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Outlines

* What is Graph cuts
* Graph-based clustering
* Normalized cuts

* Image segmentation using Normalized cuts
* Other Cuts
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Graph Cut

What is a Graph Cut:
* We have undirected, weighted graph G=(V,E)

* Remove a subset of edges to partition the graph into two
disjoint sets of vertices A4,B (two sub graphs):

AUB=V,ANnB=@
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Graph Cut

» Each cut corresponds to some cost (cut): sum of the
weights for the edges that have been removed.

cut(A4,B) = Zw(u,v)

ueA,veB
0.1
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Graph Cut

* In many applications it is desired to find the cut with
minimum cost: minimum cut

* Well studied problem in graph theory, with many
applications

» There exists efficient algorithms for finding minimum cuts
0.1

cut(A4,B) = Zw(u,v)

ueA,veB
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Graph theoretic clustering

» Represent tokens using a weighted graph
— Weights reflects similarity between tokens
— affinity matrix

+ Cut up this graph to get subgraphs such that:
— Similarity within sets maximum.

— Similarity between sets minimum.

= Minimum cut
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+ Use exponential function for edge weights

w(x) = o d®)/e)’

d(x) : feature distance
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Scale affects affinity

w(x)=e

—(d(x)/ o)’
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Eigenvectors and clustering

* Simplest idea: we want a
vector w giving the association
between each element and a
cluster

*  We want elements within this
cluster to, on the whole, have
strong affinity with one another

*  We could maximize

Sum of

Association of element i with clustern x

TAW

<./

Affinity betweeniandj x

CS 534 -
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Association of element j with cluster n
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Eigenvectors and clustering
*  We could maximize

T
w, Aw,

* But need the constraint T
wow =1

n

» Using Lagrange multiplier 4

» Differentiation

Aw, = Aw,

largest eigenvalue

wh Aw, + A(ww, —1)

» This is an eigenvalue problem - choose the eigenvector of A with
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Example eigenvector

. . points osr

matrix

eigenvector
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Example eigenvector
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The three eigenvectors corresponding to the next three eigenvalues of the affinity matrix
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eigenvalues for three different scales for the affinity matrix
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More than two segments

» Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors
Algorithm
+ Construct an Affinity matrix A
* Computer the eigenvalues and eigenvectors of A

» Until there are sufficient clusters
— Take the eigenvector corresponding to the largest unprocessed
eigenvalue; zero all components for elements already clustered,
and threshold the remaining components to determine which
element belongs to this cluster, (you can choose a threshold by
clustering the components, or use a fixed threshold.)

— If all elements are accounted for, there are sufficient clusters
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We can end up with eigenvectors that do not split clusters because any
linear combination of eigenvectors with the same eigenvalue is also an
eigenvector.
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Graph Cuts and Image Segmentation

* Represents image as a graph
» A vertex for each pixel

Edges between pixels

Weights on edges reflect similarity (affinity) in:
— Brightness
— Color

Texture

Distance

Connectivity:
— Fully connected: edges between every pair of pixels
— Partially connected: edges between neighboring pixels
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Measuring Affinity

Intensity ( \
aff (x,y)= eXp{_\%O'f ) ml ()- 1O )}

Distance

an)=ep|{ 1552 (o1}
color

o )=e0|-{ (000
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Normalized Cuts
* Min cut is not always the best cut
& I i
| i n2
. .... .. '@ @ Min-cut2
eg00 o *
® e o
® ......: o P Min-cut 1
I B
better cut —» | '
Normalized cuts
e Current criterion evaluates e Maximize

within cluster similarity, but not
across cluster difference

» Instead, we’d like to maximize
the within cluster similarity (aSSOC(A’ A)) + (aSSOC(B’ B))
compared to the across cluster assoc(A,V) assoc(B,V)

difference

*  Write graph as V, one cluster as
A and the other as B e i.e. construct A, B such that
their within cluster similarity is
high compared to their
association with the rest of the
graph
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* Association between two sets of vertices: total connection
between the two sets.

assoc(A,B) = Zw(u,t)

ucA,teB
assoc(A,V) = z w(u,t)

ueA,teV
assoc(B,V) = Z w(u,t)

ueB,teV
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» Normalize the cuts: compute the cut cost as a fraction of
the total edge connections to all nodes in the graph

cut(4,B) N cut(A4,B)

Ncut(A,B) =
assoc(A,V) assoc(B,V)

» Disassociation measure. The smaller the better.
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* Association measure: Normalized association within
groups:

assoc(A4, A) N assoc(B, B)
assoc(A,V) assoc(B,V)

Nassoc(A,B) =

 This is a within group association measure: the bigger the
better
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cut(A, B) = assoc(A, B) = assoc(A,V)—assoc(A, A)

cut( A, ) cut{A, D)

kR = assoc( A, V) 28 assoc( B, V)
Cassoc(A, V) — assoe(A A)
- assoc(A, V)
assoc( B, V) — assoc(B, B)
i assoc( B V)
5 (rus‘ur‘[ A A) . assoc( B, :‘_)’))
- assoc(A, V) assoc(B V)
=2 — Nassoc( A, B).
Nassoc(A, B) = assoc(A4, A) N assoc(B, B)

assoc(A,V) assoc(B,V)

Total association (similarity) within groups, the bigger the
better
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* By looking for a cut that minimizes Ncut(A,B),
— Minimize the disassociation between the groups,

— Maximize the association within group

cut(4,B) N cut(A4,B)
assoc(A,V) assoc(B,V)
=2— Nassoc(A, B)

Ncut(A,B) =

* Minimizing a normalized cut is NP-complete
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Normalized cuts

« W: cost matrix: w(i,j) D(i,i) =Y Wi, j),
J

* D: sum of the costs for every vertex DG, /) =0 i

* Optimal Normalized cut can be found be solving for y that minimizes

.y (D-W
min,, M y e {l,-b} y'D1=0
y' Dy
* NP-complete problem,

» approximate real-valued solution by solving a generalized eigenvalue
problem

(D-W)y=ADy
* Real-valued solution is the second smallest eigenvector

» look for a quantization threshold that maximizes the criterion --- i.e all
components of y above that threshold go to one, all below go to -b
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Example - brightness
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0 otherwise.
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Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000
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Segmentation using Normalized cuts

Two algorithms:

* Recursive two-way Ncut

— Use the second smallest eigenvector to obtain a partition to two
segments.

— Recursively apply the algorithm to each partition.
» Simultaneous K-way cut with multiple eigenvectors.

— Use multiple (n) smallest eigenvectors as n dimensional class
indicator for each pixel and apply simple clustering as k-means to
obtain n clusters.

CS 534 — Segmentation II - 29

Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000
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Figure from “Image and video segmentation: the normalised cut framework”, by Shi and Malik, copyright IEEE, 1998
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BEF.NN

Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000
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Sources

* Forsyth and Ponce, Computer Vision a Modern approach: chapter 14.

* Jianbo Shi and Jitendra Malik “Normalized Cuts and Image
Segmetnation” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 22 No. 0, August 2000
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