CS443: Digital Imaging and Multimedia Color in Digital Images

Spring 2008
Ahmed Elgammal
Dept. of Computer Science
Rutgers University

Outlines

- Color Perception
- RGB color space
- HSV and HLS
- Color Models for TV and Video
- Color Models for Printing
- Colorimetric Color Spaces
- Sources:
 - Burger and Burge "Digital Image Processing" Chapter 12

Color Perception

- Color perception is a fascinating and complicated phenomenon that has occupied the interest of scientist, psychologists, philosophers, and artists for hundreds of years.
- Color plays an important role in object recognition
- What is the best way to represent colors in the digital domain?
- Challenging problem: color constancy.

Complications of color

- Spectral composition of light
 - Newton's original prism experiment
 - light decomposed into its spectral components

Complications of color

- Why does the prism separate the light into its spectral components?
 - prism bends different wavelengths of light by different amounts
 - refractive index is a function of wavelength
 - shorter wavelengths are refracted more strongly than longer wavelengths

<u>Wavelength</u>	Color (*)
700	Red
610	Orange
580	Yellow
540	Green
480	Blue
400	Violet

^{* -} viewed in isolation

Complications of color

4.4 THE SPECTRAL POWER DISTRIBUTION of two important light sources are shown: (left) blue skylight and (right) a tungsten bulb.

Cones and color - recall

- Three different types of cones
 - they differ in their sensitivity to different wavelengths of light (blue-violet, green, yellow-red)

RGB color images

- Three primary colors: Red, Green, blue
- Widely used in transmission, representation, storage of color images.
- RGB is additive color system: add primary colored-light to form different colors

	RGB V	Value		
Point	Color	R	G	B
\mathbf{S}	Black	0.00	0.00	0.00
\mathbf{R}	Red	1.00	0.00	0.00
Y	Yellow	1.00	1.00	0.00
\mathbf{G}	Green	0.00	1.00	0.00
\mathbf{C}	Cyan	0.00	1.00	1.00
В	Blue	0.00	0.00	1.00
\mathbf{M}	Magenta	1.00	0.00	1.00
W	White	1.00	1.00	1.00
K	50% Gray	0.50	0.50	0.50
\mathbf{R}_{75}	75% Red	0.75	0.00	0.00
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00
P	Pink	1.00	0.50	0.50

- It is hard to determine the color of a pixel from knowing it's R,G,B components
- RGB is not a perceptually uniform representation: measured distance in the RGB color space doesn't correspond to our perception of color.

RGB representation

- True color images: represent each pixel with its R,G,B values.
 - Component ordering
 - Packed ordering

RGB representation

- Alternative representation: Indexed images:
 - make a color table
 - each pixel's color is represented by its color's index in the table
- Advantages?
- Limitations?

- RGB Limitations:
- It is hard to determine the color of a pixel from knowing it's R,G,B components
- RGB is not a perceptually uniform representation: measured distance in the RGB color space doesn't correspond to our perception of color.
- Brightness changes in the RGB color space are not perceived linearly.

Other Color Spaces

- HSV/HSB and HLS
- TV Color Spaces:
 - YUV, YIQ, YC_bC_r
- Color spaces for printing:
 - CMY, CMYK
- Colorimetric Color Spaces:
 - CIE XYZ
 - CIE L*a*b*

- Three important concepts:
 - Hue
 - Saturation
 - Luminance

From RGB to Grayscale

How to compute luminance value Y from RGB

$$Y = \text{Avg}(R, G, B) = \frac{R + G + B}{2}$$

 $Y = \text{Avg}(R, G, B) = \frac{R + G + B}{3}$ • We perceive red and green as being brighter than blue

$$Y = \operatorname{Lum}(R, G, B) = w_R \cdot R + w_G \cdot G + w_B \cdot B$$

For analog color TV signal

$$w_R = 0.299$$
 $w_G =$

$$w_G = 0.299$$
 $w_G = 0.587$

$$w_B = 0.114$$

For digital color encoding ITY-BT.709

$$w_R = 0.2125$$
 $w_G = 0.7154$ $w_B = 0.072$

Desaturating Color Images

$$\begin{pmatrix} R_d \\ G_d \\ B_d \end{pmatrix} \leftarrow \begin{pmatrix} Y \\ Y \\ Y \end{pmatrix} + s_{\text{col}} \cdot \begin{pmatrix} R - Y \\ G - Y \\ B - Y \end{pmatrix}$$

HSV color space

- Represent three components:
 - Hue
 - Saturation
 - Value (brightness)
- Also called HSB or HIS
- Upside-down six-sided pyramid

HLS color space

- Similar to HSV:
 - Hue
 - Luminance
 - Saturation
- Also called HSL
- Double pyramid representation (like a diamond)

RGB to HSV

Easier represented as a cylinder.

$$S_{\rm HSV} = \begin{cases} \frac{C_{\rm rng}}{C_{\rm high}} & \text{ for } C_{\rm high} > 0 \\ 0 & \text{ otherwise} \end{cases}$$

$$V_{\rm HSV} = \frac{C_{\rm high}}{C_{\rm max}}$$

$$R' = rac{C_{
m high} - R}{C_{
m rng}}$$
 $G' = rac{C_{
m high} - G}{C_{
m rng}}$ $B' = rac{C_{
m high} - B}{C_{
m rng}}$

$$H' = \begin{cases} B' - G' & \text{if } R = C_{\text{high}} \\ R' - B' + 2 & \text{if } G = C_{\text{high}} \\ G' - R' + 4 & \text{if } B = C_{\text{high}} \end{cases}$$

if
$$R = C_{\text{high}}$$

+ 2 if $G = C_{\text{high}}$
+ 4 if $B = C_{\text{high}}$

(a) HSV

$H_{\rm HSV} = \frac{1}{6} \cdot \left\{ \begin{array}{l} (H'+6) \\ H' \end{array} \right.$	for $H' < 0$ otherwise
---	------------------------

RGB to HSV

 ${
m RGB/HSV}$ Values

Pt.	Color	R	G	B	H	S	V
S	Black	0.00	0.00	0.00	_	0.00	0.00
R	Red	1.00	0.00	0.00	0	1.00	1.00
Y	Yellow	1.00	1.00	0.00	1/6	1.00	1.00
G	Green	0.00	1.00	0.00	2/6	1.00	1.00
C	Cyan	0.00	1.00	1.00	3/6	1.00	1.00
В	Blue	0.00	0.00	1.00	4/6	1.00	1.00
M	Magenta	1.00	0.00	1.00	5/6	1.00	1.00
\mathbf{w}	White	1.00	1.00	1.00		0.00	1.00
\mathbf{R}_{75}	75% Red	0.75	0.00	0.00	0	1.00	0.75
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00	0	1.00	0.50
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00	0	1.00	0.25
P	Pink	1.00	0.50	0.50	0	0.5	1.00

RGB to HLS

$$H_{
m HLS} = H_{
m HSV} \hspace{1cm} S_{
m HLS} = egin{cases} 0 & ext{for } L_{
m HLS} = 0 \ 0.5 \cdot rac{C_{
m rng}}{L_{
m HLS}} & ext{for } 0 < L_{
m HLS} \leq 0.5 \ 0.5 \cdot rac{C_{
m rng}}{1 - L_{
m HLS}} & ext{for } 0.5 < L_{
m HLS} < 1 \ 0 & ext{for } L_{
m HLS} = 1 \end{cases}$$

RGB/HLS Values

Pt.	Color	R	G	B	H	S	L
\mathbf{S}	Black	0.00	0.00	0.00		0.00	0.00
R	Red	1.00	0.00	0.00	0	1.00	0.50
Y	Yellow	1.00	1.00	0.00	1/6	1.00	0.50
\mathbf{G}	Green	0.00	1.00	0.00	2/6	1.00	0.50
\mathbf{C}	Cyan	0.00	1.00	1.00	3/6	1.00	0.50
В	Blue	0.00	0.00	1.00	4/6	1.00	0.50
M	Magenta	1.00	0.00	1.00	5/6	1.00	0.50
\mathbf{W}	White	1.00	1.00	1.00		0.00	1.00
\mathbf{R}_{75}	75% Red	0.75	0.00	0.00	0	1.00	0.375
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00	0	1.00	0.250
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00	0	1.00	0.125
Р	Pink	1.00	0.50	0.50	0/6	1.00	0.75

Color Models in TV and Video

- Part of the standards for recording, storage, transmission, and display of TV signals
- YIQ: used in analog NTSC systems. Also in VHS videotape coding. (N. America and Japan
- YUV: used in European TV standard (SECAM)
- YCbCr: a variation of YUV that is used in digital video and digital TV. Also in JPEG
- Common ideas:
 - A separate luminance component Y
 - Two chroma components
 - Encode color difference instead of absolute colors
 - More bandwidth for luminance than chroma components.
 - Linear transformation from RGB (a matrix multiplication for conversion.

YUV

• Luminance component:

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

Chroma components: based on differences between the luminance and the blue and red components:

$$U = 0.492 \cdot (B - Y) \quad \text{and} \quad V = 0.877 \cdot (R - Y)$$

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{pmatrix} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.000 & 0.000 & 1.140 \\ 1.000 & -0.395 & -0.581 \\ 1.000 & 2.032 & 0.000 \end{pmatrix} \cdot \begin{pmatrix} Y \\ U \\ V \end{pmatrix}$$

YIQ and YCbCr

YIQ: similar to YUV (rotate and mirror the UV)

$$\begin{pmatrix} I \\ Q \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \cdot \begin{pmatrix} U \\ V \end{pmatrix}$$

■
$$\mathbf{YC_bC_r}$$
: $Y = w_R \cdot R + (1 - w_B - w_R) \cdot G + w_B \cdot B$

$$C_b = \frac{0.5}{1 - w_B} \cdot (B - Y)$$

$$C_r = \frac{0.5}{1 - w_B} \cdot (R - Y)$$

• Setting the weights to $w_B=0.299$ and $w_R=0.114$

$$\begin{pmatrix} Y \\ C_b \\ C_r \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{pmatrix} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

Color Models for Printing

- Subtractive color models: CMY and CMYK
- Color printing requires a minimum of three primary colors: traditionally: Cyan, Magenta, and Yello
- White: C=M=Y=0 (no ink)
- Black: C=M=Y=1 (complete subtraction of light)
- CMY from RGB (simplified):

$$C = 1 - R$$

$$M = 1 - G$$

$$Y = 1 - B$$

CMYK

- In actual printing, CMY is not sufficient, we need a black ink as well. K component
- How to determine the amount of black ink?

$$K = \min(C, M, Y)$$

- The more the black the less the C, M, Y ink should be
- If C=M=Y, we only need black ink
- Different conversions are possible.
- Very complicated task in reality, which depends on the printer used

CMY to CMYK

Version 1

$$\begin{pmatrix} C' \\ M' \\ Y' \\ K' \end{pmatrix} = \begin{pmatrix} C - K \\ M - K \\ Y - K \\ K \end{pmatrix}$$

Version 2

$$\begin{pmatrix} C' \\ M' \\ Y' \end{pmatrix} = \begin{pmatrix} C - K \\ M - K \\ Y - K \end{pmatrix} \cdot \begin{cases} \frac{1}{1 - K} & \text{for } K < 1 \\ 1 & \text{otherwise} \end{cases}$$

$$K' = K$$

Version 3

$$\begin{pmatrix} C' \\ M' \\ Y' \\ K' \end{pmatrix} = \begin{pmatrix} C - f_{\text{UCR}}(K) \\ M - f_{\text{UCR}}(K) \\ Y - f_{\text{UCR}}(K) \\ f_{\text{BG}}(K) \end{pmatrix}$$

$$f_{\mathrm{UCR}}(K) = s_K \cdot K$$

$$f_{\mathrm{BG}}(K) = \begin{cases} 0 & \text{for } K < K_0 \\ K_{\mathrm{max}} \cdot \frac{K - K_0}{1 - K_0} & \text{for } K \geq K_0 \end{cases}$$

Colorimetric Color Spaces

- Goal: measure colors independent of devices
- A calibrated device-independent color system
- CIE color spaces: CIE (Commission Inernationale d'Eclairge - International commission on Illumination.
- CIE XYZ, CIE x,y, CIE L*a*b*

CIE XYZ

- Three imaginary primary colors X, Y, Z
- All the visible colors are summations of positive components.
- All visible colors lie inside a cone-shaped region, which doesn't include the X,Y, Z
- Y corresponds to the luminosity of the color (lightness)
- RGB cube is a distorted cube in the XYZ space.
- Linear transformation between RGB and XYZ
- Similar to RGB, the space is nonlinear wrt human color perception

RGB to CIE XYZ - a linear transformation

Pt.	Color	R	G	B	X	Y	Z	x	y
\mathbf{S}	black	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.3127	0.3290
\mathbf{R}	red	1.00	0.00	0.00	0.4125	0.2127	0.0193	0.6400	0.3300
Y	yellow	1.00	1.00	0.00	0.7700	0.9278	0.1385	0.4193	0.5052
G	green	0.00	1.00	0.00	0.3576	0.7152	0.1192	0.3000	0.6000
\mathbf{C}	cyan	0.00	1.00	1.00	0.5380	0.7873	1.0694	0.2247	0.3288
В	blue	0.00	0.00	1.00	0.1804	0.0722	0.9502	0.1500	0.0600
M	magenta	1.00	0.00	1.00	0.5929	0.2848	0.9696	0.3209	0.1542
\mathbf{W}	white	1.00	1.00	1.00	0.9505	1.0000	1.0888	0.3127	0.3290

CIE x,y chromaticity

- How to separate the color hue from the luminance
- A central projection (through S) to the plane X + Y + Z = 1

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z}$$

• Then, project to the XY plane (use only the x,y - drop z)

CIE-xy chromaticity diagram

- Horseshoe-shaped
- The outer boundary represents monochromatic (spectrally pure), maximally saturated colors.
- Neutral point (E) where x=y=1/3, (X=Y=Z=1)
- Saturation falls off towards E
- Complementary colors?

- We cannot reconstruct the XYZ from xy only
- We can reconstruct the XYZ if we know x,y, and Y

$$X = x \cdot \frac{Y}{y}$$
 $Z = z \cdot \frac{Y}{y} = (1 - x - y) \cdot \frac{Y}{y}$

- D50: emulate direct sunlight illumination
- D65:emulate overcast daylight illumination
- These are important reference points to transform between color spaces and devices
- Gamut: the set of all colors that can be handled by a certain media device or can be represented by a given color space.

CIE L*a*b*

- XYZ is not perceptually uniform
- L*a*b* is a similar color space but more uniform
- Green-red, blue-yellow hue axis.

$$\begin{split} L^* &= 116 \cdot Y' - 16 & X' = f_1\big(\frac{X}{X_{\rm ref}}\big) & Y' = f_1\big(\frac{Y}{Y_{\rm ref}}\big) & Z' = f_1\big(\frac{Z}{Z_{\rm ref}}\big) \\ a^* &= 500 \cdot \big(X' - Y'\big) & f_1(c) = \begin{cases} c^{\frac{1}{3}} & \text{for } c > 0.008856 \\ 7.787 \cdot c + \frac{16}{116} & \text{for } c \leq 0.008856 \end{cases} \end{split}$$

sRGB

- Standard RGB: precisely specifying where are the R,G,B colors and the white reference point in the XYZ space.
- Important standard (developed by HP and MS)
- Used in JPEG, PNG, HTML4,...

Pt.	R	G	B	X_{65}	Y_{65}	Z_{65}	x_{65}	y_{65}
R	1.0	0.0	0.0	0.412453	0.212671	0.019334	0.6400	0.3300
G	0.0	1.0	0.0	0.357580	0.715160	0.119193	0.3000	0.6000
В	0.0	0.0	1.0	0.412453 0.357580 0.180423 0.950456	0.072169	0.950227	0.1500	0.0600
\mathbf{w}	1.0	1.0	1.0	0.950456	1.000000	1.088754	0.3127	0.3290

$$\begin{split} M_{\text{RGH}} &= \begin{pmatrix} 3.240479 - 1.537150 - 0.498535 \\ -0.9969256 & 1.878992 & 0.041556 \\ 0.055648 - 0.204043 & 1.057311 \end{pmatrix} \qquad M_{\text{RGH}}^{-1} &= \begin{pmatrix} 0.412453 & 0.357580 & 0.180423 \\ 0.212671 & 0.715160 & 0.072169 \\ 0.019334 & 0.119193 & 0.959227 \end{pmatrix} \\ \begin{pmatrix} R \\ G \\ B \end{pmatrix} &= M_{\text{RGB}} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} &= M_{\text{RGB}}^{-1} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix} \\ R' &= f_{\gamma}(R) \qquad G' &= f_{\gamma}(G) \qquad B' &= f_{\gamma}(B) \\ f_{\gamma}(c) &= \begin{cases} 1.055 \cdot c^{\frac{1}{2}A} - 0.055 & \text{for } c > 0.0031308 \\ 12.92 \cdot c & \text{for } c \leq 0.0031308 \end{cases} \\ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \longrightarrow \begin{bmatrix} \text{linear} \\ \text{mapping} \\ M_{\text{RGB}} \end{bmatrix} \longrightarrow \begin{pmatrix} R \\ G \\ B \end{pmatrix} \longrightarrow \begin{bmatrix} \text{gamma} \\ \text{correction} \\ f_{\gamma}() \end{bmatrix} \longrightarrow \begin{pmatrix} R' \\ G' \\ B' \end{pmatrix} \end{split}$$

		sRGB			sRGB		,	OTTO 3/3/	7	
Pt	Color	nonlinear $R' G' B'$		R	$egin{array}{ccc} linearized & & & & & & & & & & & & & & & \\ R & G & G & B & & & & & & & & & & & & & &$		CIE XYZ $X_{65} Y_{65} Z_{65}$			
S	black	,		, ,	,	,		0.0000		
R	red	1.00						0.4125		
\mathbf{Y}	yellow	1.00	1.0	0.0	1.0000	1.0000	0.0000	0.7700	0.9278	0.1385
\mathbf{G}	green	0.00	1.0	0.0	0.0000	1.0000	0.0000	0.3576	0.7152	0.1192
\mathbf{C}	cyan	0.00	1.0	1.0	0.0000	1.0000	1.0000	0.5380	0.7873	1.0694
В	blue	0.00	0.0	1.0	0.0000	0.0000	1.0000	0.1804	0.0722	0.9502
M	magenta	1.00	0.0	1.0	1.0000	0.0000	1.0000	0.5929	0.2848	0.9696
W	white	1.00	1.0	1.0	1.0000	1.0000	1.0000	0.9505	1.0000	1.0888
K	50% gray	0.50	0.5	0.5	0.2140	0.2140	0.2140	0.2034	0.2140	0.2330
\mathbf{R}_{75}								0.2155		
00	50% red							0.0883		
20	25% red							0.0210		
Р	pink	1.00	0.5	0.5	1.0000	0.2140	0.2140	0.5276	0.3812	0.2482