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Abstract

Hausdorff metrics are used in geometric settings for measuring the distance between sets of points.
They have been used extensively in areas such as computer vision, pattern recognition and computational
chemistry. While computing the distance between a single pair of sets under the Hausdorff metric has
been well studied, no results were known for the Nearest Neighbor problem under Hausdorff metrics.
Indeed, no results were known for the nearest neighbor problem for any metric without norm structure,
of which the Hausdorff is one.

We present the first nearest neighbor algorithm for the Hausdorff metric. We achieve our result by
embedding Hausdorff metrics into l∞ and using known nearest neighbor algorithms for this target met-
ric. We give upper and lower bounds on the number of dimensions needed for such an l∞ embedding.
Our bounds require the introduction of new techniques based on superimposed codes and non-uniform
sampling.
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1 Introduction

The Nearest Neighbor Search (NNS) problem is: Given a set of n points X = {x1, . . . , xn} in a metric space
with distance function d, preprocess X so as to efficiently answer queries for finding the point in P closest
to a query point q. This problem has been well-studied in the case where d is the k-dimensional Euclidean
space. The low-dimensional case is well-solved [9], though running times and space are exponential in the
dimension. In [15] and [19], the approximate version of the problem was addressed in an effort to reduce
the dependence on d. Recently, [14] considered the nearest neighbor problems in non-Euclidean metrics, in
particular for the l∞ norm.

All of these results are examples of nearest neighbor searching in normed spaces, that is, the metrics on
the points form a norm. Such metrics have a good deal of structure which can be exploited algorithmically.
While many metrics of interest for nearest neighbor searching are normed, not all are. One of the most in-
teresting cases of a non-normed metric are the Hausdorff metrics. The Hausdorff metric is an example of a
derived metric. Suppose we have an arbitrary underlying metric d on a set of points X . Then, for any two
subsets (say A and B) of X the (directed) Hausdorff distance from A to B is defined as a maximum distance
from any point from A to its nearest neighbor in B; the undirected Hausdorff distance between A and B is
computed by considering both directions and taking the larger value.

Hausdorff metrics do not have the useful structure of norms. Even if the underlying metric is “well-
behaved” (for example, when taking the Hausdorff metric of points in low-dimensional Euclidean space) no
nearest neighbor algorithms are known. This state of the art is unfortunate, since the Hausdorff metric (over
low dimensional Euclidean spaces) is a commonly used metric over geometric objects. Geometric point set
matching in two and three dimensions is a well-studied family of problems with application to areas such as
computer vision [22], pattern recognition [6, 13] and computational chemistry [11, 12, 23]. Thus the prob-
lem of computing (exactly or approximately) the Hausdorff distance between two point sets P and Q in two
and three dimensions has been studied extensively [1, 5, 6, 13, 24] with the interesting problems being those
where one set can be rotated or translated and one seeks the transform which minimizes the Hausdorff dis-
tance.

Unfortunately, no efficient algorithms have been designed for the case when we want to match P with
many Q’s and find the closest one. This problem is of crucial importance in many applications; in particular,
computational chemistry [11, 12, 23] and pattern recognition [6, 13], require matching a pattern against a
huge database of molecules or images, respectively.

Our results. Here we sketch out the flavor of the results, highlighting the main contributions.
Our first result is an algorithm for approximate nearest neighbor searching in Hausdorff metrics over low

dimensional normed spaces ldp. The algorithm proceeds by approximately embedding the Hausdorff metric
into l∞ norm with dimension D roughly equal to O(s2/εd), where s is the sets’ size and ε is the distortion
(see formal definitions in Section 2). Notice, that D does not depend on the database size, but only on size
of database sets, which is much smaller. After the embedding, we apply the approximate nearest neighbor
search algorithm in l∞ of [14] to find the neighbor. In particular, for the most interesting case of d = 2 or
d = 3 we get:

• A constant factor approximation algorithm with query time roughly O(s2 log n) and mildly superpoly-
nomial storage nO(log s)
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• An O(log log s)-approximation algorithm with the same query time and roughly s2n1+ρ space, for any
ρ > 0.

Our algorithms can be generalized to minimum Hausdorff distance under isometries (i.e. rotations and
translations). The time/space bounds remain essentially the same if only translations are allowed; for general
isometries both query time and space are multiplied by s. Also, our approach (i.e. embedding Hausdorff
metric into l∞) has several additional benefits. One of them is that any future improvements of algorithms
for l∞ automatically yield improved algorithms for Hausdorff distance. Also, from the practical prespective,
it gives a flexibility in choosing the l∞ algorithm (from many existing implementations) which works best
for particular applications.

Since the dimensionality D of the l∞ space is crucial for the efficiency of the embedding, we further in-
vestigate the relationship between D and s, d, and ε. In particular, we show a lower bound for D of roughly
s2 for the case when the underlying norm is llog s

∞ . Since the corresponding upper bound in this case is
O(s2O(1)d) = sO(1), we conclude that either the superlinear dependence on s or exponential dependence on
d is neccessary1 (we believe that the most likely case is that both of them occur). It is interesting that both the
upper and lower bound uses superimposed codes; in particular, our lower bound proceeds by showing that
an assumed embedding allows us to construct codes of small length, which contradicts known lower bounds.
We believe this technique can be applicable to showing other lower bounds for derived metrics.

Our second line of research focus on arbitrary underlying metrics. We show the following result: a Haus-
dorff metric over any metric M can be embedded into l∞ with roughly D = s2mρ dimensions and constant
error (here m is the size of of the metric). Moreover, if efficient approximate nearest neighbor oracle exists for
M , then the embedding can be performed by using D oracle calls. Thus we obtained the following surpris-
ing structural result: for any metric M for which a sublinear-time approximate nearest neighbor algorithm
exists, the approximate nearest neighbor problem on the Hausdorff metric over M also has a sublinear-time
algorithm.

Our embedding is randomized, requiring the selection of a collection of reference sets which are used in
the embedding. In this regard, it resembles other embedding algorithms (see e.g. [4, 20, 21], etc.). However,
in all of those results, the reference sets are selected uniformly at random, a scheme which turns out not to
work in our case. Instead, we develop an embedding algorithm which relies on non-uniform sampling. We
believe this technique could find further applications for other metric space problems.

Outline. In §2, we introduce notation and preliminary ideas. In §3, we give bounds on embedding Haus-
dorff metrics over normed spaces. In §4, we give bounds on embedding Hausdorff metrics over general space.
Finally, in §5, we show how to use our embeddings for nearest neighbor searching.

2 Preliminaries

Metric spaces. Let X = {x1, . . . , xn} and let d : X2 → <+ be a metric, that is d(x, y) = d(y, x) ≥
d(x, x) = 0 and d(x, y) ≤ d(x, z) + d(y, z). The pair (X, d) forms a finite metric space. We extend d to
pairs p, S where S ⊂ X by defining d(p, S) = minq∈S d(p, q). We also extend it to pairs S, S ′ for S, S ′ ⊂ X

1For the Hausdorff metric over ldp for p <∞ the dependence on d can be seen to be exponential even when s = 1; this follows
from lower bounds for embedding of lp into l∞ . However, the same argument clearly does not apply to the case p =∞.
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by defining d(S, S ′) = minp∈S d(p, S ′). Notice that the above extensions do not constitute metric spaces and
should not be confused with the Hausdorff metric defined later.

Let P ∈ <d. Then

lk(P ) =

(
d∑

i=1

|P [i]|k
) 1
k

,

l∞(P ) = lim
k→∞

lk(P ) = max
1≤i≤d

|P [i]|.

When X ⊂ <d, we refer to (X, lk) as ldk, with X understood. We will sometimes refer to ld2 as Euclidean
d-space. When we wish to emphasize that the points in ldk are in some range [0, R]d rather than in <d, we
will write [0, R]dk.

For any p ∈ X and r > 0 we define B(p, r) to be the set of points q ∈ X such that d(p, q) ≤ r.
For any pair of (X, d) and (X ′, d′) of metric spaces, we say that a function f : X → X ′ is an (R, α, r)-

embedding if for any points p, q ∈ X :

• if d(p, q) ≤ r then d′(f(p), f(q))≤ r

• if d(p, q) ≥ R then d′(f(p), f(q))≥ αR.

Most of the embeddings introduced in this paper are, in fact, contractions; in such cases we call them
(R, α)-embeddings (as the value of r is irrelevant). Furthermore, in many situations the actual value of R is
not important; in such cases we assume R = 1 and call f an α-embedding.

Hausdorff metric. For any metric D = (X, d) the Hausdorff metric over D (denoted by H(D)) is defined
over the powerset of X . For any sets A, B ⊂ X the Hausdorff distance dD is equal to

dD(A, B) = max{max
p∈A

d(p, B), max
p∈B

d(p, A)}

In the following we often restrict the domain of H(D) to subsets of X of cardinality upper bounded by
a parameter s. We denote the resulting metric by H s(D). Also, we consider generalized Hausdorff spaces
HT (D), parameterized by T : 2X → 2X . In this case the distance function dTD is defined as:

dTD(A, B) = min
t∈T

dD(t(A), B))

As long as T is closed under composition and inversion, the function dTD(A, B) is a metric.
The problem of estimating the (generalized) Hausdorff distance between two point sets in 2 and 3 di-

mensions (usually under translations and rigid motions) has been studied extensively [7, 13, 24] (see also
the survey by Alt and Guibas [3]). The approximate versions of the above problems have also been inves-
tigated [1, 16, 5]. In particular, the combination of the results of [1] and [5] results in an O(s log s)-time
algorithm for estimating (up to any constant factor) the Hausdorff distance of sets from H s

T (l22), where T is
the set of all rigid motions.

Finally, we consider another derived metric similar to the Hausdorff, defined as follows:

dD(A, B) =
∑

p∈A
d(p, B) +

∑

p∈B
d(p, A)}

We will commonly refer to this dD as H1(D). Using this notation, the Hausdorff metric can be thought of
as the H∞(D) metric, however, we will use the simpler H(D) for convenience throughout.
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Approximate nearest neighbor algorithms. The approximate nearest neighbor problem was recently the
subject of extensive research. The most recent results of [15] and [19] give algorithms for approximate near-
est neighbor in d-dimensional Euclidean space with polynomial storage and query time polynomial in log n
and d. These algorithms are of mainly theoretical interest, as their storage requirements are quite large. In-
dyk and Motwani [15] also gave another algorithm with small polynomial storage and sublinear query time.
Unfortunately, the techniques used to achieve these results heavily exploit properties of the Euclidean norm
and therefore do not seem applicable to other metric spaces. Subsequently, Indyk [14] gave an algorithm
for the approximate nearest neighbor problem in ld∞. The algorithm achieves an approximation ratio of
4 log1+ρ log 4d with O(dn1+ρ log n) storage and O(d logn) query time. The latter result is crucial for our
applications, as we obtain our results by embedding Hausdorff metrics into l∞.

Definition 1 (c-Point Location in Equal Balls (c-PLEB)) Given n unit balls centered at
P = {p1, . . . , pn} in metric space (X, d), devise a data structure which for any query point q ∈ X does
the following:
• if there exists p ∈ P with q ∈ B(p, 1) then return YES and a point p′ such that q ∈ B(p′, c),

• if q /∈ B(p, c) for all p ∈ P then return NO,

• if for the point p closest to q we have 1 ≤ d(q, p)≤ c then return either YES or NO.

In [15] it was proved that given an algorithm for c-PLEB which uses f(n) space on an instance of size n
where f is convex, there is a data structure for (c + ε)−NNS problem requiring O(f(npoly(log n, 1/(c−
1)))) space and using O(poly(log n, 1/(c−1))) invocations to c-PLEB per query. Thus in this paper we will
concentrate on solving the c-PLEB problem.

Superimposed codes. There exist several variants of superimposed codes. In this paper we assume the
following definition (see [8]):

Definition 2 An N ×M binary matrix A is called a superimposed (z, M)-code (or (z, M)-code) of length
N if the boolean sum of any z columns of A does not contain any other column. We refer to A’s columns
(which we denote by A[0] . . .A[M − 1]) as codewords.

Notice that each codeword corresponds to a subset of [M ] (take the set of all coordinates set to 1) and therefore
we can refer to codewords as sets.

Here, we are interested in the situation when M and z are given and the goal is to minimize N .
Let Nmin(M, z) denote the minimum length of any (z, M)-code. Dyachkov and Rykov [8] showed that
Nmin(z, M) = Θ(z2 logz M) (similar bounds were also obtained by Erdos, Frankl and Furedi [10]). How-
ever, their upper bound was obtained by a probabilistic argument and is non-constructive. The best explicit
construction [18] (based on Reed-Solomon codes) achieves N = O(z2 log2

z M).

3 Embeddings of Hausdorff metrics over normed spaces

We begin by showing a 1-embedding into l∞. Our approximate embeddings will be based on this exact em-
bedding. It is well known that any metric (X, d) can be 1-embedded into l

|X|
∞ . Thus any Hausdorff metric

H(d) can be 1-embedded into l∞, with the number of dimensions equal to the number of sets. Here, we show
that fewer dimensions suffice.
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Theorem 1 For any finite metric D = (X, d) the space H(D) can be 1-embedded into l
|X|
∞ .

Proof: Assume X = {p1, . . . , pn}. For any S ⊂ X , the value f(S) is defined as

f(S) = (d(p1, S), . . . , d(pn, S)).

Notice that this mapping is a contraction; therefore it is sufficient to show |f(S)− f(S ′)|∞ ≥ 1 for any
S, S ′ ⊂ X such that dD(S, S ′) ≥ 1. To this end note that if dD(S, S ′) = t, then there exists p ∈ S such
that d(p, S ′) = t (or p′ ∈ S ′ such that d(p′, S) = t, we will assume the first case without loss of generality).
Then

|f(S)− f(S ′)|∞ ≥ |d(p, S)− d(p, S ′)| ≥ |0− t| = t,

thus establishing the claim.

This theorem is complimented by the following:

Theorem 2 Any finite metric D = (X, ld∞) can be 1-embedded into Hd(l1p).

The choice of p does not matter since all lp norms are the same in 1 dimension.

Proof: Let ∆ be the diameter of some set X of points in ld∞, that is, let ∆ = maxi,j{l∞(xi − xj)}. Then
the mapping of ld∞ into Hd(l1p) is as follows. Let xi = [xi,1, . . . , xi,d]. Then map xi into the set Si =
{Si,1, . . . , Si,d}, where Si,j = 2(j − 1)∆ + xi,j .

The points defined by dimension j are all between 2(j − 1)∆ and (2j − 1)∆ and so, the distance from
the Si,j to Sk is simply |Si,j − Sk,j |. Thus the Hausdorff distance between Si and Sj is simply l∞(xi− xj).

Therefore, Hausdorff and l∞ metrics are closely linked.

3.1 Upper bound,Hs(ld∞)

In this section we modify the techniques used above to obtain embeddings which are approximate but which
require smaller number of dimensions. More specifically:

Theorem 3 For any I > 1, s > 0 and 0 < c < 1 the space Hs([0, I ]d∞) can be c-embedded into lE∞ where

E = O

(
ds2

⌈
1 + c

1− c

⌉2d(
log I + log

1

1− c

))
.

Proof: As before, we need a mapping f : Hs([0, I ]d∞)→ lE∞ such that for any A, B ⊂ [0, I ]d of cardinality
s and p ∈ A such that d(p, B) ≥ 1 we have |f(A) − f(B)|∞ ≥ c. The embedding will be defined by a
sequence of E subsets S1 . . .SE of [0, I ]d as

f(A) = (d(A, S1), . . . , d(A, SE)).

In the following we will provide the sets S1 . . .SE such that for any A, B and q as above there exists Si
such that the following conditions are true:
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• d(p, Si) ≤ a

• d(B, Si) ≥ b

• a− b ≥ c

which is clearly sufficient for our purpose. To this end, we let a = 1−c
2 and b = 1+c

2 . Note that a + b = 1 ≤
dD(A, B). Impose a regular cubic grid on <d with a side 2a. Among all cells intersecting B(p, a) choose
the one which contains p and call it p. Notice that the center of p belongs to B(p, a). Define C to be the set
of all cubes intersecting [0, I ]d and let B be the set of cubes whose centers belong to ∪p∈BB(p, b). Notice
that p /∈ B. Also, we can bound

• |C| ≤ ( I
2a + 2)d

• |B| ≤ u(c) = s
(⌈

1+c
1−c
⌉)d

By using superimposed codes we know there exists E = u(c)2 log |C| sets S1 . . .SE such that for any
p, B as above there exists Si containing p but none of then elements from B. We then construct Si from Si
by replacing each grid cell by its center. These sets satisfy the above requirements.

Remark 1 By using the probabilisticmethod one can in fact improve the dependence on c from
(
d1+c

1−c e
)2d

to
(
d1+c

1−c e
)d

. This is due to the fact that the sets B are not arbitrary but have special structure. Unfortunately,
we do not have any explicit construction which yields such a bound.

Remark 2 We need not use superimposed codes in the construction. If we pick each cell with probability
1/2u(c), then with probability Θ(1/u(c)) we get a set S such that d(p, S)≤ a and d(B, S) ≥ b. Choosing
Θ(u(c) log2 Is) such sets gives, w.h.p., the needed code words.

3.2 Upper bound,Hs(ldk)

Our embedding algorithm in this case closely follows that of H s(l∞). However, instead of having a grid of
size 2a = 1− c, we have a grid of size 2a/d1/p. We need only bound |B| and |C|, which we do as follows.

• |C| ≤ ( Id
1/p

2a + 2)d

• |B| ≤ up(c) = s
(⌈

1+c
1−c
⌉)d

The first bound is direct, and the second comes from [15]. We once again use superimposed codes and
get Ep = up(c)2 log |C|, thus achieving the following theorem:

Theorem 4 For any I > 1, s > 0 and 0 < c < 1 the space Hs([0, I ]dp) can be c-embedded into lE∞ where

E = O

(
ds2

⌈
1 + c

1− c

⌉2d(
log I + log

1

1− c
+

log d

p

))
.

6



3.3 Lower bound

In this section we prove the following lower bound theorem.

Theorem 5 For 1
2 = R < αr ≤ r = 1 let f be an (r, α, R)-embedding of Hs([−1/2, 1/2]d∞) into lE∞.

Then there exists a (s− 1, 2d)-code of length O( E
αr−R).

In particular, this implies that if 1
αr−R = O(1) and 2d ≥ s2, then E = Ω(s2d/ log s).

Proof: Let D be the l∞ metric over [−1/2, 1/2]d and assume the existence of f as above. For any element
a from the universe U = {−1/2, 1/2}d we will define its codeword C(a) in a sequence of steps. Firstly, let
0 denote the origin (i.e. the point (0, . . . , 0)). For any A ⊂ U we define:

• L(A) = A ∪ {0}

• R(A) = A

Claim 1 For any A, B ⊂ U we have

• if A ⊂ B then dD(L(A), R(B)) = 1
2

• otherwise dD(L(A), R(B)) = 1

Proof: Assume first that A ⊂ B. In this case for any a ∈ A the distance from a to R(B) is 0 (since a ∈ B
as well). Also, the distance from 0 to any point is at most 1/2. On the other hand, the distance from any point
in R(B) to 0 (which belongs to L(A)) is 1/2. Therefore, dD(L(A), R(B)) = 1

2 .
On the other hand, assume that A 6⊂ B. In this case there exists a ∈ A−B. The distance from a to any

point in B is 1. This implies dD(L(A), R(B)) = 1.

From the above claim and the properties of f we know that for any A, B ⊂ U with cardinalities at most
s − 1 we have

• if A ⊂ B then |f(L(A))− f(R(B))|∞ ≤ R

• otherwise |f(L(A))− f(R(B))|∞ ≥ αr.

Claim 2 Let P be the set of all points f(L(A)) and f(R(B)) where A, B as above. Then the diameter of P
is at most 2.

Proof: Since the empty set is included in any set, we have dD(f(L(∅)), f(R(B))) = 1/2 for any B. Also,
for any set A we have A ∪ ∅ ⊂ A, and therefore

dD(f(L(A)), f(L(∅)))≤ dD(f(L(A)), f(R(A))) + d(f(R(A)), f(L(∅)))≤ 1/2 + 1/2 = 1

Therefore (by triangle inequality) all pairwise distances are at most 2.

We can therefore assume that P ⊂ [0, 2]E. Impose a uniform grid on [0, 2]E of side ∆ = (αr −R)− ε
for arbitrary ε > 0. For any point p ∈ [0, 2]E let gi(p) be the ith coordinate of the cell containing p; for
convenience we assume that the coordinate values for distinct i’s are distinct. Then we define:
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• L′(A) = {g1(f(L(A))), . . . , gE(f(L(A)))}

• R′(A) = ∪igi(B(f(R(A)), R))

Claim 3 For any A and B as above we have L′(A) ⊂ R′(B) iff A ⊂ B.

For any a ∈ U we define C(a) = L′({a}). We will show that C(a) forms an (s− 1, 2d)-code. Consider
any a, B such that a /∈ B. Notice that

• for each b ∈ B, we have C(b) = L′({b}) ⊂ R′(B). Therefore, ∪b∈BC(b) ⊂ R′(B).

• C(a) = L′({a}) 6⊂ R′(B), as a /∈ B.

Therefore C(a) 6⊂ ∪b∈BC(b). Thus C(a) is an (s− 1, 2d) code. Moreover, let U ′ = ∪aC(a). It is easy
to see that |U ′| = O( E

αr−R). The theorem follows.

4 Embeddings of Hausdorff metrics over general spaces

Let (X, d) be an arbitrary metric space. Then our method for embedding a Hausdorff of a normed space does
not work anymore. The crucial problem is that |B| cannot be bounded, that is, |B(p, r)|/|B(p, r(1−ε))| can
be unbounded. Here, we give a randomized embedding procedure which is a modification of the randomized
embedding given above. Our main modification will be that we select our reference sets via non-uniform
sampling according to local properties of the metric.

In order to achieve an 1/α-Nearest Neighbor, we need to be able to generate (r, α)-embeddings, for many
values of r. Instead, we will be able to generate (r′, α)-embeddings, for some r′ < r. Notice, that an (r′, α)-
embedding is (by definition) also an (r, r

′
r α)-embedding. Thus the dependence on α in the nearest neighbor

search algorithm will become worse by a constant factor.

Theorem 6 For any ε > 0, r > 0 and 0 < α < 1, there is r′ < r such that r′ ≥ r
(1+ 2

α
)1/ε+1 such that any

metric X , |X | = n can be (r′, 1− α)-embedded into ld∞ with d = O(s2nε log n/ε).

Proof: Let β = α+2
α and let ri = r/βi for i = 0 . . .1/ε + 1. Our embedding will have a set of dimensions

for each ri. We will show that for each pair A, B, some dimension corresponding to some ri will correctly ap-
proximately represent their Hausdorff distance. Since our embedding is into l∞, we can simply concatenate
all dimensions for all ri in order to achieve our final embedding.

First note that, ∀p ∈ X there is an r(p) = ri such that:

|B(p, αri)| > 1/nε · |B(p, ri(α + 2))| = 1/nε · |B(p, αri−1)|
since the volume of the ball around B can grow by a factor nε at most 1/ε times. Now consider some p ∈
A such that dD(A, B) = D(p, B), and let r′ = r(p) and t = 2r′. As before, we need a mapping f :
Hs([0, I ]d∞)→ lE∞ such that for A, B and p ∈ A such that d(p, B) ≥ 1 we have |f(A)− f(B)|∞ ≥ c. The
embedding will be defined by a sequence of E subsets S1 . . .SE of X as

f(A) = (d(A, S1), . . . , d(A, SE)).

Once again, we will provide the sets S1 . . .SE such that for any A, B as above there exists Si such that
the following conditions are true:
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• d(p, Si) ≤ αr′

• d(B, Si) ≥ r′

Call the reference set Si a witness to A, B if it satisfies these conditions. We will select points to go into
the reference sets according to the density of their neighborhood, that is, node v is selected with probability
P (v) = 1/s|B(v, t)|. Let P (A) be the probability of selecting some element in A ⊂ X . We show the
following:

Claim 4 The probability that Si is a witness to A, B is Ω(1/snε)

Proof of Claim: The proof proceeds by showing that P (B(p, αr′)) = Ω(1/snε) and 1 −
P (∪q∈BB(q, r′)) = Ω(1). Consider P (B(p, αr′)) first. We know that for all x ∈ B(p, αr′), we have
B(x, t) ⊆ B(p, t + αr′), so |B(x, t)| ≤ |B(p, r′(α + 2))| ≤ |B(p, αr′)|nε. Therefore P (x) =
1/s|B(x, t)| ≥ 1/snε|B(p, αr′)|, and thus P (B(p, αr′)) is Ω(1/snε).

Consider now 1 − P (∪q∈BB(q, r′)). Let q ∈ B(q, r′). Since t = 2r′,for any x ∈ B(q, r′), we know
that B(q, r′) ⊂ B(x, t). Therefore |B(x, t)| ≥ |B(q, r′)|, and P (x) ≤ 1/s|B(q, r′)|. We get P (B(q, r′)) ≤
1/s. The probability that d(B, Si) ≥ r′ is then Ω(1).

Therefore, we get both events with probability Ω(1/snε), as required.
�

In order to have a witness for all nO(s) pairs A and B such that r(p) = r′ we need to repeat the above
procedure O(s logn) times. Taking all 1/ε values of r′ gives a total of O(s2nε log n/ε) dimensions.

5 Approximate Nearest Neighbor Problem

In this section we first describe how to apply the embedding results proved so far to achieve a fast algorithm
for the Approximate Nearest Neighbor problem. Then we point out how to generalize our algorithms to work
for the minimum Hausdorff distance under isometries.

Algorithms. One can easily observe the following fact.

Fact 1 If X is can be β-embedded in Y and there is a c-PLEB algorithm for Y , then there is a c/β-PLEB
algorithm for X .

Thus we can plug in our embedding result of Theorems 3 and 4 to the ε-PLEB algorithm for l∞ and obtain
algorithms for searching in Hs(ldp) as stated in the Introduction. In principle we could also do the same for
Hs(X) using the result from the Section 4. However, a direct approach would require advance knowledge of
all queries, as we would need to embed all points (including query points) during the preprocessing. In order
to avoid this problem, we show that embedding of a query point q can be done quickly “on-line” provided
we can perform approximate nearest neighbor query in the underlying metric X . To this end, observe that
the proof of Theorem 6 is still valid if the embedding f is computed use c-approximations of the distances
d(A, Si) instead of real distances; the only difference is that we obtain a (r′, 1 − cα)-embedding instead
of (r′, 1− α) one. Thus we can reduce one approximate nearest neighbor query in H s(X) to s2nε log n/ε

approximate queries in X (one for each set Si) plus one query in l
s2nε logn/ε
∞ .
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Isometries. When the underlying metric is l2, the above results can be easily extended to the Hausdorff
metric under translations and rotations. To this end, we apply the following algorithm. For each set Si from
the database compute its centroid ci and then translate all sets such that their centroids overlap (say at some
point c). Moreover, for any i let pi ∈ Si be the point in Si with the largest distance from ci. Rotate each Si
around ci such that the vector pi − ci is parallel to the X axis. Then build a nearest neighbor data structure
DS for the resulting sets Si.

In order to process the query set S, align its centroid to c. Then, for each p ∈ S, rotate S around c such
that the vector p− c is parallel to X axis and query the data structure DS with the rotated S as an argument.
Return the answer with the smallest distance from S.

The correctness of these procedure (i.e. the fact that it returns an O(1)-approximate nearest neighbor
w.r.t. Hausdorff distance under translations and rotations) follows from the results of [2, 1] and we omit
the proof here. As mentioned in [2], by exploring O(1/ε2) points close to ci and trying O(1/ε) different
rotations, one can guarantee that the approximation guarantee is (1 + ε) · C, where C is the approximation
guarantee for the static Hausdorff data structure; this increases the number of queries by a factor of O(1/ε3).

6 Extensions

The embeddings of H(ldp) shown earlier has the property that the dimensionality of the l∞ space grows ex-
ponentially in the dimension of the space underlying the Hausdorff metric. One possible way to avoid this
problem could be to give an embedding of Hs(ldp) into (say) Hs′(llog s

p ), i.e. reduce the dimensionality of
the underlying space, thus replacing the factor exponential in d by sO(1). By the Johnson-Lindenstrauss
Lemma [17] such an embedding is indeed possible for the special case s = 1 and p = 2, thus it might
be possible to prove it for general s. Unfortunately, we are not aware of any such result. However, we can
prove a slightly weaker but similar result for H s

1(ld2).

Theorem 7 For any n > 1 there exists a family F of functions f : H s
1(ld2) → HnO(1/ log s)

1 (l
O(log s)
2 ) such

that for any pair of sets A, B ∈ Hs
1(ld2) if we choose f uniformly at random from F , then the probability that

the distance between A and B is within a constant factor of the distance between f(A) and f(B) is at least
1/n.

Notice that this theorem would be sufficient to obtain a sublinear time approximate nearest neighbor al-
gorithm for Hs

1(ld2), provided the embedding theorem from the previous section held for H1 (we do not have
a proof that they do).

The idea of the proof is to create v = nO(1/ log s) mappings f1 . . . fv , of the form fi : Hs
1(ld2) →

Hs
1(l

O(logs)
2 ). Each such mapping is induced by a random projection of ld2 onto l

O(logs)
2 as in the proof of

the Johnson-Lindenstrauss Lemma. The function f is then obtained by placing all sets fi(A) in the same

space l
O(log s)
2 but sufficiently far away from each other so that there is no “interaction” between them when

computing the distances. As the result does not yet have any algorithmic applications, we defer the full proof
to the final version of this paper.
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