310 CHAPTER6 m MULTILAYER NEURAL NETWORKS

6.8.5 Training with Noise

When the training set is small, one can generate virtual or surrogate training pattems
and use them as if they were normal training patterns sampled from the source distti-
butions. In the absence of problem-specific information, a natural assumption is that
such surrogate patterns should be made by adding d-dimensional Gaussian noise
to true training points. In particular, for the standardized inputs described in Sec-
tion 6.8.3, the variance of the added noise should be less than 1.0 (e.g., 0.1) and the
category label should be left unchanged. This method of training with noise can be
used with virtually every classification method, though it generally does not improve
accuracy for highly local classifiers such as ones based on the nearest neighbor.

6.8.6 Manufacturing Data

If we have knowledge about the sources of variation among patterns, for instance,
due to geometrical invariances, we can “manufacture” training data that conveys
more information than does the method of training with uncorrelated noise (Sec-
tion 6.8.5). For instance, in an optical character recognition problem, an input image
may be presented rotated by various amounts. Hence during training we can take any
particular training pattern and rotate its image to “manufacture” a training point that
may be representative of a much larger training set. Likewise, we might scale a pat-
tern, perform simple image processing to simulate a bold face character, and so on.

If we have information about the range of expected rotation angles, or the variation

A in thickness of the character strokes, we should manufacture the data accordingly.

" ‘While this method bears formal equivalence to incorporating prior information in
a maximum-likelihood approach, it is usually much simpler to implement, because
we need only the forward model for generating patterns. As with training with noise,
manufacturing data can be used with a wide range of pattern recognition methods. A
drawback is that the memory requirements may be large and overall training may be
slow.

P 7 = N = = Hs = T~}

6.8.8 Initializing
6.8.7 Number of Hidden Units

While the number of input units and output units are dictated by the dimensionality
of the input vectors and the number of categories, respectively, the number of hidden
units is not simply related to such obvious properties of the classification problem.
The number of hidden units, ny, governs the expressive power of the net—and thus
the complexity of the decision boundary. If the patterns are well-separated or linearly
separable, then few hidden units are needed; conversely, if the patterns are drawn
from complicated densities that are highly interspersed, then more hidden units are
needed. Without further information there is no foolproof method for setting the
number of hidden units before training.

Figure 6.15 shows the training and test error on a two-category classification prob-
lem for networks that differ solely in their number of hidden units. For large ny, the
training error can become small because such networks have high expressive power
and become tuned to the particular training set. Nevertheless, in this regime, the test
error is unacceptably high, an example of overfitting we shall study again in Chap-
ter 9. At the other extreme of too few hidden units, the net does not have enough free
parameters to fit the training data well, and again the test error is high. We seek some
intermediate number of hidden units that will give low test error.

UNIFORM
LEARNING

gate training patterns
om the source distri-
al assumption is that
onal Gaussian noise
ts described in Sec-
.0 (e.g., 0.1) and the
ng with noise can be
lly does not improve
earest neighbor.

atterns, for instance,
g data that conveys
rrelated noise (Sec-
lem, an input image
1ing we can take any
a training point that
/e might scale a pat-
haracter, and so on.
tles, or the variation
data accordingly.

prior information in
implement, because
training with noise,
gnition methods. A
rall training may be

 the dimensionality
e number of hidden
ssification problem.
f the net—and thus
eparated or linearly
patterns are drawn
re hidden units are
hod for setting the

classification prob-
. For large ny, the
h expressive power
his regime, the test
1dy again in Chap-
t have enough free
igh. We seek some

6.8 m PRACTICAL TECHNIQUES FOR IMPROVING BACKPROPAGATION 311

J/n

0.40

0.35 rost

0.30

0.25

0.20 train

0.15 9 13 17 21 25 29 33 37 total number
of weights
ny

2 3 4 5 6 7 8 9

FIGURE 6.15. The error per pattern for networks fully trained but differing in the num-
bers of hidden units, ny. Each 2 — ny — 1 network with bias was trained with 90 two-
dimensional patterns from each of two categories, sampled from a mixture of three
Gaussians, and thus n = 180. The minimum of the test error occurs for networks in the
range 4 < ny < 5, i.e., the range of weights 17 to 21. This illustrates the rule of thumb
that choosing networks with roughly n/10 weights often gives low test error.

The number of hidden units determines the total number of weights in the net—
which we consider informally as the number of degrees of freedom—and thus it is
plausible that we should not have more weights than the total number of training
points, n. A convenient rule of thumb is to choose the number of hidden units such
that the total number of weights in the net is roughly n/10. This seems to work well
over a range of practical problems. It must be noted, however, that many successful
systems employ more than this number. A more principled method is to adjust the
complexity of the network in response to the training data, for instance, start with a
“large” number of hidden units and “decay,” prune, or eliminate weights—techniques
we shall study in Section 6.11 and in Chapter 9.

68.8 Initializing Weights

UNIFORM
LEARNING

First, we can see from Eq. 21 that we cannot initialize the weights to 0, otherwise
learning cannot take place. Thus we must confront the problem of choosing their
starting values. Suppose we have fixed the network topology and thus have set the
number of hidden units. We now seek to set the initial weight values in order to have
fast and uniform learning, that is, all weights reach their final equilibrium values at
about the same time. One form of nonuniform learning occurs when one category is
learned well before others. In this undesirable case, the distribution of errors differs
markedly from Bayes, and the overall error rate is typically higher than necessary.
(The data standarization described above also helps to ensure uniform learning.)

In setting weights in a given layer, we choose weights randomly from a single
distribution to help ensure uniform learning. Because data standardization gives pos-
itive and negative values equally, on average, we want positive and negative weights
as well; thus we choose weights from a uniform distribution — < w < +w, for
some t yet to be determined. If @ is chosen too small, the net activation of a hidden
unit will be small and the linear model will be implemented. Alternatively, if @ is too
large, the hidden unit may saturate even before learning begins. Because net; =~ +1
are the limits to its linear range, we set W such that the net activation at a hidden unit
is in the range —1 < net; < +1 (Fig. 6.14).

from d input
the weights,
ge, then, the
larized input
1et activation
d; thus input
e same argu-
of connected
“hosen in the

vergence, its
1 in the crite-
1owever, be-
tion 6.8.14),
me weights
the network
ally well for
arning rates

mum in one
m assuming
d this gives

(35)

(36)

—W ~

ates. If n <
suffices to
training is

6.8 m PRACTICAL TECHNIQUES FOR IMPROVING BACKPROPAGATION 313

J
N = Nopr
! . §
oJ |
o] |
0 | w

FIGURE 6.17. If the criterion function is quadratic (above), its derivative is linear (be-
low). The optimal learning rate ne ensures that the weight value yielding minimum
error, w*, is found in a single learning step.

Of course the maximum learning rate that will give convergence is fmax = 200pt-
It should be noted that a learning rate 7 in the range oy < 1 < 27opt will lead to
slower convergence (Computer exercise 8).

Thus, for rapid and uniform learning, we should calculate the second derivative
of the criterion function with respect to each weight and set the optimal learning
rate separately for each weight. We shall return in Section 6.9 to calculate second
derivatives in networks, and to alternative descent and training methods. For typical
problems addressed with sigmoidal networks and parameters discussed throughout
this section, it is found that a learning rate of n =2 0.1 is often adequate as a first
choice. The learning rate should be lowered if the criterion function diverges during
learning, or instead should be raised if learning seems unduly slow.

68.10 Momentum

Error surfaces often have plateaus—regions in which the slope dJ(w)/dw is very
small. These can arise when there are “too many” weights and thus the error de-
pends only weakly upon any one of them. Momentum—Iloosely based on the notion
from physics that moving objects tend to keep moving unless acted upon by outside
forces—allows the network to learn more quickly when plateaus in the error surface
exist. The approach is to alter the learning rule in stochastic backpropagation to in-
clude some fraction a of the previous weight update. Let Aw(m) = w(m)—w(m— D,
and let Awp,(m) be the change in w(m) that would be called for by the backpropa-
gation algorithm. Then

w(m + 1) = w(im) + (1 — @) Awg,(m) + aAw(m — 1) 37N

represents learning with momentum.

312 CHAPTER 6

B MULTILAYER NEURAL NETWORKS

In order to calculate w, we consider a hidden unit accepting input from d input
units. Suppose too that the same distribution is used to initialize all the weights,
namely, a uniform distribution in the range —w < w < +4w. On average, then, the
net activation from d random variables of variance 1.0 from our standarized input
through such weights will be wA/d. As mentioned, we would like this net activation
to be roughly in the range —1 < net < +1. This implies that % = 1/+/d; thus input
weights should be chosen in the range —1//d < w i < +1/ V/d. The same argu-
ment holds for the hidden-to-output weights, where here the number of connected
units is 7 ; hidden-to-output weights should be initialized with values chosen in the

range —1/ /g < wy; < +1//nq.

6.8.9 Learning Rates

NONUNIFORM
LEARNING

In principle, so long as the learning rate is small enough to ensure convergence, s
value determines only the speed at which the network attains a minimum in the crite-
rion function J (w), not the final weight values themselves. In practice, however, be-
cause networks are rarely trained fully to a training error minimum (Section 6.8.14),
the learning rate can indeed affect the quality of the final network. If some weights
converge significantly earlier than others (nonuniform learning) then the network
may not perform equally well throughout the full range of inputs, or equally well for
the patterns in each category. Figure 6.16 shows the effect of different learning rates
on convergence in a single dimension.

The optimal learning rate is the one that leads to the local error minimum in one
learning step. A principled method of setting the learning rate comes from assuming
the criterion function can be reasonably approximated by a quadratic, and this gives

27 aJ

_ 9 35
dJw? w dw (33)

as illustrated in Fig. 6.17. The optimal rate is found directly to be
27\
Nopt = (w) . (36)

J J J

N < Nopt ﬂ‘ = Nopt A Nopr <M < 2 Nopt A n> Znopt

W L -Ww L —-W L -W

w*

W* W* W*

FIGURE 6.16. Gradient descent in a one-dimensional quadratic criterion with different learning rates. If 5 <
Topt, CONVergence is assured, but training can be needlessly slow. If = 1y, a single learning step suffices to
find the error minimum. If gy < 7 < 204, the system will oscillate but nevertheless converge, but training is
needlessly slow. If 7 > 274y, the system diverges.

FIGURE
fow). Th
error, w’

Of cou
1t shoul
slower

Thu
of the
rate s
derivat
proble;
this se
choice
learnit

6.8.10 Momentum

Error
small.
pends
from
force:
exist.
clude
and &
gatio

repre

314 CHAPTER®6

m MULTILAYER NEURAL NETWORKS

J(w)

FIGURE 6.18. The incorporation of momentum into stochastic gradient descent by
Eq. 37 (red arrows) reduces the variation in overall gradient directions and speeds learn-

ing.

Those who are familiar with digital signal processing will recognize this as a
recursive or infinite-impulse-response low-pass filter that smooths the changes in
w. Obviously, a should not be negative, and for stability o must be less than 1.0.
If « = 0, the algorithm is the same as standard backpropagation. If o = 1, the
change suggested by backpropagation is ignored, and the weight vector moves with
constant velocity. The weight changes are response to backpropagation if o is small,
and sluggish if « is large. (Values typically used are o = 0.9.) Thus, the use of
momentum “averages out” stochastic variations in weight updates during stochastic
learning. By increasing stability, it can speed the learning process, even far from
error plateaus (Fig. 6.18).

Algorithm 3 shows one way to incorporate momentum into gradient descent.

m Algorithm 3. (Stochastic Backpropagation with Momentum)

1 begin initialize ngy, w,a(< 1),0,n,m < 0,b;; < 0,b; < 0

2 dom <« m+1

3 x™ <« randomly chosen pattern

4 bji <« 7](1 - a)iji +(¥bj,'; bkj <« T](l - Ot)(Skyj +abkj
5 wji<—wji+bji; Wyj <—wkj+bkj

6 until [V/(w)|| <6

7 returnw

8 end

6.8.11 Weight Decay

One method of simplifying a network and avoiding overfitting is to impose a heuristic
that the weights should be small. There is no principled reason why such a method of
“weight decay” should always lead to improved network performance (indeed there
are occasional cases where it leads to degraded performance), but it is found in most

6.8.12 Hints

cases {l
weight
are mo
popula
or shru

where
functi
be elir
not de
patter
lem 4
error |

The ¢
tion |
Anot
valu
work

Oft:
WOl
of |
one
ext
one
cla
WO
uni
tar
cle
be

