
Shortest Path Set Induced Vertex Ordering and its Application to Distributed

Distance Optimal Formation Path Planning and Control on Graphs

Jingjin Yu Steven M. LaValle

Abstract— For the task of moving a group of indistinguish-
able agents on a connected graph with unit edge lengths into
an arbitrary goal formation, it was shown that distance optimal
paths can be computed to complete with a tight convergence
time guarantee [30], using a fully centralized algorithm. In
this study, we establish the existence of a more fundamental
ordering of the vertices on the underlying graph network,
induced by a fixed goal formation. The ordering leads to a
simple distributed scheduling algorithm that assures the same
convergence time. The vertex ordering also readily extends to
more general graphs - those with arbitrary integer capacities
and edge lengths - for which we again provide guarantees on
the convergence time until the desired formation is achieved.
Simulations, accessible via a web browser,1 confirm our theo-
retical developments.

I. INTRODUCTION

For the task of moving a group of n indistinguishable

agents (or equivalently, robots or vehicles) on a connected

graph with unit length edges into an arbitrary goal formation,

an efficient centralized algorithm in [30] schedules all agents

from an initial formation (configuration) to a goal formation,

along paths with the smallest total distance. The authors

further showed that, the schedule can be completed in

n+ ℓ−1 time steps (ℓ is the longest distance between a pair

of start and goal vertices), which is a tight bound.

In this paper, we significantly extend the previous results

and show that, a directed acyclic graph (DAG) induced by

the initial and goal formations admits an integral ordering of

the vertices on the involved paths. The ordering, which may

be used to compute the distance between any two vertices

on a directed path of the DAG, is unique up to an additive

constant. A simple algorithm based on this vertex ordering

yields the same n+ ℓ− 1 convergence time guarantee. This

more fundamental structure provides a smooth transition

from the problem formulation to the solution, which is

missing from the constructive proof offered in [30].

Using this vertex ordering structure, once the initial agent-

target assignment is completed, the agents, via local (up

to distance two) communication, can achieve the desired

Jingjin Yu is with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
USA. E-mail: jingjin@csail.mit.edu. Steven M. LaValle is with the Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 USA. E-mail: lavalle@uiuc.edu. Acknowledgments. This
work was supported in part by NSF grants 0904501 (IIS Robotics) and
1035345 (Cyberphysical Systems), MURI/ONR grant N00014-09-1-1052,
and AFOSR grant FA95501210193. We thank the anonymous reviewers for
their constructive comments that helped improve the quality of the final
presentation of the materials.

1http://msl.cs.uiuc.edu/~jyu18/pe/distr-form.html.
A Java plug-in of version 6 or higher is required.

formation, again in no more than n+ ℓ− 1 time steps. To

the best of our knowledge, this work provides the first

multi-agent formation path planning algorithm that is both

distance optimal and partially distributed, along with a tight

convergence time guarantee. In general, global distance op-

timality is not achievable without direct or indirect global

communication under our formulation 2, implying that a fully

distributed planning algorithm is not possible. As we will

see, the ordering also allows easy extension of the results to

graphs with edges having arbitrary integer lengths and non-

unit capacities (i.e., more than one agent may be traveling

on the same edge at a given instant).

When it comes to problems on formation, two sub-

problems come up. One of them is on the topic of formation

control, which focuses on maintaining a formation of a group

of vehicles; a desired formation, in these research, may

be important for inter-vehicle communication or for maxi-

mizing certain utility functions [5, 24, 32]. Graph theoretic

approaches are quite popular here, probably because vehicles

and inter-vehicle constraints can be represented naturally

with vertices and edges of graphs. The second sub-problem

put more emphasis on how to achieve a desired formation via

planning [4, 7, 9, 10, 15, 16, 17, 19, 20, 23, 28, 26, 29, 30],

rather than to stabilize around a given formation. Among

these, [15, 16, 17] appear to be mostly close to our effort in

this paper (besides our earlier effort [30]). However, these

works did not consider the issue of convergence time.

Generalizing the notion of formation to include multiple

agents trying to agree on some common goal leads to the

problem of consensus and rendezvous. This more general

problem has remained a central research topic in control

theory and robotics; see, e.g., [1, 2, 3, 6, 8, 10, 12, 13,

14, 18, 21, 22, 24, 25, 27, 31], to list a few. An early

account of the rendezvous problem, as a form of formation

control, appeared in [1], in which algorithmic solutions are

provided for agents with limited range sensing capabilities.

An n-dimensional rendezvous problem was approached via

proximity graphs in [3]. For the consensus problem it is

shown that averaging the behavior of close neighbors causes

all agents to converge to the same behavior eventually [8].

We point out that, although this paper works with initial and

goal vertex sets of n distinct elements each, the presented

results can be easily generalized to any number of goal

2A simple example: two agents occupy the diagonals of a square with
two targets located on the other diagonal of the same square. Distance
optimality is only possible if the two agents choose different targets before
starting moving, which is not achievable without some form of global
communication (direct or indirect).

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

U.S. Government work not protected by
U.S. copyright

2775



vertices between 1 and n, thus covering additional problems

such as multi-agent rendezvous.

The rest of the paper is organized as follows. Section

II provides the problem formulation, an example, and its

solution. Section III constructively proves the existence of

the aforementioned vertex ordering on the induced DAG,

followed by an application that schedules a set of distance

optimal paths for the agents with a proven convergence time

bound in Section IV. Section V then shows the scheduling

algorithm can be easily turned into a distributed one, without

relaxing the convergence time bound. We generalize the

graph to have integer edge lengths and capacities in Section

VI and conclude in Section VII.3

II. FORMATION PATH PLANNING ON GRAPHS

Let G = (V,E) be a connected, undirected, simple graph,

in which V = {vi} is its vertex set and E = {(vi,v j)} is its

edge set. Let A= {a1, . . . ,an} be n agents that move with unit

speeds along the edges of G, with initial and goal vertices on

G specified by the injective maps xI ,xG : A→V , respectively.

For convenience, V,E also denote cardinalities of the sets

V,E, respectively. Let σ be a permutation that acts on the

elements of xG, (σ ◦xG) is a map that defines a possible goal

vertex assignment (a target formation).

A scheduled path is a map pi : Z+ →V , in which Z
+ :=

N∪{0}. Intuitively, the domain of the paths is discrete time

steps. A scheduled path pi is feasible for a single agent ai if

it satisfies the following properties: (1) p i(0) = xI(ai), (2) for

each i, there exists a smallest kmin ∈Z
+ such that pi(kmin) =

(σ ◦xG)(ai) for some fixed σ (i.e., same σ for all 1 ≤ i ≤ n)

(that is, the end point of the path p i is some unique goal

vertex), (3) for any k ≥ kmin, pi(k)≡ (σ ◦xG)(ai), and (4) for

any 0 ≤ k < kmin, (pi(k), pi(k+1)) ∈ E or pi(k) = pi(k+1).
We say that two paths pi, p j are in collision if there exists

k ∈ Z
+ such that pi(k) = p j(k) (meet, or collision on a

vertex) or (pi(k), pi(k+1)) = (p j(k+1), p j(k)) (head-on, or

collision on an edge). If p(k) = p(k+ 1), the agent stays at

vertex p(k) between the time steps k and k+ 1.

Problem 1 Given a 4-tuple (G,A,xI ,xG), find a set of paths

P = {p1, . . . , pn} and a fixed σ such that p i’s are feasible

paths for respective agents ai’s for this σ and no two paths

pi, p j are in collision.

Note that in the definition, we assume that edges of G

have unit lengths and capacities. That is, it takes unit time

for an agent to cross an edge and no two agents can be on

the same edge at the same time. This implicit assumption is

used throughout Section III-V and relaxed in Section VI.

To familiarize readers with the problem and its solution,

look at the example in Fig. 1. The underlying graph G

is a 6 × 7 grid with holes. Assigning the top left cor-

ner coordinates (0,0) and bottom right coordinates (6,5),
xI(A) = {(0, i− 1)},xG(A) = {(6, i− 1)},1 ≤ i ≤ 6. That is,

3Due to the page limit, theorems are stated without proofs. Readers
interested in the proofs of the results can find them in the full version of this
paper at http://msl.cs.uiuc.edu/~jyu18/files/cdc13.pdf.

Fig. 1. A 6×7 grid with some vertices removed. The colored discs on the
left represent the initial formation and the gray discs the goal formation.
The colored paths represent the paths (not yet scheduled to avoid collision).

we want to move the agents from left to right. A solution

to this problem that is distance optimal is given in Table I,

corresponding to a schedule of the multi-colored paths in Fig.

1. Here, distance optimality seeks to minimize the total path

lengths of all agents. Each main entry of the table designates

the coordinates of the vertex an agent should be staying at

the given time step.

TABLE I

Agent
Time Step

0 1 2 3 4 5 6 7 8

1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,1 6,1

2 0,1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,0

3 0,2 1,2 2,2 3,2 3,3 4,3 5,3 6,3 6,2

4 0,3 1,3 1,4 1,4 2,4 3,4 4,4 5,4 6,4

5 0,4 1,4 2,4 3,4 4,4 5,4 6,4 6,5 6,5

6 0,5 1,5 2,5 2,4 3,4 4,4 5,4 6,4 6,3

III. FORMATION INDUCED VERTEX ORDERING

Algorithm 1 PLANSHORTESTPATHSET

Input: G,A,xI ,xG as described in Problem 1
Output: Q = {q1, . . . ,qn}

1: for each ui ∈ xI(A) do
2: run breadth first search to get shortest paths qi j for all

(ui,v j)’s such that v j ∈ xG(A)
3: end for
4: run Hungarian method on the above set of n2 paths to get a

path set Q.

5: return Q

Given xI and xG, it is relatively straightforward to obtain

an unscheduled path set Q = {q1, . . . ,qn} in which qi is a

sequence of adjacent vertices (we use Q to distinguish these

paths from the scheduled paths, denoted P), with the help of

the Hungarian method [11]. Our implementation is outlined

in Algorithm 1. Let head(qi), tail(qi), and len(qi) denote the

start vertex, end vertex, and length of q i, respectively. The

path set Q returned from Algorithm 1 has several obvious

properties, listed below.4

4Properties 2-5 and Proposition 6 are from [30]; they are restated here to
make this paper more self-contained.

2776



Property 2 For all 1≤ i≤ n, head(q i)∈ xI(A) and tail(qi)∈
xG(A). For any two paths qi,q j, head(qi) 	= head(q j) and

tail(qi) 	= tail(q j).

Property 3 Each path q i is a shortest path between head(qi)
and tail(qi) on G.

Property 4 The total length of the path set Q is minimal.

Constructively guaranteed by Algorithm 1, Properties 2

and 3 ensure that the initial and goal vertices are paired

up using shortest paths. Property 4 requires the total length

of these paths to be minimal. From now on, Q is always

assumed to be a path set satisfying properties 2-4. It is not

hard to see that Property 4 implies the following.

Property 5 If the edges of every path q i ∈ Q are oriented

from head(qi) to tail(qi), no two paths share a common edge

oriented in different directions.

Let V (·),E(·) denote the vertex set and the undirected edge

set of the input arguments, which can be either a path, q i, or

a set of paths, such as Q. We define an intersection between

two paths as a maximal consecutive sequence of vertices and

edges common to the two paths. Property 5 is a special case

of a more general structure of the path set Q, stated in the

following proposition.

Proposition 6 The path set Q induces a directed acyclic

graph (DAG) structure on E(Q).

Proposition 6 leads to a tight bound on the number

of time steps to schedule the path set Q [30]. Somewhat

surprisingly, the DAG structure on Q has an even stronger

vertex ordering property that does not hold for DAGs in

general; this is where the contribution of this paper starts. To

state the property, we need some definitions for describing

relationships between paths. Recall that two paths intersect (a

symmetric relationship) if they share some common vertices

or edges. Two paths qi,q j are linked (again a symmetric

relationship) if either qi,q j intersect or both qi,q j are linked

to some qk (note that this is an inductive definition with a

base case). A cluster Qc is a set of paths such that every

pair of paths qi,q j ∈ Qc are linked. A path cluster Qc is a

maximal cluster of Q if Qc is a cluster and no other path

qi ∈ Q\Qc is linked to a path q j ∈ Qc.

For each path qi ∈ Q, a distance value function, d i :

V (qi)→ Z
+, is defined as

di(u) =

{

0 u = head(qi),
dist(head(qi),u) otherwise,

(1)

in which dist(u,v) denotes the shortest distance between u,v

on the graph G. Distance value functions can be defined

similarly for an arbitrary set of vertices. Given the general-

ized definition, we say that one distance value function, d ′,

respects another one, d, if d ′ is defined for all of d’s domain

and for any u,v on which d is defined,

d′(u)− d′(v) = d(u)− d(v). (2)

In an unscheduled path set Q, for any two paths q i,q j

that intersect, a distance value function can be constructed

to respect both di and d j.

Lemma 7 If a vertex u∗ belongs to the intersection of two

paths qi,q j ∈ Q, then the distance value function

dc(u) =

{

di(u) u ∈V (qi),
dc(u

∗)+ d j(u)− d j(u
∗) u ∈V (q j),

(3)

respects both di and d j.

v*u*

q
 i

q
 j

Fig. 2. Two intersections between two paths.

We now show that (3) can be extended to a path cluster.

Theorem 8 Given a path cluster, Qc = {q1, . . . ,qm} ⊂ Q,

there exists a distance value function dc : V (Qc)→ Z
+, such

that dc respects di for all 1 ≤ i ≤ m.

IV. AN ORDERING-BASED SCHEDULING ALGORITHM

Assuming that a time optimal schedule seeks to minimize

the time it takes the last agent to reach its goal, the following

was established in [30].

Lemma 9 In general, distance optimality and time optimal-

ity for Problem 1 cannot be simultaneously satisfied.

Furthermore, let ℓ be the largest pairwise distance between

a member of xI(A) and a member of xG(A),

ℓ= max
∀u∈xI(A),v∈xG(A)

dist(u,v). (4)

It was also shown in [30] that n + ℓ − 1 time steps is

necessary to schedule a shortest path set Q for an infinite

family of instances of Problem 1. It was then shown that an

unscheduled path set Q can be turned into a scheduled path

set P with a maximum of n+ ℓ− 1 time steps, providing

a distance optimal schedule with a tight scheduling time

bound. We now show that the vertex ordering induced by x G

leads to a scheduling algorithm with the same guarantees on

the scheduled paths’ qualities. The new algorithm is simpler

to implement and has a better running time of O(nV logn);
it is not clear though, from a first look, that it should provide

the said convergence time guarantee.

By Theorem 8, each maximal path cluster Qc ⊂ Q can

be assigned a distance value function dc that respects the

distance function di for each qi ∈ Qc. Since these individual

dc’s have no common domain, they can be combined to

give a global dc (for a fixed Q). Assuming such a dc,

which can be obtained easily using (??). Before scheduling

2777



the path set Q, we introduce a subroutine to handle the

scenario illustrated in Fig. 3. In the figure, Q = {q1,q2} with

head(qi) = ui, tail(qi) = vi for i = 1,2. This path set cannot

be scheduled as is, since q1 is in the way of q2. However, as

u
 2

v
 2

v
 1

u
 1

Fig. 3. A path set Q that cannot be scheduled without modification.

agent a1 reaches v1, we can dynamically switch the goals of

q1,q2. Note that the path set after this update still satisfies

Properties 2-4. For paths qi,q j, denote this path switching

subroutine switch(qi,q j).

Algorithm 2 SCHEDULESHORTESTPATHS

Input: G,Q,dc

Output: scheduled paths, P = {p1, . . . , pn}

1: let pi(0) = head(qi) for all 1 ≤ i ≤ n
2: let vi = next(qi,head(qi)) for all applicable qi ∈ Q
3: let t = 1
4: while some qi is not fully scheduled do
5: while some pi(t) is not set for the current t do
6: pick a candidate path qi with largest dc(vi)
7: if vi is not the same as any p j(t) already assigned then
8: pi(t) = vi

9: vi = next(qi,vi) if qi is not fully scheduled
10: if vi == tail(qi) and vi falls on some q j such that q j

has yet to reach vi then
11: switch(qi,q j)
12: end if
13: else
14: pi(t) = pi(t −1)
15: end if
16: end while
17: t = t +1
18: end while

19: return P = {p1, . . . , pn}

The path scheduling subroutine is outlined in Algorithm

2, in which the routine next(q i,v) returns the next vertex of

path qi after vertex v. A path qi is fully scheduled if tail(qi)
is assigned to pi(t) for some t. The scheduling routine never

considers two paths qi,q j running in opposite directions since

Property 5 excludes such cases. Essentially, the scheduling

algorithm let all paths from Q take their respective courses

simultaneously. Whenever two paths are competing for going

to the same vertex, an arbitrary path is picked to go and

the other one to stay put. With the switch(·, ·) subroutine to

guarantee that no deadlock can occur, it is straightforward to

see that the process must converge since at each t, at least

one agent will make progress toward its goal. That is,

Proposition 10 Algorithm 2 terminates in finite time.

Denote the total path length of Q as ℓQ, then the con-

vergence time (the time it takes for the formation to be

completed) is no more than ℓQ. However, as we have

mentioned, Algorithm 2 provides a much stronger guarantee.

Theorem 11 Algorithm 2 provides a schedule that takes at

most n+ ℓ− 1 time steps to complete.

V. A DISTRIBUTED SCHEDULING ALGORITHM

From the constructive proof of Theorem 11 it is clear that

within each maximal path cluster, an agent only needs to be

aware of its neighbors within a distance of 2 to take appropri-

ate actions. This implies that once agent-target assignment is

done, global coordination is not required to schedule these

agents, yielding partially distributed scheduling algorithm.

Since local communication is often more reliable and easy

to implement, such a scheduling algorithm is more desirable

in general. In this section, we provide a local communication

protocol which leads to a distributed scheduling algorithm,

again with a convergence time of n + ℓ− 1. A common

clock is assumed. We omit the pseudo code since it is a

straightforward modification of Algorithm 2.

Assuming each agent is assigned a path, we will schedule

them along these paths and possibly update their goals

(targets) on the fly. Recall that by Property 5, we only need

to worry about two agents occupying the same vertex at a

given time step. This splits into two cases: (1) two agents

want to move to the same vertex in one time step, and (2) one

agent moves to a vertex while another agent is staying there.

We now give a communication protocol, including a forward

communication phase and a backward communication phase

at each time step, that handles both cases.

Schedule 12 (Distributed Transfer Schedule) Repeat the

following two communication phases until the desired for-

mation is complete.

Forward communication phase. Assume that an agent

ai is located on vi and wants to move to vi+1. Agent ai first

checks whether vi+1 is occupied by some other agent a j and

if it is, notifies a j of its intention and waits for a j’s response.

At this point, a j will check whether it is already at its goal

and if it is, switch its goal with ai (a j will also redo its

forward communication phase if it already did). If no agent

is occupying vi+1, ai then looks for agents that also want

to go to vi+1. If there are, one agent is randomly picked

to go to vi+1 in the next time step. Alternatively, we could

deterministically pick an agent (e.g. based on identities of

the vertices occupied by the agents). Other agents wanting

to go to vi+1 then must wait one time step. Since we are

dealing a finite number of agents and there are no cycles on

a DAG, the forward communication phase will stop after at

most O(n) messages, each with a size of O(logV ).
Backward communication phase. Next, an agent that has

received requests from a following agent needs to respond

back. Let such two adjacent agents be a i and a j, occupying

vi, vi+1, respectively, with ai wanting to go to vi+1. There are

two sub-cases. In the first sub-case, a j moves and notifies ai

that it may go ahead and move to v i+1. If a j gets multiple

2778



requests to occupy vi+1 then a randomly agent is selected

to proceed (again, this can be made deterministic). In the

second sub-case, a j cannot move because another agent tells

it so. It then simply relay that message backward. Clearly,

the backward communication will stop after at most O(n)
messages, each with a size of O(logV ).

Schedule 12 has a similar algorithmic complexity com-

pared with the centralized version. Time wise, we have

Corollary 13 Schedule 12 transfers all agents to achieve the

desired formation in O(n+ ℓ− 1) time steps.

The scheduling algorithm is fairly simple to implement,

as we did in a Java simulation (see abstract for the link).

A snapshot of a running session is provided in Fig. 4.

We do not provide computational evaluation here since the

overall algorithm has similar running time as the algorithm

from [30]. Readers interested in computational time on large

instances may refer to [30] for more details.

Fig. 4. A simulation capture. The red/blue circles and numbers are the
start/goal locations (already assigned to have shortest total distance). The
light blue solid discs represent the agents. The bold black lines are the paths
yet to be completed.

VI. INTEGER EDGE LENGTHS AND CAPACITIES

So far we have assumed that we work with a graph G

with unit edge lengths and capacities. That is, an edge takes

a unit of time to cross and can hold one agent at a time. We

now relax this assumption to allow non-unit edge lengths and

capacities. Formally, let d,c : E →Z
+ be the edge length map

and edge capacity map, respectively. We assume that for any

e∈E,d(e)≥ c(e), which is generally true for physical robots

with non-negligible sizes (up to a multiplicative constant).

The main goal of this section is to extend the results from

previous sections under this setup. Note that the definition

of scheduled paths and feasible paths from Section II need

to be updated since it may take multiple time steps for an

agent to cross an edge. Thus, a scheduled path p i becomes

a partial map as it may be undefined for some time steps.

We omit formal descriptions of these required updates since

they are intuitive but lengthy to state.

It is clear that Algorithm 1 is insensitive to edge length.

Therefore, the algorithm again produces an unscheduled path

set Q satisfying Properties 2-5. Moreover, all results from

Section III continue to hold with edge lengths that are not all

ones. On the other hand, scheduling the path set Q becomes

slightly trickier, since depending on edge capacities, one or

more agent may be on the same edge during within one time

step. To simplify the analysis, we look at two extreme cases:

(1) for all e ∈ E,c(e) = d(e), and (2) for all e ∈ E,c(e)≡ 1.

The first case models scenarios that allow bumper to bumper

road traffic. This case is easy to handle, due to the following

observation: By subdividing each edge e ∈ E into d(e) edges

of unit length, we obtain a new graph G with unit edge length

and capacity. We turn our attention to the second case, which

models bottleneck edges such as a long and thin bridge. First

we establish a lower bound.

Lemma 14 Assume ∀e ∈ E,c(e) ≡ 1 and let dmax =
maxe∈E d(e). Then ℓ+(n− 1)dmax time steps is necessary

to schedule n agents along a shortest path set Q.

If we pretend that all edges have the same length dmax,

Algorithm 2 can be easily extended to schedule a shortest

path set Q. Clearly, this provides an overestimate of the

total time it takes to schedule Q. Since no agent is delayed

more than (n−1)dmax time steps, the following corollary to

Theorem 11 is immediate.

Corollary 15 Assume ∀e ∈ E,c(e) ≡ 1 and let dmax =
maxe∈E d(e). Algorithm 2 schedules a shortest path set Q

such that the scheduled path set requires at most ℓ+(n−
1)dmax time steps to complete.

Thus, the time bound ℓ+ (n − 1)dmax is tight for the

unit edge capacity case. Combining the two extreme cases

together, we have the following conclusion.

Theorem 16 For the extension of Problem 1 with integer

edge lengths and capacities in which 1 ≤ c(e) ≤ d(e) for

all e ∈ E, the time bound ℓ+(n− 1)dmax is sufficient and

necessary to schedule n agents along a shortest path set Q.

Straightforward complexity analysis shows that for integer

edge lengths and capacities, the running time of the entire

algorithm becomes O(nV 2 + nVdmax).

VII. CONCLUSION AND FUTURE WORK

In this paper, for the multi-agent formation path planning

problem on graphs, we showed the existence of a vertex

ordering structure induced by the initial and goal formations,

which in turn admits a simple and natural scheduling algo-

rithm for coordinating the shortest paths amongst the indis-

tinguishable agents with a tight convergence time guarantee.

2779



Furthermore, the ordering allows the scheduling algorithm

to be distributed. We then showed that the ordering as well

as the convergence time guarantee generalize to integer edge

lengths and capacities.

Seeing how the vertex ordering helped us in obtaining

a distributed scheduling algorithm without sacrificing con-

vergence time, we plan to study further implications of

this order structure. On the practical side, we hope to put

the algorithm onto robots to test its performance in real

world applications. With increased availability of cheap and

fast wireless communication capabilities, we believe our

algorithm can be used on formation control problems for

a large group of robots or other types of vehicles in practice.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility. IEEE Transactions on Automatic Control, 15(5):818–828,
October 1999.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for
multirobot teams. IEEE Transactions on Robotics & Automation,
14(6):926–939, 1998.

[3] J. Cortés, S. Martı́nez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions. IEEE

Transactions on Automatic Control, 51(8):1289–1298, August 2006.
[4] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In

Proceedings IEEE International Conference on Robotics & Automa-

tion, pages 1419–1424, 1986.
[5] J. A. Fax and R. M. Murray. Information flow and cooperative control

of vehicle formations. IEEE Transactions on Automatic Control,
49(9):1465–1476, September 2004.

[6] V. Gazi. Stability of a discrete-time asynchronous swarm with time-
dependent communication links. IEEE Transactions on Systems, Man,

and Cybernetics: Part B, 38(1):267–274, February 2008.
[7] Y. Guo and L. E. Parker. A distributed and optimal motion planning ap-

proach for multiple mobile robots. In Proceedings IEEE International
Conference on Robotics and Automation, pages 2612–2619, 2002.

[8] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[9] K. Kant and S. Zucker. Towards efficient trajectory planning: The path
velocity decomposition. International Journal of Robotics Research,
5(3):72–89, 1986.

[10] S. Kloder and S. Hutchinson. Path planning for permutation-invariant
multirobot formations. IEEE Transactions on Robotics, 22(4):650–
665, 2006.

[11] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[12] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. part 1: The synchronous case. SIAM Journal
on Control and Optimization, 46(6):2096–2119, November 2007.

[13] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. part 2: The asynchronous case. SIAM Journal
on Control and Optimization, 46(6):2120–2147, November 2007.

[14] Z. Lin, M. Broucke, and B. Francis. Local control strategies for
groups of mobile autonomous agents. IEEE Transactions on Automatic

Control, 49(4):622–629, April 2004.
[15] L. Liu and D. A. Shell. Large-scale multi-robot task allocation via

dynamic partitioning and distribution. Autonomous Robots, 33(3):291–
307, 2012.

[16] L. Liu and D. A. Shell. Tunable routing solutions for multi-robot
navigation via the assignment problem: A 3d representation of the
matching graph. In Proceedings IEEE International Conference on

Robotics & Automation, pages 4800–4805, 2012.
[17] D. Miklic, S. Bogdan, R. Fierro, and S. Nestic. A discrete grid

abstraction for formation control in the presence of obstacles. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 3750–3755, 2009.
[18] L. Moreau. Stability of multiagent systems with time-dependent

communication links. IEEE Transactions on Automatic Control,
50(2):169–182, February 2005.

[19] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-
free coordination of two robot manipulators. In Proceedings IEEE

International Conference on Robotics & Automation, pages 484–489,
1989.

[20] J. Peng and S. Akella. Coordinating multiple robots with kinodynamic
constraints along specified paths. In J.-D. Boissonat, J. Burdick,
K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of

Robotics V (WAFR 2002), pages 221–237. Springer-Verlag, Berlin,
2002.

[21] W. Ren and R. W. Beard. Consensus seeking in multi-agent systems
under dynamically changing interaction topologies. IEEE Transactions

on Automatic Control, 50(5):655–661, May 2005.
[22] B. Shucker, T. Murphey, and J. K. Bennett. Switching rules for

decentralized control with simple control laws. In American Control

Conference, pages 1485–1492, Jul 2007.
[23] T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple

mobile robots: A resolution complete algorithm. IEEE Transactions

on Robotics & Automation, 18(1):42–49, February 2002.
[24] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of

persistent formations for multi-agent networks under range constraints.
ACM/Springer Mobile Networks and Applications Journal, 14(3):322–
335, June 2009.

[25] S. L. Smith, M. E. Broucke, and B. A. Francis. Curve shortening
and the rendezvous problem for mobile autonomous robots. IEEE

Transactions on Automatic Control, 52(6):1154–1159, June 2007.
[26] D. M. Stipanovic, S. Shankaran, and C. J. Tomlin. Multi-agent

avoidance control using an m-matrix property. Electronic Journal of

Linear Algebra, 12:64–72, May 2005.
[27] H. Tanner, G. Pappas, and V. Kumar. Leader-to-formation stability.

IEEE Transactions on Robotics & Automation, 20(3):443–455, Jun
2004.

[28] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans. In Proceedings Robotics: Science and Systems, 2009.

[29] P. Švestka and M. H. Overmars. Coordinated path planning for
multiple robots. Robotics and Autonomous Systems, 23(3):125–152,
1998.

[30] J. Yu and S. M. LaValle. Distance optimal formation control on
graphs with a tight convergence time guarantee. In Proceedings IEEE

Conference on Decision & Control, pages 4023–4028, 2012.
[31] J. Yu, S. M. LaValle, and D. Liberzon. Rendezvous without coor-

dinates. IEEE Transactions on Automatic Control, 57(2):421–434,
February 2012.

[32] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic
connectivity control of mobile robot networks. Proceedings of the

IEEE, 99(9):1525–1540, September 2011.

2780


