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Outlines

• A Simple Machine Vision System
• Image segmentation by thresholding
• Digital geometry
• Connected components
• Mathematical morphology
• Region descriptors
• Limitations
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Problem definition

Objective: Design a vision system to “see” a “flat” world
– Page of text: text, line drawings, etc. 
– Side panel of a truck
– Objects on an inspection belt
– X-ray image of separated potatoes
– Microscopic image of blood cells
– etc.
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Problem definition

• General approach to recognition/inspection
– Acquire gray scale image using camera
– Reduce to black and white image - black objects on white background
– Find individual black objects and measure their properties
– Compare those properties to object models
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Image segmentation

• How do we know which groups of pixels in a digital image correspond 
to the objects to be analyzed?

– objects may be uniformly darker or brighter than the background against 
which they appear

• black characters imaged against the white background of a page
• bright, dense potatoes imaged against a background that is transparent to X-

rays
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Image segmentation

• Ideally, object pixels would be black (0 intensity) and background 
pixels white (maximum intensity)

• But this rarely happens
– pixels overlap regions from both the object and the background, yielding 

intensities between pure black and white - edge blur
– cameras introduce “noise” during imaging - measurement “noise”
– potatoes have non-uniform “thickness”, giving variations in brightness in 

X-ray - model “noise”

edge blur
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Image segmentation by thresholding

• But if the objects and background occupy different ranges of gray 
levels, we can “mark” the object pixels by a process called 
thresholding:

– Let F(i,j) be the original, gray level image
– B(i,j) is a binary image (pixels are either 0 or 1) created by thresholding

F(i,j)
• B(i,j) = 1 if F(i,j) < t
• B(i,j) = 0 if F(i,j) >= t
• We will assume that the 1’s are the object pixels and the 0’s are the 

background pixels

• How to choose the threshold t ?
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Thresholding

• How do we choose the threshold t?
• Histogram (h) - gray level frequency distribution of the gray level 

image F.
– hF(g) = number of pixels in F whose gray level is g
– HF(g) = number of pixels in F whose gray level is <=g (cumulative)

intensity, g

h(g)

peak peak

valley

observed histogram
ideal h
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Thresholding

• P-tile method
– in some applications we know approximately what percentage, p,  of the 

pixels in the image come from objects
• might have one potato in the image, or one character.

– HF can be used to find the gray level, g,  such that ~p% of the pixels have 
intensity <=  g

– Then, we can examine hF in the neighborhood of g to find a good 
threshold (low valley point) 

100%

p%

g

HF
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Thresholding

• Peak and valley method
– Find the two most prominent peaks of h

• g is a peak if hF(g) > hF(g ± ∆g), ∆ g = 1, ..., k
– Let g1 and g2 be the two highest peaks, with g1 < g2

– Find the deepest valley, g,  between g1 and g2
• g is the valley if hF(g) <= hF(g’) , g,g’ in [g1, g2] 

– Use g as the threshold
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Triangle algorithm

• A line is constructed between the maximum 
of the histogram at brightness bmax and the 
lowest value bmin = (p=0)% in the image. 

• The distance d between the line and the 
histogram h[b] is computed for all values of 
b from b = bmin to b = bmax. 

• The brightness value bo where the distance 
between h[bo] and the line is maximal is the 
threshold value. 

• This technique is particularly effective when 
the object pixels produce a weak peak in the 
histogram.
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Thresholding
• Hand selection

– select a threshold by hand at the beginning of the day
– use that threshold all day long!

• Many threshold selection methods in the literature
– Probabilistic methods

• make parametric assumptions about object and background intensity 
distributions and then derive “optimal” thresholds

– Structural methods
• Evaluate a range of thresholds wrt properties of resulting binary images

– one with straightest edges, maximum contrast, most easily recognized objects, etc.

– Local thresholding
• apply thresholding methods to image windows
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An advanced probabilistic threshold selection method: 
- minimizing Kullback information distance

• The observed histogram, f, is a mixture of the gray levels of the pixels 
from the object(s) and the pixels from the background

– in an ideal world the histogram would contain just two spikes
– but 

• measurement noise, 
• model noise  (e.g., variations in ink density within a character) and 
• edge blur (misalignment of object boundaries with pixel boundaries and 

optical imperfections of camera) 
spread these spikes out into hills
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• Make a parametric model of the shapes 
of the component histograms of the 
objects(s) and background

• Parametric model - the component 
histograms are assumed to be Gaussian

– po and pb are the proportions of the 
image that comprise the objects and 
background

– µo and µb are the mean gray levels of the 
objects and background

– σo and σb- are their standard deviations
fo(g) =

po
2πσo

e
−1 / 2( g − µo

σo
)2

o

fb(g) =
pb

2πσb
e
−1 / 2( g − ub

σb
)2

g

f(g)

µo µb

σo σb
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• Now, if we hypothesize a threshold, t, then all of these unknown
parameters can be approximated from the image histogram.

• Let f(g) be the observed and normalized histogram
– f(g) = percentage of pixels from image having gray level g

po(t) = f (g)
g= 0

t

∑

µo(t) = f (g)g
g= 0

t

∑ µb(t) = f (g)g
g= t+1

max

∑

pb(t) = 1− p0(t)
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• So, for any hypothesized t, we can “predict” what the total normalized 
image histogram should be if our model (mixture of two Gaussians) is 
correct.

– Pt(g) = pofo(g) + pbfb(g)
• The total normalized image histogram is observed to be f(g)
• So, the question reduces to:

– determine a suitable way to measure the similarity of  P and f
– then search for the t that gives the highest similarity
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Kullback information distance

• A suitable similarity measure is the Kullback directed divergence, 
defined as

• If Pt matches f exactly, then each term of the sum is 0 and K(t) takes on 
its minimal value of 0

• Gray levels where Pt and f disagree are penalized by the log term, 
weighted by the importance of that gray level (f(g))

K(t) =
g=0

max

∑ f (g) log[
f (g)
Pt(g)

]
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An alternative - minimize probability of error

• Using the same mixture model, we can search for the t that minimizes 
the predicted probability of error during thresholding

• Two types of errors
– background points that are marked as object points.  These are points from 

the background that are darker than the threshold
– object points that are marked as background points. These are points from 

the object that are brighter than the threshold
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An alternative - mimimize probability of error

• For each “reasonable” threshold
– compute the parameters of the two 

Gaussians and the proportions
– compute the two probability of 

errors
• Find the threshold that gives

– minimal overall error
– most equal errors

t

eo(t) = po fo(g)
g= t+1

max

∑

fo

eb(t) = pb fb(g)
g =0

t

∑

fb
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Elements of Digital Geometry
Digital Geometry:
• Emerged with the rise of computer technologies in 

the second half of the 20th century
• Pioneers: A. Rosenfeld, J. L. Pfaltz
• Fundamental for computer graphics and digital 

image processing
• Deals with sets of grid points
• Mathematical roots: graph theory and discrete 

topology.
• Three Interrelated Areas:

– Digital Topology: concepts of open and closed sets, 
connectedness, digital Jordan curve theorem, Euler 
Numbers, 

– Digital Geometry:  the study of geometric properties 
of sets of lattice points produced by digitizing regions 
or curves in the plane: digitization, digital convexity, 
digital straightness.  

– Graph theory and combinatorics of digital spaces: 
regions on the digital grid as a undirected graphs
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Elements of Digital Geometry - Connectivity

• Definition:  Given a pixel (i,j) its 4-neighbors 
are the points (i’,j’) such that |i-i’| + |j-j’| = 1

– the 4-neighbors are (i±i, j) and (i,j±1)
• Definition: Given a pixel (i,j) its 8-neighbors 

are the points (i’,j’) such that max(|i-i’|,|j-j’|) = 
1

– the 8- neighbors are (i, j±1), (i±1, j) and (i±1, 
j±1)
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Adjacency

• Definition:  Given two disjoint sets of pixels, A and B, A is 4-(8) 
adjacent to B is there is a pixel in A that is a 4-(8) neighbor of a pixel 
in B
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Connected components

• Definition: A 4-(8)path from pixel (i0,j0) to (in,jn) is a sequence of 
pixels (i0,j0) (i1,j1) (i2,j2) , ... (in,jn) such that (ik, jk) is a 4-(8) neighbor 
of (ik+1, jk+1), for k = 0, ..., n-1

(i0,j0)

(in, jn)

(i0,j0)

(in, jn)

Every 4-path is an 8-path!
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Connected components

• Definition: Given a binary image, B, the set of all 1’s is called the 
foreground and is denoted by S

• Definition: Given a pixel p in S, p is 4-(8) connected to q in S if there 
is a path from p to q consisting only of points from S.

• The relation “is-connected-to” is an equivalence relation
– Reflexive - p is connected to itself by a path of length 0
– Symmetric - if p is connected to q, then q is connected to p by the reverse path
– Transitive - if p is connected to q and q is connected to r, then p is connected to r by 

concatenation of the paths from p to q and q to r



CS 534 Spring 2003: Ahmed Elgammal, 
Rutgers University

13

CS 534 – Ahmed Elgammal – Binary Image Analysis - 25

Connected components

• Since the “is-connected-to” relation is an equivalence relation, it 
partitions the set S into a set of equivalence classes or components

– these are called connected components
• Definition:  SS is the complement of S - it is the set of all pixels in B 

whose value is 0
–– SS can also be partitioned into a set of connected components
– Regard the image as being surrounded by a frame of 0’s
– The component(s) of SS that are adjacent to this frame is called the 

background of B.
– All other components of SS are called holes
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How many 4- (8) components of S?
What is the background?
Which are the 4- (8) holes?

Examples - Yellow = 1, Green = 0
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Background and foreground connectivity

• Use opposite connectivity for the foreground and the background
– 4-foreground, 8-background: 4 single pixel objects and no holes
– 4-background, 8-foreground: one 4 pixel object containing a 1 pixel hole
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Boundaries

• The boundary of S is the set of all pixels of S that have 4-neighbors in 
SS.  The boundary set is denoted as S’. 

• The interior is the set of pixels of S that are not in its boundary: S-S’
• Definition: Region T surrounds region R (or R is inside T) if any 4-

path from any point of R to the background intersects T
• Theorem:  If R and T are two adjacent components, then either R 

surrounds T or T surrounds R.
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Examples

A

B

AA

AA

AA

AA

AA

BB

AA

A B

BB

Even levels are components of 0’s
The background is at level 0
Odd levels are components of 1’s
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Component labeling

• Given:  Binary image B
• Produce: An image in which all of the pixels in each connected 

component are given a unique label.
• Same as finding graph connected components

– Recursive depth first labeling (almost never used)
– Row-by-Row (most common) downward scan, upward scan O(n)
– Run-length efficient algorithms.
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Labeling shown as Pseudo-Color

Connected components of 1’s 
from thresholded image

Connected components 
of cluster labels

Clustering –
Vector Quantization
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Mathematical Morphology

Binary mathematical morphology consists of two
basic operations

dilation and erosion

and several composite relations

closing and opening
conditional dilation
. . .
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Dilation

Dilation expands the connected sets of 1s of a binary image.

It can be used for 

1. growing features

2. filling holes and gaps
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Erosion

Dilation shrinks the connected sets of 1s of a binary image.

It can be used for 

1. shrinking features

2. Removing bridges, branches and small protrusions
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Structuring Elements

A structuring element is a shape mask used in
the basic morphological operations.

They can be any shape and size that is
digitally representable, and each has an origin.

box
hexagon disk something

box(length,width)               disk(diameter)
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Dilation with Structuring Elements

The arguments to dilation and erosion are

1. a binary image B
2. a structuring element S

dilate(B,S) takes binary image B, places the origin
of structuring element S over each 1-pixel, and ORs
the structuring element S into the output image at
the corresponding position.

0 0 0 0
0 1 1 0
0 0 0 0

1
1 1

0 1 1 0
0 1 1 1
0 0 0 0

originB
S

dilate

B ⊕ S
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Erosion with Structuring Elements

erode(B,S) takes a binary image B, places the origin 
of structuring element S over every pixel position, and
ORs a binary 1 into that position of the output image only if
every position of S (with a 1) covers a 1 in B.

0 0 1 1 0
0 0 1 1 0
0 0 1 1 0
1 1 1 1 1

1
1
1

0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0

B S

origin

erode

B     S 
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Example 1 to Try

0 0 1 0 0 1 0 0
0 0 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0

1 1 1
1 1 1
1 1 1

erode

dilate with same 
structuring element

S
B
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Example 2 to Try 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

B

S

First erode and then dilate with the same S.
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Opening and Closing

• Closing is the compound operation of dilation followed
by erosion (with the same structuring element)

• Opening is the compound operation of erosion followed
by dilation (with the same structuring element)

SSBSB −⊕=• )(

SSBSB ⊕−= )(o
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Gear Tooth Inspection

Original binary image

Detected defects

How did
they do it?

Sternberg 1985: use morphology to detect missing or 
broken watch gear teeth
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Connected Components after thresholding 

Connected Components after Morphology 
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Region Properties

• Our goal is to recognize each connected component as one of a set of 
known objects

– letters of the alphabet
– good potatoes versus bad potatoes

• We need to associate measurements, or properties, with each 
connected component that we can compare against expected properties 
of different object types.
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Properties

• Area
• Perimeter
• Compactness:  P2/A

– smallest for a circle: 4π2r2/πr2 = 4π
– higher for elongated objects

• Properties of holes
– number of holes
– their sizes, compactness, etc.
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How do we compute the perimeter of a connected component?

1. Count the number of pixels in the 
component adjacent to 0’s

– perimeter of black square would 
be 1

– but perimeter of gray square, 
which has 4x the area, would be 4

– but perimeter should go up as sqrt
of area

2. Count the number of 0’s adjacent to 
the component
– works for the black and gray 

squares, but fails for the red 
dumbbell
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How do we compute the perimeter of a connected component?

3) Count the number of sides of pixels in the 
component adjacent to 0’s
– these are the cracks between the 

pixels
– clockwise traversal of these cracks is 

called a crack code
– perimeter of black is 4, gray is 8 and 

red is 8
• What effect does rotation have on the 

value of a perimeter of the digitization of a 
simple shape?
– rotation can lead to large changes in 

the perimeter and the area!
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A better (and universal)set of features

• An “ideal” set of features should be independent of
– the position of the connected component
– the orientation of the connected component
– the size of the connected component

• ignoring the fact that as we “zoom in” on a shape we tend to see more detail

• These problems are solved by features called moments
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Central moments

• Let S be a  connected component in a binary image
– generally, S can be any subset of pixels, but for our application the subsets 

of interest are the connected components
• The (j,k)’th moment of S is defined to be

∑
∈

=
Syx

kj
jk yxSM

),(

)(
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Central moments

• M00 = the area of the connected component

• The center of gravity of S can be expressed as

SyxSM
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Central moments

• Using the center of gravity, we can define the central (j,k)’th moment 
of S as

• If the component S is translated, this means that we have added some 
numbers (a,b) to the coordinates of each pixel in S

– for example, if a = 0 and b = -1, then we have shifted the component up 
one pixel

kj
jk yyxx )()( −−= ∑µ
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Central moments

• Central moments are not affected by translations of S.  Let S’={(x’, 
y’):x’=x+a, y’=y+b, (x,y) in S}

– The center of gravity  of S’ is the c.o.g. of S shifted by (a,b)

– The central moments of S’ are the same as those of S

ax
S
a

S
x

S
ax

S
x

Sx +=+=
+

== ∑∑∑∑ )(
'

'
)'(

)()()(

]))([(]))([(

))'('())'('()'(

Syyxx

bSybyaSxax

SyySxxS

jk
kj

kj

kj
jk

µ

µ

=−−=

+−++−+=

−−=

∑
∑

∑

CS 534 – Ahmed Elgammal – Binary Image Analysis - 52

Central moments

• The standard deviations of the x and y coordinates of S can also be obtained 
from central moments:

• We can then created a set of normalized coordinates of S that we can use to 
generate moments unchanged by translation and scale changes

S
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Normalized central moments
• The means of these new variables are 0, and their standard deviations are 1.  If 

we define the normalized moments; ηjk as follows

• then these moments are not changed by any scaling or translation of S
• Let S* = {(x*,y*): x* = ax + b, y* = ay + c, (x,y) in S}

– if b and c are 0, then we have scaled S by a
– if a is 0, then we have translated S by (b,c)
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Invariant moments

• From normalized central moments we can obtain invariant moments
A set of seven invariant moments. Invariant to translation, rotation and 

scale changes. (Hu moments 1962)

02201 ηηφ +=

( ) 2
11

2
02202 4ηηηφ +−=

( ) ( )2
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Shortcomings of our machine vision system

• Object detection
– thresholding will not extract intact objects in complex images

• shading variations on object surfaces
• texture

– advanced segmentation methods
• edge detection - locate boundaries between objects and background, between 

objects and objects
• region analysis - find homogeneous regions; small combinations might 

correspond to objects.
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Shortcomings of our machine vision system

• Occlusion
– What if one object is partially hidden by another?

• properties of the partially obscured, or occluded, object will not match the 
properties of the class model

– Correlation - directly compare image of the “ideal” objects against real 
images

• in correct overlap position, matching score will be high
– Represent objects as collection of local features such as corners of a 

rectangular shape
• locate the local features in the image
• find combinations of local features that are configured consistently with 

objects
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Shortcomings of our machine vision system

• Recognition of three dimensional objects
– the shape of the image of a three dimensional object depends on the 

viewpoint from which it is seen
• Model a three dimensional object as a large collection  of view-

dependent models
• Model the three dimensional geometry of the object and 

mathematically relate it to its possible images
– mathematical models of image geometry
– mathematical models for recognizing three dimensional structures from 

two dimensional images
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Shortcomings of our machine vision system

• Articulated objects
– pliers
– derricks

• Deformable objects
– faces
– jello

• Amorphous objects
– fire
– water
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Sources

• L. G. Shapiro and G. C. Stockman “Computer Vision”, Prentice Hall 
2001.

• R. Gonzalez and P. Wintz, “Digital Image Processing”, Addison-
Wesley, second edition 1992.

• Slides by
– L.S. Davis @UMD
– G.C. Stockman @MSU
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