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Abstract

Hausdorff metrics are used in geometric settings for measuring the distance between sets of points.
They have been used extensively in areas such as computer vision, pattern recognition and computational
chemistry. While computing the distance between a single pair of sets under the Hausdorff metric has
been well studied, no results were known for the Nearest Neighbor problem under Hausdorff metrics.
Indeed, no results were known for the nearest neighbor problem for any metric without norm structure,
of which the Hausdorff is one.

We present the first nearest neighbor agorithm for the Hausdorff metric. We achieve our result by
embedding Hausdorff metricsinto [, and using known nearest neighbor algorithmsfor this target met-
ric. We give upper and lower bounds on the number of dimensions needed for such an [, embedding.
Our bounds require the introduction of new techniques based on superimposed codes and non-uniform
sampling.
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1 Introduction

The Nearest Neighbor Search (NNS) problemis: Givenaset of n points X = {x1, ..., z,} inametric space
with distance function d, preprocess X so as to efficiently answer queries for finding the point in P closest
to a query point g. This problem has been well-studied in the case where d is the k-dimensional Euclidean
gpace. The low-dimensional case iswell-solved [9], though running times and space are exponential in the
dimension. In[15] and [19], the approximate version of the problem was addressed in an effort to reduce
the dependence on d. Recently, [14] considered the nearest neighbor problems in non-Euclidean metrics, in
particular for the /., norm.

All of theseresults are examples of nearest neighbor searching in normed spaces, that is, the metrics on
the pointsform anorm. Such metrics have agood dea of structure which can be exploited algorithmically.
While many metrics of interest for nearest neighbor searching are normed, not all are. One of the most in-
teresting cases of a non-normed metric are the Hausdor ff metrics. The Hausdorff metric is an example of a
derived metric. Suppose we have an arbitrary underlying metric d on a set of points X. Then, for any two
subsets (say A and B) of X the (directed) Hausdorff distancefrom A to B isdefined as amaximum distance
from any point from A to its nearest neighbor in B; the undirected Hausdorff distance between A and B is
computed by considering both directionsand taking the larger value.

Hausdorff metrics do not have the useful structure of norms. Even if the underlying metric is “well-
behaved” (for example, when taking the Hausdorff metric of pointsin low-dimensional Euclidean space) no
nearest neighbor algorithms are known. Thisstate of the art is unfortunate, since the Hausdorff metric (over
low dimensional Euclidean spaces) isacommonly used metric over geometric objects. Geometric point set
matching in two and three dimensionsis awell-studied family of problemswith application to areas such as
computer vision [22], pattern recognition [6, 13] and computational chemistry [11, 12, 23]. Thusthe prob-
lem of computing (exactly or approximately) the Hausdorff distance between two point sets P and @) in two
and three dimensions has been studied extensively [1, 5, 6, 13, 24] with theinteresting problems being those
where one set can be rotated or translated and one seeks the transform which minimizes the Hausdorff dis-
tance.

Unfortunately, no efficient algorithms have been designed for the case when we want to match P with
many ¢)’sand find the closest one. Thisproblemisof crucia importancein many applications; in particular,
computational chemistry [11, 12, 23] and pattern recognition [6, 13], require matching a pattern against a
huge database of molecules or images, respectively.

Our results. Here we sketch out the flavor of the results, highlighting the main contributions.

Our first result isan algorithm for approximate nearest nei ghbor searching in Hausdorff metrics over low
dimensional normed spaces lg. The agorithm proceeds by approximately embedding the Hausdorff metric
into I, norm with dimension D roughly equal to O(s?/e?), where s isthe sets' size and e isthe distortion
(see formal definitionsin Section 2). Notice, that D does not depend on the database size, but only on size
of database sets, which is much smaller. After the embedding, we apply the approximate nearest neighbor
search agorithmin [, of [14] to find the neighbor. In particular, for the most interesting case of d = 2 or
d = 3 we get:

e A constant factor approximation algorithmwith query time roughly O(s? log n) and mildly superpoly-
nomial storage n (g9



e AnO(loglog s)-approximationa gorithm with the same query timeand roughly s%n'*+ space, for any
p > 0.

Our agorithms can be generalized to minimum Hausdorff distance under isometries (i.e. rotations and
translations). The time/space boundsremain essentialy the sameif only translationsare allowed; for general
isometries both query time and space are multiplied by s. Also, our approach (i.e. embedding Hausdorff
metric into /) has severa additional benefits. One of them is that any future improvements of algorithms
for [, automatically yield improved algorithmsfor Hausdorff distance. Also, from the practical prespective,
it gives aflexibility in choosing the [, agorithm (from many existing implementations) which works best
for particular applications.

Since the dimensionality D of the [, spaceiscrucia for the efficiency of the embedding, we further in-
vestigate the relationship between D and s, d, and e. In particular, we show alower bound for D of roughly
s2 for the case when the underlying norm is /%4, Since the corresponding upper bound in this case is
0(s20(1)%) = s, we concludethat either the superlinear dependence on s or exponential dependence on
d isneccessary' (we believethat the most likely caseisthat both of them occur). Itisinteresting that both the
upper and lower bound uses superimposed codes; in particular, our lower bound proceeds by showing that
an assumed embedding allows usto construct codes of small length, which contradicts known lower bounds.
We believe this technique can be applicable to showing other lower boundsfor derived metrics.

Our second line of research focus on arbitraryunderlying metrics. We show thefollowing result: aHaus-
dorff metric over any metric M can be embedded into /., with roughly D = s?m? dimensionsand constant
error (herem isthesize of of themetric). Moreover, if efficient approximate nearest neighbor oracle existsfor
M, then the embedding can be performed by using D oracle calls. Thuswe obtained the following surpris-
ing structural result: for any metric M for which a sublinear-time approximate nearest neighbor agorithm
exists, the approximate nearest neighbor problem on the Hausdorff metric over M aso has a sublinear-time
algorithm.

Our embedding is randomized, requiring the selection of a collection of reference setswhich areusedin
the embedding. In thisregard, it resembles other embedding a gorithms (see e.g. [4, 20, 21], etc.). However,
in all of those results, the reference sets are selected uniformly at random, a scheme which turns out not to
work in our case. Instead, we develop an embedding a gorithm which relies on non-uniformsampling. We
believe thistechnique could find further applicationsfor other metric space problems.

Outline. In §2, we introduce notation and preliminary ideas. In §3, we give bounds on embedding Haus-
dorff metrics over normed spaces. In §4, we giveboundson embedding Hausdorff metricsover general space.
Finally, in §5, we show how to use our embeddingsfor nearest neighbor searching.

2 Preiminaries

Metric spaces. Let X = {z1,...,z,} andletd : X2 — RT beametric, thatisd(z,y) = d(y,z) >
d(z,x) = 0and d(x,y) < d(x, z) + d(y, z). The pair (X, d) forms afinite metric space. We extend d to
pairsp, S whereS C X by definingd(p, S) = mingeg d(p, ¢). Weasoextendittopairs S, S’ for S, S ¢ X

L For the Hausdorff metric over zg for p < oo the dependenceon d can be seen to be exponential even when s = 1; this follows
from lower boundsfor embedding of I, into /... However, the same argument clearly does not apply to the casep = oc.



by defining d(.S, S) = min,cg d(p, S’). Noticethat the above extensionsdo not constitutemetric spacesand
should not be confused with the Hausdor ff metric defined later.

Let P € R%. Then )
d k
. (z |PW) |
=1

loo(P) = lim 1(P) = max |Pl|.
When X C R4, werefer to (X, 1) as ¢, with X understood. We will sometimes refer to /¢ as Euclidean
d-space. When we wish to emphasize that the pointsin I{ are in some range [0, R]¢ rather than in R¢, we
will write [0, R]4.
For any p € X andr > 0 we define B(p, r) to be the set of pointsq € X suchthat d(p,q) <r
For any pair of (X, d) and (X', d’) of metric spaces, we say that afunction f : X — X' isan (R, a,7)-
embedding if for any pointsp, ¢ € X:

o ifd(p,q) < rthend'(f(p), f(q)) <r
o ifd(p,q) > Rthend'(f(p), f(q)) = aR.

Most of the embeddings introduced in this paper are, in fact, contractions; in such cases we call them
(R, o)-embeddings (as the value of r isirrelevant). Furthermore, in many situationsthe actual value of R is
not important; in such caseswe assume R = 1 and call f an a-embedding.

Hausdorff metric. For any metric D = (X, d) the Hausdorff metric over D (denoted by H (D)) isdefined
over the powerset of X'. For any sets A, B C X the Hausdorff distance dp isequal to

dp(A, B) = max{gleag d(p, B), gleagd(p, A)}

In the following we often restrict the domain of H (D) to subsetsof X of cardinality upper bounded by
a parameter s. We denote the resulting metric by H*(D). Also, we consider generalized Hausdor ff spaces
Hr (D), parameterized by T : 2% — 2X. In this case the distance function d7, is defined as:

dp(4, B) = mindp(t(A), B))

Aslong asT is closed under composition and inversion, the function d%, (A, B) isa metric.

The problem of estimating the (generalized) Hausdorff distance between two point setsin 2 and 3 di-
mensions (usually under translations and rigid motions) has been studied extensively [7, 13, 24] (see also
the survey by Alt and Guibas[3]). The approximate versions of the above problems have also been inves-
tigated [1, 16, 5]. In particular, the combination of the results of [1] and [5] resultsin an O(slog s)-time
agorithm for estimating (up to any constant factor) the Hausdorff distance of setsfrom H$.(13), where T' is
the set of all rigid motions.

Finally, we consider another derived metric similar to the Hausdorff, defined as follows:

dp(A,B)=> d(p,B)+ Y _ d(p,A

peA peB

We will commonly refer to thisdp as Hy(D). Using this notation, the Hausdorff metric can be thought of
asthe H.. (D) metric, however, we will use the smpler H (D) for convenience throughout.

3



Approximate nearest neighbor algorithms.  The approximate nearest neighbor problem was recently the
subject of extensiveresearch. The most recent results of [15] and [19] give algorithmsfor approximate near-
est neighbor in d-dimensiona Euclidean space with polynomial storage and query time polynomial inlogn
and d. These agorithms are of mainly theoretical interest, as their storage requirements are quite large. In-
dyk and Motwani [15] also gave another algorithm with small polynomial storage and sublinear query time.
Unfortunately, the techniques used to achieve these results heavily exploit properties of the Euclidean norm
and therefore do not seem applicable to other metric spaces. Subsequently, Indyk [14] gave an agorithm
for the approximate nearest neighbor problem in (.. The algorithm achieves an approximation ratio of
4logy 4 ,log 4d with O(dn'*?logn) storage and O(dlogn) query time. The latter result is crucia for our
applications, as we obtain our results by embedding Hausdorff metricsinto [ .

Definition 1 (c-Point Location in Equal Balls(c-PLEB)) Given n  unit balls centered at
P = {p1,...,pn} inmetric space (X, d), devise a data structure which for any query point ¢ € X does
the following:

e if thereexistsp € Pwithq € B(p, 1) thenreturn YES and a point p’ such that ¢ € B(p/, ¢),

e if g ¢ B(p,c)forall p e PthenreturnNo,
e if for the point p closest to ¢ we have 1 < d(q, p) < c thenreturn either YES or NO.

In[15] it was proved that given an agorithmfor c-PLEB which uses f(n) space on an instance of sizen
where f isconvex, thereisadatastructurefor (c+¢) — NN S problemrequiring O( f (npoly(logn, 1/(c—
1)))) spaceand using O(poly(logn, 1/(c—1))) invocationsto c-PLEB per query. Thusin this paper we will
concentrate on solving the c-PLEB problem.

Superimposed codes. There exist severa variants of superimposed codes. In this paper we assume the
following definition (see [8]):

Definition 2 An N x M binary matrix A is called a superimposed (z, M )-code (or (z, M )-code) of length
N if the boolean sum of any z columns of A does not contain any other column. We refer to A’s columns
(which we denote by A[0] . . . A[M — 1]) as codewords.

Noticethat each codeword correspondsto asubset of [ V] (taketheset of all coordinatesset to 1) and therefore
we can refer to codewords as Ssets.

Here, we are interested in the situation when M and z are given and the goa is to minimize N.
Let Nyin (M, z) denote the minimum length of any (z, M )-code. Dyachkov and Rykov [8] showed that
Nin (2, M) = ©(221og, M) (similar bounds were also obtained by Erdos, Frankl and Furedi [10]). How-
ever, their upper bound was obtained by a probabilistic argument and is non-constructive. The best explicit
construction [18] (based on Reed-Solomon codes) achieves N = O(z2log? M).

3 Embeddings of Hausdor ff metricsover normed spaces

We begin by showing a 1-embedding into /.. Our approximate embeddingswill be based on this exact em-
bedding. It iswell known that any metric (X, d) can be 1-embedded into X1 Thus any Hausdorff metric
H (d) canbe 1-embedded into [ ., with the number of dimensionsequal to the number of sets. Here, we show
that fewer dimensions suffice.



Theorem 1 For any finitemetric D = (X, d) the space H (D) can be 1-embedded into 15 .

Proof: Assume X = {pi,...,p,}. Forany S C X, thevalue f(S) is defined as

f(8) = (d(p1, ), ..., d(pn, 5))-

Notice that this mapping is a contraction; therefore it is sufficient to show | f(S) — f(S”)|~ > 1 for any
S,8" C X suchthat dp(S,S’) > 1. Tothisend notethat if dp(S, S’) = t, then thereexists p € S such
that d(p, S") =t (orp’ € S" suchthat d(p', S) = t, we will assumethe first case without |oss of generality).
Then

1£(S) = £(S)loo > ld(p, S) — d(p, S)| = |0 —t| =+,

thus establishing the claim. ]

Thistheorem is complimented by thefollowing:
Theorem 2 Any finite metric D = (X, (%) can be 1-embedded into H%(1}).

The choice of p does not matter sinceall [, norms are the same in 1 dimension.

Proof: Let A bethediameter of some set X of pointsin /2, that is, let A = max; j{loo(z; — ;) }. Then
the mapping of 1% into H4(L}) is as follows. Let z; = [z;1,...,;4]. Then map z; into the set S; =
{Si,la RN Si,d}y where Si,j = 2(] — 1)A + X j-

The points defined by dimension j are all between 2(j — 1)A and (25 — 1)A and so, the distance from
the S; ; to Sy, issimply |S; j — Sk ;|. Thusthe Hausdorff distance between S; and S; issimply lo (z; — x;).
[ |

Therefore, Hausdorff and [, metrics are closely linked.

3.1 Upper bound, H*(14.)

In this section we modify the techniques used above to obtain embeddings which are approxi mate but which
require smaller number of dimensions. More specifically:

Theorem 3 Forany I > 1,s > 0and 0 < ¢ < 1 the space H*([0, I]%,) can be c-embedded into 2 where

1 2d 1
E=0 <d32 {iw (1og1+1og )) .
1—c¢ 1—c

Proof: Asbefore, weneed amapping f : H*([0, I]%) — 1Z suchthatforany A, B c [0, I]% of cardinality
sandp € Asuchthat d(p, B) > 1 wehave|f(A) — f(B)| > ¢. Theembedding will be defined by a
sequence of E subsets Sy ... Sg of [0, I]?as

f(A) = (d(A, Sy),...,d(A, SE)).

In thefollowing we will providethe sets S, . . . Sk such that for any A, B and g as abovethere exists S;
such that the following conditions are true:



.d(pvsz)ga
ea—-b>c

whichis clearly sufficient for our purpose. Tothisend, weleta = 15¢ and b = <. Notethata +b =1 <
dp(A, B). Impose aregular cubic grid on ¢ with aside 2a. Among all cellsintersecting B(p, a) choose
the one which containsp and call it p. Notice that the center of p belongsto B(p, a). Define C' to be the set
of al cubesintersecting [0, 7% and let B be the set of cubes whose centers belong to U, s B(p, b). Notice
that p ¢ B. Also, we can bound

o [0 < (4 +2)

e |B| gu(c)=8([%bd

By using superimposed codes we know there exists E = u(c)?log |C| sets S; . . . Sg such that for any
p, B as above there exists S; containing 7 but none of then elements from B. We then construct S; from S;
by replacing each grid cell by its center. These sets satisfy the above requirements. n

d
Remark 1 By usingthe probabilisticmethod one canin fact improve the dependenceon c from ([%1 ) ? to

d —
( [%1 ) . Thisisdueto thefact that the sets B are not arbitrary but have special structure. Unfortunately,

we do not have any explicit construction which yields such a bound.

Remark 2 We need not use superimposed codes in the construction. If we pick each cell with probability
1/2u(c), then with probability ©(1/u(c)) we get a set S such that d(p, S) < a andd(B, S) > b. Choosing
O(u(c) log? I*) such sets gives, w.h.p., the needed code words.

3.2 Upper bound, H*(i})

Our embedding a gorithmin this case closely followsthat of H*(l,). However, instead of having agrid of
size2a = 1 — ¢, we have agrid of size 2a/d"'/?. We need only bound | B| and |C|, which we do as follows.

o [C] < (122 1 2y

— 2a

o [B| < uylc) ZSG%Dd

The first bound is direct, and the second comes from [15]. We once again use superimposed codes and
get E, = u,(c)?log |C|, thus achieving the following theorem:

Theorem 4 ForanyI >1,s > 0and0 < ¢ < 1 thespace H*([0, I]¢) can be c-embedded into /£, where

1 2d 1 1
E:()(ds?[l—J“j (10g[+log1 +Ogd>>.




3.3 Lower bound

In this section we prove the following lower bound theorem.

Theorem 5 For § = R < ar < r = 1let f bean (r, a, R)-embedding of H*([—1/2,1/2]%) into IZ..
Then thereexistsa (s — 1, 2¢)-code of length O(—£=).

In particular, thisimpliesthat if —14 = O(1) and 2% > s2, then E = Q(s%d/ log s).

Proof: Let D bethel,, metricover [—1/2,1/2]% and assumethe existence of f asabove. For any element
a fromthe universe U = {—1/2,1/2}¢ we will defineits codeword C/(a) in asequence of steps. Firstly, let
0 denotethe origin (i.e. thepoint (0, ...,0)). Forany A C U we define:

o L(A)=AU{0}

e R(A)=A
Claim 1 For any A, B C U we have

o if AC Bthendp(L(A),R(B))=1
e otherwisedp(L(A),R(B))=1

Proof: Assumefirstthat A C B. Inthiscasefor any a € A thedistancefromato R(B)is0 (sincea € B
aswell). Also, thedistancefrom 0 toany pointisat most 1,/2. Onthe other hand, the distancefrom any point
in R(B) to0 (which belongsto L(A)) is1/2. Therefore, dp(L(A), R(B)) = 1.

On the other hand, assumethat A ¢ B. Inthiscasethereexistsa € A — B. Thedistancefrom a to any
pointin B is1. Thisimpliesdp(L(A), R(B)) = 1. ]

From the above claim and the properties of f we know that for any A, B C U with cardinalities at most
s — 1 wehave

o if AC Bthen|f(L(A)) — f(R(B))|e < R
o otherwise|f(L(A)) — f(R(B))|s > ar.

Claim 2 Let P betheset of all points f(L(A)) and f(R(B)) where A, B asabove. Then the diameter of P
isat most 2.

Proof: Sincetheempty setisincludedinany set, wehave dp(f(L(0)), f(R(B))) = 1/2forany B. Also,
for any set A wehave AU C A, and therefore

dp(f(L(A)), f(L(1))) < dp(f(L(A)), f(R(A))) + d(f(R(A)), f(L) <1/2+1/2=1
Therefore (by triangleinequality) all pairwise distances are at most 2. n

We can therefore assumethat P C [0, 2]¥. Impose auniform grid on [0, 2]¥ of side A = (ar — R) — ¢
for arbitrary ¢ > 0. For any point p € [0, 2]¥ let g;(p) be the ith coordinate of the cell containing p; for
convenience we assume that the coordinate values for distinct i’s are distinct. Then we define:



o L'(A) ={91(f(L(A))), ..., 9u(f(L(A)))}
o R/(A) = Ugi(B(J(R(A)), R))
Claim 3 For any A and B asabovewe have L'(A) C R'(B) iff A C B.

For any a € U wedefineC(a) = L'({a}). Wewill show that C(a) formsan (s — 1, 2%)-code. Consider
any a, B suchthat a ¢ B. Noticethat

e foreachb € B, wehave C(b) = L'({b}) C R/(B). Therefore, UpcgC(b) C R'(B).
e C(a)=L'({a}) ¢ R (B),asa ¢ B.
Therefore C(a) ¢ UpegC(b). ThusC(a) isan (s — 1,29) code. Moreover, let U’ = U,C(a). It iseasy

to seethat |U’| = O(-£5). Thetheorem follows. n

4 Embeddings of Hausdor ff metricsover general spaces

Let (X, d) bean arbitrary metric space. Then our method for embedding aHausdorff of anormed space does
not work anymore. Thecrucial problemisthat | B| cannot be bounded, that is, | B(p, r)|/|B(p, (1 —¢))| can
be unbounded. Here, we give arandomized embedding procedure which isamodification of the randomized
embedding given above. Our main modification will be that we select our reference sets via non-uniform
sampling according to local properties of the metric.

Inorder to achievean 1/«-Nearest Neighbor, we need to be ableto generate (r, «)-embeddings, for many
valuesof r. Instead, we will be ableto generate (', a)-embeddings, for somer’ < r. Notice, that an (1, «)-
embedding is (by definition) also an (r, %’a)-embeddi ng. Thus the dependence on « in the nearest neighbor
search algorithm will become worse by a constant factor.

Theorem 6 Foranye > 0,7 > 0and0 < a < 1, thereisr’ < r suchthat ' > (H%ﬁ such that any
metric X, | X| = n canbe (+/, 1 — a)-embedded into [%, with d = O(s?n¢ logn/e).

Proof: Letg=2t2andletr; =1/ fori=0...1/e+ 1. Our embedding will have aset of dimensions
for each r;. Wewill show that for each pair A, B, some dimension correspondingto somer; will correctly ap-
proximately represent their Hausdorff distance. Since our embedding isinto /., we can simply concatenate
al dimensionsfor all »; in order to achieve our final embedding.

First notethat, Vp € X thereisan r(p) = r; such that:

[B(p,ar)| > 1/ - |B(p,rila +2))| = 1/n - [B(p, ari_1)

since the volume of the ball around B can grow by afactor n¢ at most 1/¢ times. Now consider somep €
A suchthat dp(A,B) = D(p,B),andletr’ = r(p) andt = 2r'. As before, we need a mapping f :
H*([0,11%)) — 1Z suchthat for A, Bandp € A suchthat d(p, B) > 1 wehave|f(A) — f(B)|s > c. The
embedding will be defined by a sequence of E subsets S, ... Sg of X as

f(A) = (d(A, S),...,d(A, Sg)).

Once again, we will providethesets S; . .. Sk such that for any A, B as above there exists S; such that
the following conditionsare true:



e d(p,S;) < ar
L] d(B, Sz) Z ’I“/

Call thereference set S; awitnessto A, B if it satisfies these conditions. We will select pointsto go into
the reference sets according to the density of their neighborhood, that is, node v is selected with probability
P(v) = 1/s|B(v,t)|. Let P(A) be the probability of selecting some elementin A € X. We show the
following:

Claim 4 The probabilitythat S; isawitnessto A, B is§(1/sn¢)

Proof of Claim: The proof proceeds by showing that P(B(p,ar’)) = Q(1/snf) and 1 —
P(UgenB(q,7")) = Q(1). Consider P(B(p, ar’)) first. We know that for all 2 € B(p, ar’), we have
B(z,t) € B(p,t + ar’), so |B(z,t)] < |B(p,r'(a + 2))| < |B(p,ar’)|nc. Therefore P(x) =
1/s|B(x,t)| > 1/snf|B(p, ar’)|, and thus P(B(p, ar’)) isQ(1/snc).

Consider now 1 — P(UyepB(q,r")). Let ¢ € B(q,r'). Sincet = 2r/,for any = € B(q, "), we know
that B(q,r") C B(xz,t). Therefore|B(x,t)| > |B(q,r')|,and P(x) < 1/s|B(q,r’)|. Weget P(B(q,r")) <
1/s. The probability that d(B, S;) > r’ isthen Q(1).

Therefore, we get both events with probability 2(1/sn¢), asrequired. O

In order to have awitness for al n°(®) pairs A and B such that r(p) = r’ we need to repeat the above
procedure O(slogn) times. Taking al 1/e valuesof 7/ givesatotal of O(s?n¢logn/e) dimensions. ]

5 Approximate Nearest Neighbor Problem

In this section wefirst describe how to apply the embedding results proved so far to achieve afast algorithm
for the Approximate Nearest Neighbor problem. Then we point out how to generalize our algorithmsto work
for the minimum Hausdorff distance under isometries.

Algorithms. One can easily observe the following fact.

Fact 1 If X iscan be $-embedded in Y and thereis a c-PLEB algorithmfor Y, then thereisa ¢//3-PLEB
algorithmfor X.

Thuswe can plugin our embedding result of Theorems 3 and 4 tothe e-PLEB agorithmfor [, and obtain
algorithms for searching in Hs(lg) as stated in the Introduction. In principle we could also do the same for
H?(X) usingtheresult from the Section 4. However, adirect approach would require advance knowledge of
all queries, aswe would need to embed al points (including query points) during the preprocessing. In order
to avoid this problem, we show that embedding of a query point ¢ can be done quickly “on-line” provided
we can perform approximate nearest neighbor query in the underlying metric X. To this end, observe that
the proof of Theorem 6 isstill valid if the embedding f is computed use c-approximations of the distances
d(A, S;) instead of rea distances; the only difference is that we obtain a (7, 1 — ca)-embedding instead
of (', 1 — «) one. Thuswe can reduce one approximate nearest neighbor query in H*(X) to s>n¢logn/e

approximate queriesin X (onefor each set S;) plus one query in 152" 18"/



Isometries. When the underlying metric is [,, the above results can be easily extended to the Hausdorff
metric under transl ationsand rotations. To this end, we apply the following algorithm. For each set .S; from
the database compute its centroid ¢; and then translate all sets such that their centroids overlap (say at some
point ¢). Moreover, for any i let p; € .S; bethe point in S; with the largest distance from ¢;. Rotate each S;
around ¢; such that the vector p; — ¢; is parallel to the X axis. Then build a nearest neighbor data structure
DS for theresulting sets S;.

In order to processthe query set S, alignits centroid to c¢. Then, for each p € S, rotate S around ¢ such
that the vector p — cisparalé to X axisand query the data structure DSwith the rotated .S as an argument.
Return the answer with the smallest distancefrom S.

The correctness of these procedure (i.e. the fact that it returns an O(1)-approximate nearest neighbor
w.rt. Hausdorff distance under translations and rotations) follows from the results of [2, 1] and we omit
the proof here. As mentioned in [2], by exploring O(1/e2) points close to ¢; and trying O(1/e) different
rotations, one can guarantee that the approximation guarantee is (1 + ¢) - C, where C' isthe approximation
guarantee for the static Hausdorff datastructure; thisincreasesthe number of queriesby afactor of O(1/€3).

6 Extensions

The embeddings of H (l;‘f) shown earlier has the property that the dimensionality of the [, space grows ex-
ponentialy in the dimension of the space underlying the Hausdorff metric. One possibleway to avoid this
problem could be to give an embedding of H s(lg) into (say) H s’(l;?gs), i.e. reduce the dimensionality of
the underlying space, thus replacing the factor exponential in d by s°(1). By the Johnson-Lindenstrauss
Lemma [17] such an embedding is indeed possible for the specia case s = 1 and p = 2, thusit might
be possibleto proveit for genera s. Unfortunately, we are not aware of any such result. However, we can
prove a slightly weaker but similar result for H{(19).

Theorem 7 For any n > 1 there exists a family F' of functions f : H3(14) — H7" ¥ (191°8)) such
that for any pair of sets A, B € H$(14) if we choose f uniformly at randomfrom £, then the probability that
the distance between A and B iswithin a constant factor of the distance between f(A) and f(B) isat least
1/n.

Notice that thistheorem would be sufficient to obtain a sublinear time approximate nearest neighbor al-
gorithmfor H3 (1), provided the embedding theorem from the previous section held for I, (we do not have
aproof that they do).

The idea of the proof isto create v = n®(1/1°8%) mappings f; ... f,, of the form f; : Hj(i$) —
H3(1S (e2<)y " Each such mapping is induced by a random projection of 1¢ onto 19 (°24) &5 in the proof of
the Johnson-Lindenstrauss Lemma. The function f is then obtained by placing al sets f;(A) in the same
space 151°#*) put sufficiently far away from each other so that there is no “interaction” between them when
computing the distances. Astheresult does not yet have any agorithmic applications, we defer the full proof

to the final version of this paper.
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