
CS443 Spring 2008 - page 1/5

Depatment of Computer Science
Rutgers University

CS443 – Digital Imaging and Multimedia
Assignment 4

Due Apr 15th, 2008

This assignment is supposed to be a tutorial assignment that will lead you step by step to use
Matlab image processing toolbox and other Matlab functions to build a hand-written character
recognition system as a practice on binary image analysis. You are given a set of 9 images, each
with different instances of one character in it. You are also given a test image for evaluation. Also
you are given code for some functions that you will need. The images and related functions are
available at ftp://ftp.cs.rutgers.edu/pub/elgammal/CS443/HW4

Create a directory for your work and put all images and code in it. In Matlab command prompt
use cd to change directory to your work directory.

I- Reading Images and binarization.

1- You can open an image using the function imread(). For example to open the image with
character ‘a’ use

im=imread('a.jpg');

The variable im contains the image as a matrix. Check out the size of the image using

size(im)

Now, you can visualize the image using imshow(im);

2- In many cases we need to convert the image from a matrix into a vector. This can be done
using matlab function reshape. Check out the help for reshape to see how it works (use help
reshape in the command prompt). Use reshape to convert the image into dx1 vector where
d= image rows * image cols.

im1=reshape(im,prod(size(im)),1);

Use size() to check out the size of the vector im1.

3- Now we will look into the histogram of the image intensity using matlab hist() function.
You can specify the bins for the histogram as a parameter for the function. for example to make
pins from 0 to 255 you can use

h=hist(double(im1),[0:1:255]);
Notice that hist() takes the input data as a vector. That's why we use im1 here. Now, you can
visualize the histogram in a new figure:

figure
plot(h)

Because the image is mostly background, there will be a very high peak at high intensity values

ftp://ftp.cs.rutgers.edu/pub/elgammal/CS443/HW4

CS443 Spring 2008 - page 2/5

that dominate the graph. You can visualize a smaller range of the histogram. e.g.,

plot(h(1:255))

4- Given this histogram we can choose a threshold to binarize the image. It's up to you to choose
a suitable threshold. You can try different values and see the effect on the resulting binary image.
To do this, first we define a variable called th for the threshold and set it to a certain value, say
200. Then, we create a new image, im2 , with the same size as the original image. Then, we use
logical operation to find intensity values greater(smaller) than th and assign these pixels to 0 (1).

th=200;
im2=im;
im2(im>=th)=0;
im2(im<th)=1;

To visualize the binary image use imagesc(). imagesc() scales the image from 0-1 to
proper range for visualization:

figure
imagesc(im2)

You need to change the colormap if you like to see the image in black and white:

colormap gray

Here we use 0 (black) for the background and 1 (white) for the foreground. For printing it is
always better to have white as the background. In such case, you can use the logical complement
operator '~' to visualize the logical complement of the image, i.e.,

imagesc(~im2)

II- Extracting characters and their features

1- Given the binary image we have, we can now run connected component analysis to label each
character with a unique label. To do this, we can use matlab bwlabel() function which
performs connected component analysis on the image and return a labeled image where all the
pixels in each component are given an integer label 0,1,2,... where 0 is the background.

L=bwlabel(im2);

2- You can visualize the resulting component image:

figure
imagesc(L)

In this figure each component has a different color since it has a different label. To find out how
many connected components are in the image, you can find the maximum label used

max(max(L))

In fact you can find that number of components is actually more than the number of characters in

CS443 Spring 2008 - page 3/5

the page. This is due to small isolated components that are mainly noise. Usually this is called salt
and pepper noise. This can be removed using mathematical morphology. Or you can try to omit
small size components from further analysis by simply comparing their height and width to
certain threshold.

3- For each component you can find out and visualize the bounding box containing it using the
following piece of code that loops through the components and find the maximum and minimum
of their coordinates. To run this code, create an .m file and copy this code into it, give it some
name, and call it from the command prompt after performing all the previous steps (The code
assumes that the labeled image, L, exists in the memory).

Nc=max(max(L));
figure
imagesc(L)
hold on;
for i=1:Nc;
 [r,c]=find(L==i);
 maxr=max(r);
 minr=min(r);
 maxc=max(c);
 minc=min(c);
 rectangle('Position',[minc,minr,maxc-minc+1,maxr-minr+1], 'EdgeColor','w');
end

4- In this step we will compute the Hu moments and other statistical measures for each character.
Provided with this assignment is a function moments() to perform this task. Put the function in
your directory and type help moments to see help synopsis.

Usage: [centroid, theta, roundness, inmo] = moments(im, plotchoice)

You need to insert this function into the previous loop and pass into it a cropped image for each
character as:

cim=im2(minr-1:maxr+1,minc-1:maxc+1);
[centroid, theta, roundness, inmo] = moments(cim, 0);

Here inmo is a four dimensional vector containing the Hu moments.

It would be useful to omit small size noise components as mentioned above before calling the
moment function. Just add an ‘if’ statement to compare components height and width with a
given threshold.

5- The next step is to modify the above code in order to store the resulting moments for each
character to be used in recognition. To do this, simply create an empty matrix before the loop,
let's call it 'Features' using

Features=[]

Then, inside the loop you need to concatenate each character features to the existing feature
matrix. At the end, 'Features' will contain a row for each character with 6 features in each row.
The concatenation can be done using

Features=[Features; theta, roundness, inmo];

CS443 Spring 2008 - page 4/5

III- Build Character Features Database for Recognition:

1- The final part of this project is to extract the features for all the characters in all the images
given to you to create a database of character features to be used in recognition.
You will need to use the above steps to process all the character images and to extract features for
all characters and put them into one big features matrix as above. Modify the above code by
adding all the necessary steps from above for reading the image, binarizing, extracting
components, etc. into one .m file where you can call it for different images.

Of course, you need a way to remember what is the character class for each row in the Features
matrix. One way to do that is use another array with the same number of rows as Features
where in each row you keep the corresponding class label, i.e., 1 for 'a', 2 for 'd', 3 for 'm' etc., or
any appropriate class labels.

2- Once you create the big Features matrix and the corresponding class labels you are ready to do
recognition. In this project will just use a simple nearest neighbor approach to find the closest
character in the database for a given test character.

One problem is that different features have different ranges, so that a large numerical difference
in a feature with high variability may swamp the effects of smaller, but perhaps more significant,
differences in features that have very small variability. The standard solution is to transform all
of the feature distributions to a standard distribution with 0 mean and variance of 1.0. This is
done by first computing the mean and standard deviation of each feature (this is done over the
entire set of training characters,
and not for one character type at a time), and then normalizing the features by subtracting the
mean and dividing by the standard deviation for each feature.
3- To evaluate the recognition rate on the training data you can find the nearest neighbor for each
character in the training data and check if its class matches the correct class. Here is an example
to do that: we will use a function provided with this assignment called dist2() which returns
the squared Euclidean distance between two sets of points. we will use it to evaluate the distance
between each character and all other characters, i.e., the distance between the row vectors in the
Normalized Features matrix:

D=dist2(Features,Features);

The resulting D is an NxN matrix where N is the number of characters (number of rows of
Features). Typically D is called affinity matrix. you can visualize D as an image using
imagesc(D).

Obviously D will have zeros on the diagonal since the distance between each character and itself
is 0. To find the nearest neighbor for each character (excluding itself) you need to find the second
smallest distance in each row in the D matrix. One way to do this is to sort the columns of D along
each row and to find the index of the second smallest distance in each row. To sort along the rows
use:

[D_sorted,D_index]=sort(D,2);

The D_index matrix contains the index of the columns in D sorted according to the distances.
So, the second column of D_index will contain the index of the closest match to each character

CS443 Spring 2008 - page 5/5

(excluding itself). Find the class for this closest match.

4- You can compute the confusion matrix between character classes given the provided function
ConfusionMatrix(), which takes as input, the correct classes (as a vector) , the resulting
classes (as vector), and the Number of classes.

IV- Testing

For evaluation you are given a test image (test.jpg) with some characters. you will need to do the
whole processing for this image and extract the features for each character. You will need to
normalize the extracted features using the same means and standard deviations which were
computed from the training data. Then, using the character features database obtained above and
the function dist2(), find the nearest neighbor match for each character in the test image.

Deliverables:

In matlab, you can dump your entire command window work into a text file using the command
diary. Use diary <filename> at the beginning of your work and all subsequenct
commands will be dumbed into that file till you turn off the diary using
diary off

1- do parts I and II using one of the images and submit the diary file containing script of your
work. Also submit all the figures you generated. For printing binary images always use white as
the background. Only submit your script and figures for one of the images

2- For part III: submit your code for processing the images and submit a figure visualizing your D
matrix. Report your recognition rate. Print the Confusion Matrix.

3- For part IV: submit your code for recognizing the characters in the test image as well as print a
list of each component and the resulting class. Your result should be in this format: for each
component print its label, coordinates (minr, minc, maxr maxc), and the recognized class. What is
your correct recognition rate?

