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Where We’re Going

Introduce reinforcement learning

* why [ think it'’s exciting

Define the problem and current approaches
* highlight challenges of RL with real data
Current projects in my lab:

« efficient exploration

* rich sensors

» partial observability

* non-stationary environments




What is RL?

Branch of machine learning concerned with

sequential behavior:

tries to remove human activities from the
inner loop of the learning process.

makes systems that improve a performance
metric via interaction with their environment.

Some Relevant Applications

Adaptive filtering

reward for delivering relevant doc
punishment for delivering irrelevant doc
learn from (sparse) human feedback

Efficient spam tagging (efficient sorting also)

spam if fail any of a set of filters

cost for computation time

try to run cheap / likely to fail filters first

non-spam always same cost, can tag spam quickly
output always same, minimizing (measurable) cost




Impressive Accomplishment &5 =

Honda’s Asimo

+ development began in 1999, building on 13
years of engineering experience.

* claimed “most
advanced
humanoid robot
ever created”
QuickTime™ and a

] Wa I ks 1 m ph YUV420 codec decompressor

are needed to see this picture.

And Yet...

Asimo is programmed/controlled by people:
+ structure of the walk programmed in
 reactions to perturbations programmed in

 directed by technicians and puppeteers
during the performance

* no camera-control loop
« static stability




Compare To Kids

Molly
development began in 1999

“‘just an average kid”

walks 2.5mph even
on unfamiliar terrain

very hard to control

dynamically stable
(sometimes)

self motivated

QuickTime™ and a
H.263 decompressor
are needed to see this picture.

Crawl Before Walk

Impressive accomplishment:
» Fastest reported walk/crawl on an Aibo
» Gait pattern optimized automatically

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.

QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.




Human “Crawling”

QuickTime™ and a
DV/DVCPRO - NTSC decompressor
are needed to see this picture.

Perhaps our programming isn’t for crawling at all, but for the desire
for movement!

Reinforcement-Learning Hypothesis 5, <

Intelligent behavior arises from
the actions of an individual seeking to
maximize its received reward signals
in a complex and changing world.
Research program:
* implement appropriate reward signals,

» develop algorithms that search the space of
behaviors to maximize reward signals.




Find The Ball Task

Learn:
* which way to turn
to minimize steps

* o see goal (ba”) QuickTime™ and a
H.263 decompressor
° from camera input are needed to see this picture.

given experience.

Problem Formalization: MDP

Most popular formalization: Markov decision process
Assume:

» States/sensations, actions discrete.

+ Transitions, rewards stationary and Markov.

» Transition function: Pr(s’|s,a) = T(s,a,s’).

* Reward function: E[r|s,a] = R(s,a).

Then:

+ Optimal policy n*(s) = argmax, O*(s,a)

* where O*(s,a) = R(s,a) + vy Z. 1(s,a,s’) max,. O*(s’,a’).




Find the Ball: MDP Version

» Actions: rotate left/right

» States: orientation

* Reward: +1 for facing ball,
0 otherwise

It Can Be Done: Q-learning

Since optimal Q function is sufficient, use
experience to estimate it (Watkins & Dayan 92).

Given <s, a, s’, r>:

O(5,a) < Os,a) + o, (r +7 max,» O(s”,a’) = O(sa) ).
If:

+ all (s,a) pairs updated infinitely often

* Pr(s’ls,a) = 1(s,a,s’), E[r|s,a] = R(s,a)

¢ Ya,=m, Xa,2<o©

Then: O(s,a) > O*(s,a).




Real-Life Reinforcement Learning

Emphasize learning with real* data.
Q-learning good, but might not be right here...
Mismatches to “Find the Ball” MDP:

+ Efficient exploration: data is expensive.

* Rich sensors: never see the same thing
twice.

+ Aliasing: different states can look similar.
* Non-stationarity: details change over time.

* Or, if simulated, from simulators developed outside
the Al community.

Convergence of Policy

Logical disconnect:

* Q-learning converges in the limit to O*(s,a).

» Best action is greedy: n*(s) = argmax, O*(s,a).

» But, for convergence, can'’t starve (best) action.

Weak result (Singh, Jaakola, Littman, Szepesvari 00):

* GLIE (greedy in the limit with infinite exploration).

* Policy converges to optimal, not just Q values.

« Example: Decaying e-greedy. Visit n(s) to state s,
choose random action with probability 1/xn(s).




Efficient Exploration

Limit is nice, but would like something faster.

Goal: Policy that’s € optimal with prob. 1-6 after
polynomial amount of experience.

E3 (Kearns & Singh 98):

+ Use experience to estimate model (7 and R).
* Find optimal greedy policy wrt the model.

* Use model uncertainty to guide exploration.
Similar to Ry ax (Brafman & Tennenholtz 02).

Pangloss Assumption

We are in the best of all possible worlds.
Confidence intervals are on model parameters.

Find the model that gives maximum reward
subject to the constraint that all parameters
lie within their confidence intervals.

Choose actions that are best for this model.

In bandit case, this works out to precisely IE.

Very general, but can be intractable.
Solvable for MDPs. (Strehl & Littman 04)




CUMULATIVE REVWARD

Some (non-real) MBIE Results

Each plot measures cumulative reward by trial.
Varied exploration parameters (6-arms MDP).
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Rich Sensors

Can treat experience as state via instance-based view.

With an appropriate
similarity function, can
make approximate
transition model and derive
a policy (Ormoneit & Sen 02).

Allows us to combine with
MBIE-style approaches.
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Mountain-Car Experiments
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When Sensations Not Enough

Robust to weak non-Markovianness.

But, won’t take actions to gain information.

Network repair example (Littman, Ravi, Fenson, Howard 04).
* Recover from corrupted network interface config.
* Minimize time to repair.

+ Info. gathering actions: Pluggedin, Pinglp, PingLhost,
PingGateway, DnsLookup, ...

* Repair actions: RenewLease, UseCachedIP, FixIP.
Additional information helps to make the right choice.




Learning Network Troubleshooting

Recovery from corrupted After 95 failure episodes
network interface PingGateway
configuration. /\

Java/Windows XP: Minimize

. i PinglP PingIP
time to repair. y\ V\

DNSLookup  UseCachedIP UseCachedIP FixIP
y \| of 0|

RenewLease FixIP FixIP FixIP
o]

UseCachedIP

Non-Stationary Environments

Problem: To predict future events in the face of abrupt
changes in the environment.

Animal behavior: Match o,

investment to income given

multiple options

i
A
ES
Investment: 2/3
\ Investment: 1/3
Observation (Gallistel et al.):

Abrupt changes in payoff ? I

rates result in abrupt
Income: 1/3 Income: 2/3

=

5

;

changes in investment
rates. Proposed change-
detection algorithm.




Recognizing Changes in Disk Access

Portable computers use g
techniques such as disk spin-

down/up to conserve energy. :0:6'0
Given the history of disk
accesses of the user,
predicting how long it will be
until the next disk access
occurs

Cumulative number
of events
Averaging window
o predictor

3 Averaging window
with abrupt

change detection

Cummulative number of events
100
|

Under real usage conditions, abrupt changes between usage modes.
Detecting abrupt changes to mode can save energy

New Project Highlights

» Main technical idea: Use intrinsic motivation
(computational curiosity) to discover knowledge
about the world.

» Demonstration: Implement our algorithm on Sony
Aibo robots exploring a rich playspace.

» Expected Outcome: The robot learns knowledge that
is both abstract and grounded, enabling it to be
instructed to perform high-level tasks in the
physical world.
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Where We Went

Reinforcement learning: Lots of progress.

Let’s reconnect learning with real data:

» previous ideas contribute significantly

* model-based approaches showing great promise

+ some fundamental new ideas needed
— representation
— reward
— reasoning about change and partial observability

Large rewards yet to be found!




