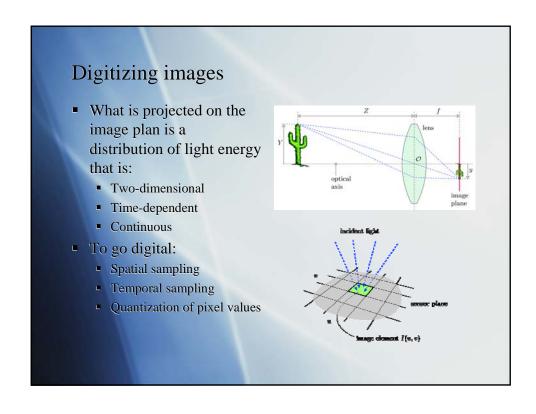
CS443: Digital Imaging and Multimedia Histograms of Digital Images

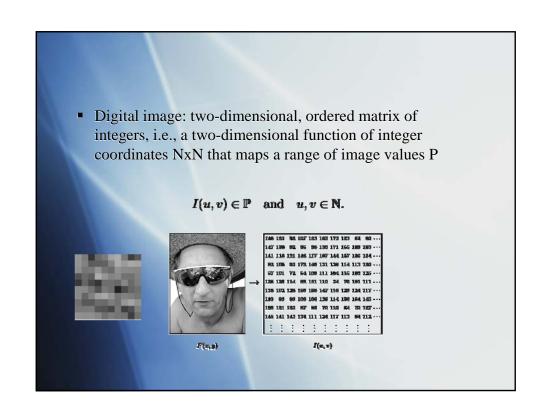
Spring 2008
Ahmed Elgammal
Dept. of Computer Science
Rutgers University

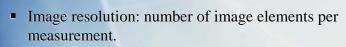
Outlines

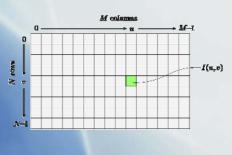
- Digitizing images
- Image histograms and its applications

- Sources:
 - Burger and Burge "Digital Image Processing" Ch. 4







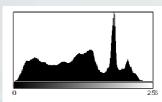


Gray	azale (Int	ensity Images)):
Chan.	Bits/Pix.	Range	Use
1	1	01	Binary image: document, illustration, fax
1	8	0255	Universal: photo, scan, print
1	12	04095	High quality: photo, scan, print
1	14	016383	Professional: photo, scan, print
1	16	065535	Highest quality: medicine, astronomy
Color	Images		
Chan.	Bits/Pix.	Hange.	Use
3	24	$[0255]^3$	RGB, universal: photo, scan, print
3	36	[04095] ³	RGB, high quality: photo, scan, print
3	42	[016383] ³	RGB, professional: photo, scan, print
4	32	[0255]4	CMYK, digital prepress
Speci	al Image	E	
Chan.	Bits/Pix.	Hange.	Use
1	16	-3276832767	Whole numbers pos./neg., increased range
1	32	±3.4 · 10 ³⁶	Floating point: medicine, astronomy
1	64	±1.8 · 10 ³⁰⁸	Floating point: internal processing

Image Histograms

- Histograms are used to depict image statistics in an easily interpreted visual format
- Useful during image capturing: now already in digital cameras
- Used to improve the visual appearance of an image
- Can also be used to determine what type of processing has been applied to an image.

 Image histogram: describes the frequency of the intensity values that occur in an image



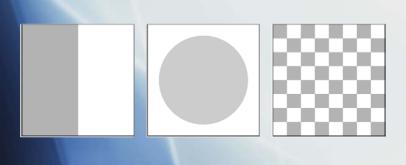
Count: 1920000 Mean: 118.848 StdDex: 59.179 Min: 0 Max: 251 Mode: 184 (30513)

$$h(i) = \operatorname{the} \ number \ \text{of pixels in } I \ \text{with the intensity value } i$$

$$h(i) = \operatorname{card} \big\{ (u,v) \mid I(u,v) = i \big\}$$

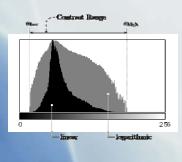
$$h(i) = \frac{10}{3} \frac{10}{3} \frac{10}{4} \frac{10}{5} \frac{10}{6} \frac{10}{3} \frac{10}{4} \frac{11}{12} \frac{13}{13} \frac{14}{15} \frac{15}{15} \frac{15}{15} \frac{10}{12} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{15}{15} \frac{10}{12} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{10}{12} \frac{10}{12} \frac{10}{12} \frac{10}{13} \frac{10}{14} \frac{10}{15} \frac{10}{12} \frac{1$$

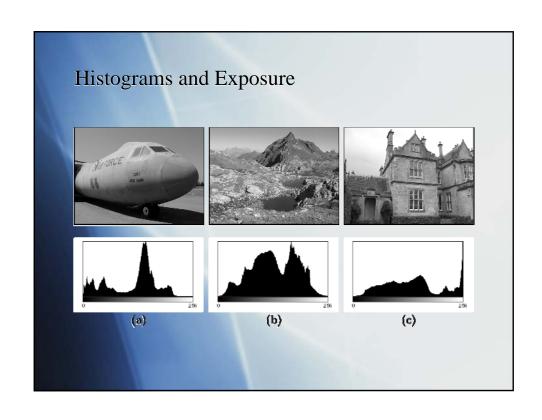
- Histograms don't encode information about the spatial arrangement of pixels in the image
- We cannot reconstruct an image given only it's histogram

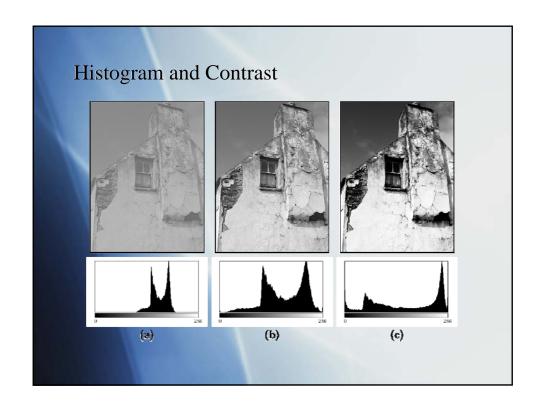


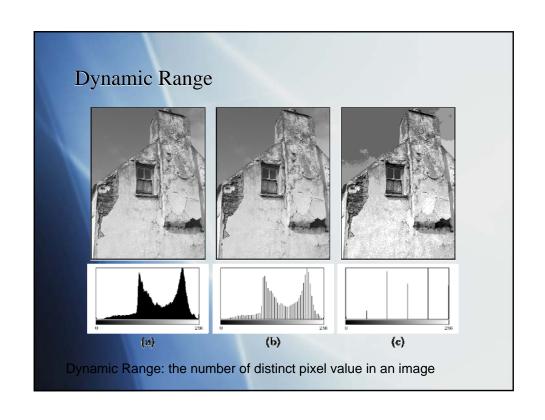
Interpreting Histograms

- Histograms depicts problems that originate during image acquisition
 - Exposure, contrast, dynamic range
- Histograms can be used to detect a wide range of image defects: saturation, spikes and gaps, impact of image compression



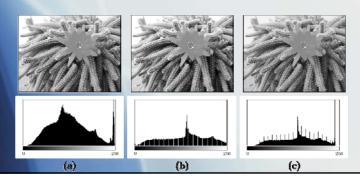




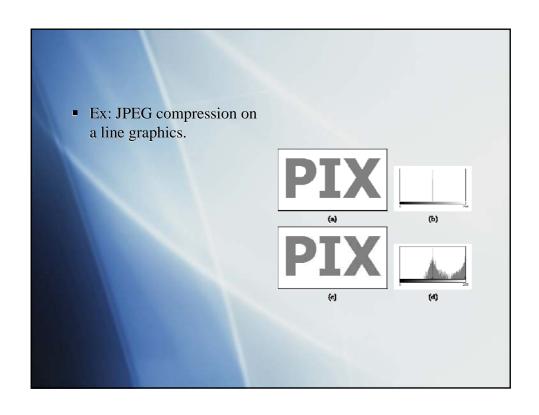


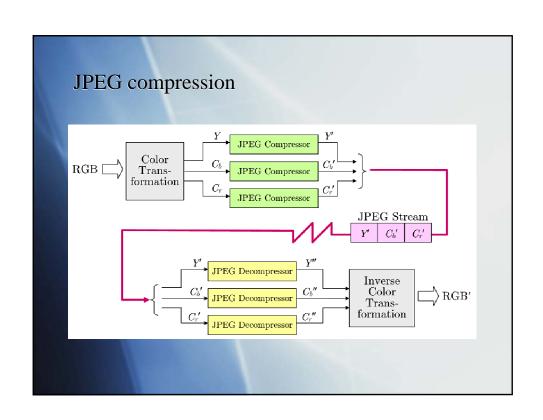
Detecting Image Defects

- There is no ideal or optimal histogram shape. It depends on the image and on the application
- Image Defects:
 - Saturation: the illumination values lying outside of the sensor's range are mapped to its maximum or minimum values: spike at the tails
 - Spikes and Gaps in manipulated images. Why?
 - Impact of image compression

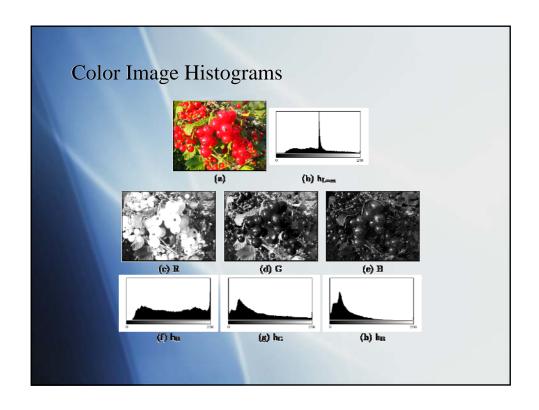


- Histograms show the impacts of image compression
- Ex: in GIF compression, the dynamic range is reduced to only few intensities (quantization)






```
Histograms of images
      with more than 8 bits:
        Binning
\mathsf{h}(j) = \mathrm{card}\left\{(u,v) \mid a_j \leq I(u,v) < a_{j+1}\right\} \quad \text{for } \ 0 \leq j < B
a_j = j \cdot \frac{K}{B} = j \cdot k_B
                                                                     0 \leq I(u,v) <
                                                                    64 \leq I(u,v) <
                                                  h(1)
                                                                                       128
                                                  h(2)
                                                                   128 \leq I(u,v) < 192
  • Ex: B=256 for 14 bit
                                                  h(j) \leftarrow
                                                                    a_j \leq I(u,v) < a_{j+1}
      image
  K=16384, bin width = 64
                                                  \mathsf{h}(255) \leftarrow \ 16320 \leq I(u,v) < 16384
```



Color Image Histograms

- For color images, two kind of histograms:
 - Intensity histogram
 - Individual Color Channel Histograms
- Both provides useful information about lighting, contrast, dynamic range and saturation effects for individual color components
- They provide no information about the actual color distribution!

Cumulative Histograms $H(i) = \sum_{j=0}^{i} h(j) \text{ for } 0 \le i < K$ $H(i) = \begin{cases} h(0) & \text{for } i = 0 \\ H(i-1) + h(i) & \text{for } 0 < i < K \end{cases}$ $H(K-1) = \sum_{j=0}^{K-1} h(j) = M \cdot N$