. CPGs define sinusoidal equations for variables,
which define desired setpoints for the system’s joints and
allow the setpoints to evolve in constant phase offset with
one another [18]. Coupled with a PD controller, this results
is oscillatory control, which is parameterized by frequency,
amplitude, and phase offset between the joints. A single
parameter setting defines a gait, which provides oscillatory
control input even at steady state. Grid search of the pa-
rameter space has been attempted to identify individual gaits
corresponding to the most rapid displacement of a snake-like
robot [19]. Evolutionary algorithms have also been used to
search the parameter space of CPGs [20].

Contribution A. A CPG structure for SUPERBall, which
utilizes the robot’s symmetries and provides stable limit cycle
behavior, while exposing only 5 parameters.

C. Sample Efficiency in Learning Parameters

The next step is to identify the parameters of the CPG
architecture so as to generate a library of fast, dynamic gaits
that can move the center of mass (CoM) of SUPERBall
in different directions. The motivation comes from the path
planning literature on path diversity [21], [22]. Once gaits are
available that can move the CoM along different directions,
they can then be used for planning purposes among obstacles.

Optimization of these objectives is achieved by choosing
a small set of target variables, i.e., forward and angular
velocity of the system’s CoM, and modeling these variables
as a function of the CPG parameters. The process begins
with little knowledge of the parameter space and selects
samples on-line so as to maximize velocities along different
directions of motion. The space of angular velocities for the
robot’s CoM is discretized so that gaits within a predefined
range define a single class. The objective is to maximize the
system’s velocity within each gait class, while minimizing
the search effort required to identify the optimized gaits.

Contribution B. A multi-objective optimization frame-
work for CPG gait parameters so as to provide a library of
efficient and diverse gaits.

D. Classification-aware Bayesian Optimization

Since appropriate CPG parameter bounds are not known a
priori, the part of the parameter space that results in useful
gaits is very small, and different objectives are maximized
in different effective subspaces. For this reason, this work
models the effect of the CPG parameters on the forward
velocity of the system’s CoM at steady state by a set of Gaus-
sian process (GP) regression models: a class of predictive
models in the family of Bayesian nonparametrics [23]. These
models are often chosen when the goal is to approximate a
smooth nonlinear function from sparse data [24], [25], [26].
The GP models are optimized through Bayesian Optimization
(BO), which aims to optimize the output by selecting samples
to evaluate in an on-line manner. The current work uses
one BO process per gait direction. For n gait directions, n
BO processes are executed in parallel and communicate with
each other asynchronously.

In addition, a set of K-Nearest Neighbor (kNN) classifiers
are chosen to model the effect of parameters on the angular
velocity of the system’s CoM. The kNN processes learn the
effective subspaces residing within the bounds of the CPG
parameter space and bias samples fed to the BO optimization
processes toward the effective subsets. Training and commu-
nication of the kNN models is also performed on-line, in
parallel and asynchronously.

Contribution C. An inherently parallel framework for
both learning the effective subspaces of the CPG parameter
space and using these estimates to bias sampling within a
Bayesian Optimization framework. This is shown to outper-
form experimentally random sampling, only classification or
only optimization in terms of sample-efficiency.

II. CPG DESIGN FOR SUPERBALL

A. SUPERball Design Choices

In designing the prototype for the SUPERball, size and
weight requirements led to including motors on 12 of the
system’s cables. The other 12 cables are “passive”. As shown
in Fig. 2, the scheme consists of a single actuated ring around
the robot’s surface and two opposing actuated equilateral
triangles on each side. Each of the system’s faces contains
at least one actuated cable. The benefit of this pattern is



that the system is never in a stable resting configuration
without at least one actuated cable on the ground. In this
way, the system never gets “stuck” by resting on an entirely
passive face. Basic locomotion can be achieved by “flopping”
from face to neighboring face by retracting cables of the
resting surface such that the center of gravity of the system
moves outside of this support surface. Steering the system is
achieved by expanding/restricting the side triangles in order
to shift the system’s center of mass in an effective way to
facilitate this flopping behavior.

B. Biomimetic Design for SUPERBall CPG

Previous work on CPG structures mimics the oscillatory
center in the lamprey: thousands of neurons located in the an-
imal’s spinal cord can produce oscillatory motions [19]. This
behavior has been replicated by designing a CPG structure for
an 8-link salamander robot. By defining differential equations
governing the time evolution of phase and amplitude state
variables, the resulting double chain oscillatory structure
produces traveling wave motions from the head to the tail
similar to those in the biological counterpart.

This prior work has taken advantage of a variety of
symmetries to constrain the free parameters to only 5 in
the CPG structure: ν the oscillatory frequency, ∆φ the
phase offset between nodes, AL and AR the left and right
oscillatory chain’s amplitudes, and α governing an increasing
or decreasing multiplicative coefficient on the amplitudes of
individual signals from head to tail. Each actuated joint of the
robot receives a time-varying oscillatory control calculated
by combining the time-varying outputs of its corresponding
nodes from each of the left, xL, and right, xR, oscillatory
chains. The desired angular setpoint for the i-th actuated joint
in the robot is then calculated as:

ϕi = xL − xR

and fed to a PD controller. This control structure results in
asymptotically stable limit cycle behavior:

ϕ∞i (t) = αi(AL−AR+(AL+AR)·cos (2πνt+ i∆φ+ φ0))

where φ0 depends on initial conditions. This gives rise to a
5-dim. parameter space for control and defining gaits, which
converge to predictable, periodic behaviors. For salamander
robots, the resulting gaits are largely composable, i.e., due
to the underlying system dynamics, transitions between gaits
happen in a smooth and continuous manner.

In designing a CPG system structure for controlling the
12-actuator SUPERball prototype, the guiding principle was
to build upon this line of work, while also taking advantage
of the robot’s physical structure and symmetries [27], i.e.,
separately controlling the central actuation ring for forward
locomotion and the two side triangles for steering. The
CPG system design consists of a single chain controlling
the main actuation ring of the prototype, and a second
chain consisting of two nodes controlling the behavior of
the left and right actuated triangles (as in Fig. 2). In each
chain, nodes are coupled in series, with neighboring nodes
exhibiting bi-directional influence on each other.

The present design sets all neighboring connections’
weights to equal values similar to the salamander robot
[18]. The free parameters in the end are: ν the oscillation
frequency, ∆φ the phase offset between nodes in the main
actuation ring (nodes in the secondary chain are constrained
to anti-phase), and AL, AC , and AR the amplitudes of the
left actuated triangle, main center ring, and right triangle,
respectively. Collectively, these 5 parameters are denoted as
Θ. Experimentally, this design exhibits stable limit cycle
behavior in the SUPERBall, which is denoted as a function
of the free parameters in the system:

g(Θ) = ϕ∞1...N (t)

While the coupling of the second series of nodes renders
it entirely separate from the first, parameters governing
frequency are shared, with the frequency of the CPG chain
governing the side triangles being 3x higher than that of the
main actuation ring Experimentally, this gave the best results
in terms of achieving flopping locomotion.

III. MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Given the above 5-dim. CPG control parameterization,
the goal becomes to optimize the gait parameters in order
to maximize the effectiveness of a gait “library” according
to desirable objectives. As proof-of-concept objectives, this
work presents a center of mass (CoM) task space abstraction.
Each optimization objective is defined so as to allow the
generation of gaits that move the platform along a different
direction with high velocity.

A. Optimization Objective

Fig. 3. Illustration of the pre-selected
directions used as optimization objec-
tives for the CoM motion.

The motivation is to
define gaits that can be
used by a motion plan-
ner, i.e., a discrete set of
gaits that maximize the
probability of finding a
successful path from a
wide variety of start lo-
cation to a variety of end
location under various
obstacle configurations.
The robot also needs to
reach the desired goal location fast. The problem of selecting
the best sparse set of candidate paths has been studied in both
the static and dynamic planning settings [22], [28], [29], [30].

The objective is to define constant curvature arcs and
achieve a low-dimensional parametrization of these gaits.
A task space abstraction of the SUPERBall system is first
defined as the forward velocity and angular velocity of
the system’s center of mass (CoM). The angular velocity
dimension is discretized into the following 9 directions,
illustrated visually in Fig. 3:

Gait Idx 0 1 2 3 4 5 6 7 8
Min -10.0 -5.0 -3.0 -1.5 -0.5 0.5 1.5 3.0 5.0
Max -5.0 -3.0 -1.5 -0.5 0.5 1.5 3.0 5.0 10.0



Fig. 4. Resulting velocities of 20,000 random samples of the CPG
parameters. (Left) 89.4% of samples correspond to gaits without a stable
limit cycle. (right) Among the stable gaits, a crude normal distribution can
be seen over the angular velocity ranges (shaded columns). Individual data
points correspond to forward velocities achieved per angular velocity range.

Maximizing velocity is defined as a separate objective
for each of the discretized directions. By maximizing the
system’s velocity along several discrete directions of angular
velocity, the resulting gaits follow the spirit of a constant
curvature arc strategy, while also maximizing the velocity
achieved along each direction for the spherical SUPERBall.
Thus, each objective is formally defined as:

Objective i: arg max
Θi

V el(g(Θi))

where Θi are the CPG parameters of a gait in the i-th angular
velocity range, and V el(g(Θi)) returns the velocity of the
SUPERBall’s CoM for the corresponding parameters.

B. Bayesian Optimization

Each of the objective functions to maximize takes as input
a 5-dim. CPG parameter set, evaluates the resulting trajectory
of the SUPERBall using a physics engine until a steady state
is reached, and returns the resulting forward and angular
velocities of the robot’s CoM at steady state. Optimizing
these functions lends itself to Bayesian optimization (BO)
since the evaluation is expensive, as it requires physics-based
simulation over a long time horizon. The BO framework
searches for a global function maximum with a minimal
amount of samples by solving a sequential decision making
problem: at each step the framework aims to find the sample
location, which maximizes the surrogate function, and is
the current best estimate of the objective function maximum
[31]. The target variables are modeled by a Gaussian process
(GP) regression model using a radial basis function kernel.

While optimizing a single gait has been addressed using
BO before [32], the current work deviates from standard
practice. Instead of searching for a single global maximum,
developing a library of gaits dictates that several maxima
must be found, each corresponding to an individual gait
direction. In the current work, these objectives are achieved
by specifying the acquisition function for the ith BO node
for a given control input Θ:

f iacq(Θ) = V̂ el(g(Θ)) + σ(V̂ el(g(Θ)))

where V̂ el(g(Θ)) represents the BO node’s estimated veloc-
ity resulting from input Θ and the second term (σ) represents
the uncertainty about the estimate. While individual objec-
tives will have maxima in distinct locations in the parameter
space, the objectives operate in the same space – sharing both
domain (input CPG controls) and range (CoM velocity).

IV. PARALLELIZED OPTIMIZATION ARCHITECTURE

A parallelized architecture, which facilitates communica-
tion between simultaneous processes, is proposed to achieve
maximization of multiple objectives within a single space.
This also addresses the sparseness of good quality solutions
within the input space.

A. Challenge: Sparsity of the Solution Space

The solution space for individual gaits can be very sparse
(Fig. 4). Among 20k randomly sampled points in the CPG
control space, only roughly 10% of these meet a minimum
criteria for stability, i.e., after converging to the limit cycle
behavior, the angular velocity of the robot varies by no
more than ±5◦/s, and the linear velocity is greater than
1.0m/s. If the goal was to find a stable gait with steady state
angular velocity in the range [2.5, 5.0)◦/s - gait index 7 in
the presented analysis - only 0.4% of samples would meet
this criterion.

B. CPG Control Space Classification

The creation of a gait library can be broken down into
two subproblems: (a) space exploration in search of the
valid regions, which yield usable and desirable motions,
and, (b) within these regions, searching for individual gaits
that optimize the current objective. The presented framework
tailors predictive models for each task individually. A set of
N binary kNN classifiers, one per CoM direction, are trained
on samples - both positive and negative - in a streaming
fashion as the space is being explored.

The classifiers’ predictions bias the sampling of the
BO framework toward subspaces predicted to be likely to
yield good results. This is achieved through rejection sam-
pling: Candidate points are sampled until a target number
of points have been found predicted to belong to a gait
class. Once found, these promising points are supplied to
the corresponding BO process. Thus, any optimization, and
ultimately the next evaluated sample location, occurs at a
point predicted by the classifier to be promising.

C. Parallel BO Architecture

Fig. 5. Parallel architecture. BO1−N :
BO nodes. Pub1−N/Neg : communication
nodes. kNN1−N : binary classifiers.

The design of the
architecture initializes
N BO nodes each fo-
cusing on optimizing
only a single gait ob-
jective, which allows
each node to search
for a single global
maximum. Moreover,
it allows processing in
a maximally parallel
fashion. Nodes don’t
have to wait for all other gait objectives to select and simulate
their next sample location as this processing is done in
parallel rather than sequentially. Each node is able to leverage
information gained from other nodes through asynchronous
communication channels.



Fig. 6. The effectiveness of the combined (BOkNN) approach against Monte Carlo (MC), Bayesian Optimization alone (BO), and kNN alone (kNN).
Resulting velocities of the best gaits in each direction over 6,000 seconds were recorded and averaged over 10 trials per method. (top left) aggregate
velocities of all optimized gaits (rest) individual gait directions. 90% confidence intervals are shown as opaque shading.

Fig. 5 illustrates the proposed architecture. To optimize
N gaits, N BO nodes are initialized and run in paralle.
Simulation results in terms of linear and angular velocity of
the system’s CoM from any of these nodes are communicated
to one of N + 1 communication channels corresponding to
the N gait objectives, e.g., if node BO3 samples a gait,
which ends up belonging to gait objective 4, that control and
result is published to channel Pub4. There is an additional
negative sample class for the points, which are deemed
unstable. BO nodes only take in and train on data from their
corresponding channels (BOk subscribes to channel Pubk),
effectively focusing each node on only the positive samples
for the corresponding angular velocity range. The binary
kNN classifiers, conversely, are continuously trained on data
from all channels to make their predictions.

V. SIMULATION RESULTS

The efficiency of the presented framework (BOkNN) is
compared against: Monte Carlo sampling of the CPG parame-
ters (MC), kNN classification-based region biasing (kNN) and
multi-objective Bayesian optimization (BO). All algorithms
were executed for 10 repeated trials with different random
seeds for 6,000 seconds per trial. The simulation was per-
formed using NTRT, an open source tensegrity simulation
software package developed at NASA, which has been ex-
perimentally validated using the SUPERBall robot [4]. Initial
experiments were executed for even longer durations but it
was observed that results largely leveled-off prior to 6,000
seconds. Each method was given the objective of maximizing
the velocities of 9 individual gaits with angular velocities
consisting of a non-overlapping discretization of the range
[−10◦/s, 10◦/s], and was correspondingly allowed 9 parallel
processes for each trial. Every 25 iterations the best gaits
for each objective in terms of the velocity of SUPERBall’s
CoM found up to that point were recorded. To aggregate and
compare results from the repeated trials, a running average
was computed from the 10 runs for each of the methods.

Fig. 6 shows results from these trials. Overall (top left),
the velocities of all gaits discovered increase over time for
each of the individual component biasing and optimiza-
tion methods. The proposed combined framework, however,
achieves a more significant improvement, which begins early
on during a trial. Across the plots for individual angular
velocity ranges, it can be seen that while there is some
variation in the relative performances of the BO and kNN
methods, the combined BOkNN approach outperforms the
other methods across the board, discovering higher velocity
gaits in faster time for every objective. Notably, the relative
improvement of the combined method is the greatest in the
areas of greatest sparsity (gaits 7 and 8), which are also
the areas where optimization alone fails to outperform even
the baseline Monte Carlo approach. This result supports the
effectiveness of the biasing component in the framework,
even in very sparse spaces.

Overall, each individual component of the combined
framework outperforms the random sampling strategy fre-
quently, which validates their sample-efficiency properties.
Nevertheless, in situations when one component fails, e.g.,
when BO alone struggles in particularly sparse spaces, the
other component is able to counterbalance by successfully
focusing the optimization process on better quality samples.
This allows the combined method to achieve superior results
across the board.

VI. CONCLUSION & FUTURE WORK

This work describes the first successful CPG design for
a complex spherical tensegrity robot, which yields periodic
locomotive behaviors with varying steady-state effects on
the linear and angular velocity of the robot’s center of
mass. Furthermore, this work also represents the first parallel
optimization strategy for simultaneously developing an entire
gait library. In particular, a parallel approach is proposed
for biasing the sampling of promising gait parameters and
optimizing the velocities of motions in several different



directions. The optimization framework is particularly useful
for new systems with broad control spaces. It is sample
efficient and can also be applied when optimizing gaits
for a new environment. The gait velocities achieved in
the simulated experiments outperform anything achieved via
random sampling, even in trials run for significantly longer
periods of time. Moreover, the velocities achieved by the
optimized gaits are greater than those achieved by prior
efforts in kinodynamic planning [33], [34].

A near-term goal of this work is to reproduce the gaits
discovered on the real robot. While the simulation used in
this work was experimentally validated on the real system,
there is bound to be divergence. The parameters of the
simulation may need to be re-calibrated and new gaits may
need to be optimized which conform better to the limitations
of the physical platform. Exciting future work includes
examining the integration of the gaits with a search-based
planner to leverage and evaluate the gaits’ composability.
This could also lead to more complex optimization objectives
relative to those considered here, such as evaluating the
transient affects when composing gaits. An interesting line of
work would be to use the current framework to optimize for
low velocity gaits of different nature, e.g., lateral movement
gaits that can be used in the presence of an unknown
obstacle. Finally, allowing a higher-level autonomous process
to define the set of gait objectives on the fly depending on
the environment it is exploring would be useful as part of a
planning-optimization feedback loop.
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[31] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference. Springer, 1975,
pp. 400–404.

[32] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Auto-
matic gait optimization with gaussian process regression.” in IJCAI,
vol. 7, 2007, pp. 944–949.

[33] Z. Littlefield, K. Caluwaerts, J. Bruce, V. SunSpiral, and K. E. Bekris,
“Integrating Simulated Tensegrity Models with Efficient Motion Plan-
ning for Planetary Navigation,” in Int. Symp. on AI, Robotics and
Automation in Space (i-SAIRAS). June, 2016.

[34] Z. Littlefield, D. Surovik, W. Wang, and K. E. Bekris, “From Quasi-
Static To Kinodynamic Planning For Spherical Tensegrity Locomo-
tion,” in International Symosium on Robotics Research (ISRR), 2017.


