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Where We’re Going
Introduce reinforcement learning
• why I think it’s exciting
Define the problem and current approaches
• highlight challenges of RL with real data
Current projects in my lab:
• efficient exploration
• rich sensors
• partial observability
• non-stationary environments
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What is RL?
Branch of machine learning concerned with 

sequential behavior:
• tries to remove human activities from the 

inner loop of the learning process.
• makes systems that improve a performance 

metric via interaction with their environment.

Some Relevant Applications
Adaptive filtering
• reward for delivering relevant doc
• punishment for delivering irrelevant doc
• learn from (sparse) human feedback
Efficient spam tagging (efficient sorting also)
• spam if fail any of a set of filters
• cost for computation time
• try to run cheap / likely to fail filters first
• non-spam always same cost, can tag spam quickly
• output always same, minimizing (measurable) cost
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Impressive Accomplishment
Honda’s Asimo
• development began in 1999, building on 13 

years of engineering experience.
• claimed “most

advanced
humanoid robot
ever created”

• walks 1mph
QuickTime™ and a

YUV420 codec decompressor
are needed to see this picture.

And Yet…
Asimo is programmed/controlled by people:
• structure of the walk programmed in
• reactions to perturbations programmed in
• directed by technicians and puppeteers 

during the performance
• no camera-control loop
• static stability
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Compare To Kids
Molly
• development began in 1999
• “just an average kid”
• walks 2.5mph even

on unfamiliar terrain
• very hard to control
• dynamically stable

(sometimes)
• self motivated

QuickTime™ and a
H.263 decompressor

are needed to see this picture.

Crawl Before Walk
Impressive accomplishment:
• Fastest reported walk/crawl on an Aibo
• Gait pattern optimized automatically

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.
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Human “Crawling”

Perhaps our programming isn’t for crawling at all, but for the desire 
for movement!

QuickTime™ and a
DV/DVCPRO - NTSC decompressor

are needed to see this picture.

Reinforcement-Learning Hypothesis

Intelligent behavior arises from
the actions of an individual seeking to
maximize its received reward signals

in a complex and changing world.
Research program:
• implement appropriate reward signals,
• develop algorithms that search the space of 

behaviors to maximize reward signals.
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Find The Ball Task
Learn:
• which way to turn
• to minimize steps
• to see goal (ball)
• from camera input
• given experience.

QuickTime™ and a
H.263 decompressor

are needed to see this picture.

Problem Formalization: MDP
Most popular formalization: Markov decision process
Assume:
• States/sensations, actions discrete.
• Transitions, rewards stationary and Markov.
• Transition function: Pr(s’|s,a) = T(s,a,s’).
• Reward function: E[r|s,a] = R(s,a).
Then:
• Optimal policy π*(s) = argmaxa Q*(s,a)
• where Q*(s,a) = R(s,a) + γ Σs’ T(s,a,s’) maxa’ Q*(s’,a’).
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Find the Ball: MDP Version
• Actions: rotate left/right

• States: orientation

• Reward: +1 for facing ball,
0 otherwise

It Can Be Done: Q-learning
Since optimal Q function is sufficient, use 

experience to estimate it (Watkins & Dayan 92).
Given <s, a, s’, r>: 
Q(s,a) ← Q(s,a) + αt(r + γ maxa’ Q(s’,a’) – Q(s,a) ).

If:
• all (s,a) pairs updated infinitely often
• Pr(s’|s,a) = T(s,a,s’), E[r|s,a] = R(s,a)
• Σαt = ∞, Σαt 

2 < ∞
Then: Q(s,a) → Q*(s,a).
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Real-Life Reinforcement Learning

Emphasize learning with real* data.
Q-learning good, but might not be right here…
Mismatches to “Find the Ball” MDP:
• Efficient exploration: data is expensive.
• Rich sensors: never see the same thing 

twice.
• Aliasing: different states can look similar.
• Non-stationarity: details change over time.

* Or, if simulated, from simulators developed outside 
the AI community.

Convergence of Policy
Logical disconnect:
• Q-learning converges in the limit to Q*(s,a).
• Best action is greedy: π*(s) = argmaxa Q*(s,a).
• But, for convergence, can’t starve (best) action. 
Weak result (Singh, Jaakola, Littman, Szepesvári 00):
• GLIE (greedy in the limit with infinite exploration).
• Policy converges to optimal, not just Q values.
• Example: Decaying ε-greedy. Visit n(s) to state s, 

choose random action with probability 1/n(s).
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Efficient Exploration
Limit is nice, but would like something faster.
Goal: Policy that’s ε optimal with prob. 1-δ after 

polynomial amount of experience.
E3 (Kearns & Singh 98):
• Use experience to estimate model (T and R).
• Find optimal greedy policy wrt the model.
• Use model uncertainty to guide exploration.
Similar to RMAX (Brafman & Tennenholtz 02).

Pangloss Assumption
We are in the best of all possible worlds.

Confidence intervals are on model parameters.
Find the model that gives maximum reward 

subject to the constraint that all parameters 
lie within their confidence intervals.

Choose actions that are best for this model.
In bandit case, this works out to precisely IE.
Very general, but can be intractable.

Solvable for MDPs. (Strehl & Littman 04)
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Some (non-real) MBIE Results

Each plot measures cumulative reward by trial.
Varied exploration parameters (6-arms MDP).

Rich Sensors
Can treat experience as state via instance-based view.

, right, , +1

, left, , +0

, right, , +0

, right, , +1

, right

With an appropriate 
similarity function, can 
make approximate 
transition model and derive  
a policy (Ormoneit & Sen 02).
Allows us to combine with 
MBIE-style approaches.



11

Policy Quality Comparison
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When Sensations Not Enough
Robust to weak non-Markovianness.
But, won’t take actions to gain information.
Network repair example (Littman, Ravi, Fenson, Howard 04).

• Recover from corrupted network interface config.
• Minimize time to repair.
• Info. gathering actions: PluggedIn, PingIp, PingLhost,

PingGateway, DnsLookup, …
• Repair actions: RenewLease, UseCachedIP, FixIP.
Additional information helps to make the right choice.
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Learning Network Troubleshooting

Recovery from corrupted 
network interface 
configuration.

Java/Windows XP: Minimize 
time to repair. 

After 95 failure episodes

Non-Stationary Environments

Problem: To predict future events in the face of abrupt 
changes in the environment.

Income: 2/3             Income: 1/3

Investment: 2/3
Investment: 1/3

Animal behavior: Match 
investment to income given 
multiple options

Observation (Gallistel et al.): 
Abrupt changes in payoff 
rates result in abrupt 
changes in investment
rates.  Proposed change-
detection algorithm. Income: 1/3             Income: 2/3

Investment: 1/3
Investment: 2/3
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Recognizing Changes in Disk Access

• Under real usage conditions, abrupt changes between usage modes.
• Detecting abrupt changes to mode can save energy

Portable computers use 
techniques such as disk spin-
down/up to conserve energy. 
Given the history of disk 
accesses of the user, 
predicting how long it will be 
until the next disk access 
occurs

New Project Highlights
• Main technical idea: Use intrinsic motivation

(computational curiosity) to discover knowledge 
about the world.

• Demonstration: Implement our algorithm on Sony 
Aibo robots exploring a rich playspace.

• Expected Outcome: The robot learns knowledge that 
is both abstract and grounded, enabling it to be 
instructed to perform high-level tasks in the 
physical world.
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Playroom

Where We Went
Reinforcement learning: Lots of progress.
Let’s reconnect learning with real data:
• previous ideas contribute significantly
• model-based approaches showing great promise
• some fundamental new ideas needed

– representation
– reward
– reasoning about change and partial observability

Large rewards yet to be found!


