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Outlines

= Fourier Series and Fourier integral

= Fourier Transform (FT)

= Discrete Fourier Transform (DFT)

= Aliasing and Nyquest Theorem

= 2D FT and 2D DFT

= Application of 2D-DFT in imaging

= Inverse Convolution

= Discrete Cosine Transform (DCT)

Sources:

= Burger and Burge “Digital Image Processing” Chapter 13, 14, 15
= Fourier transform images from Prof. John M. Brayer @ UNM

http://www.cs.unm.edu/~brayer/vision/fourier.html




= Representation and Analysis of Signals in the
frequency domain
= Audio: 1D temporal signal
= Images: 2D spatial signal
= Video: 2D spatial signal + 1D temporal signal
* How to decompose a signal into sine and cosine
function. Also known as harmonic functions.

» Fourier Transform, Discrete Fourier Transform,
Discrete Cosine Transform

Basics

* Sine and Cosine functions are periodic
f(z) = cos(z)
cos(z) = cos(x + 2m) = cos(z + 4w) = - - - = cos(z + k27)

= Angular Frequency: number of oscillations over the
distance 27

T: the time for a complete cycle f(z) = cos(z)
T — 27 2w 1
w w = — =

sin(z) cos(x) sin(3z) cos(3xz)




Basics

= Angular Frequency (w) and Amplitude (a) .
a- cosfw:c an a - sin(wz)
= Angular Frequency: number of oscillations over the distance 2
T the time for a complete cycle

T=2

w

=  Common Frequency f: number of oscillation in a unit time
1 w

f:?ZQTr or w=2nf

sin(z)  cos(x) sin(3z) cos(3xz)

Basics

= Phase: Shifting a cosine function along the x axis by a distance ¢
change the phase of the cosine wave. ¢ denotes the phase angle

cos(z) — cos(z — @)

sin(z)  cos(x) . ) sin(3z) cos(3xz)




* Adding cosines and sines with the same frequency results
in another sinusoid

A - cos(wz) 4+ B -sin(wz) = C - cos(wx — )

C=VA2+B? and ¢=tan"'(£)

A cos(wz) + Bsin(wz)

sin(wz)

Acos(wz) + Bsin(wz)

cos(wz)

Fourier Series and Fourier integral

= We can represent any periodic function as sum of
pairs of sinusoidal functions- using a basic
(fundamental) frequency

g(z) = Z [A, cos(kwox) + By, sin(kwo)]
k=0

* Fourier Integral: any function can be represented
as combination of sinusoidal functions with many
frequencies

g(z) = / A, cos(wz) + By, sin(wz) dw
0




* Fourier Integral
g(z) = / A, cos(wz) + By, sin(wz) dw
0

* How much of each frequency contributes to a
given function

A, = Alw) = %/OO g(x) - cos(wz) dx

— 00

B, = B(w) = %/OO g(z) - sin(wzx) dz

— 00

Fourier Transform

A, = Aw) = %/00 g(z) - cos(wz) dz
B, = B(w) = %/OO g(z) - sin(wz) dz
Gw) = g[A(w) —i B(w)}
=./5 {%/iq( ) - cos(wz) dz — i.%/j; g(z) - sin(wz) dr}
(z) - {cos(wm) —1i- sin(wx)} dz,
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» Fourier transform

Gw) = \/% /j:c g(x) - {(:()s(ww) —1i-sin(wz)| dz

—iwx

— [ o
= — glz)-e
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» [nverse Fourier transform

dx.

g(x) = \/% /j; G(w) - [(:os(wx) +1i- sin(wz)} dw
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Frequency domain

Temporal or spatial domain

Fourier Transform

» The forward and inverse transformation are almost
similar (only the sign in the exponent is different)

= any signal is represented in the frequency space by
its frequency “spectrum”

* The Fourier spectrum is uniquely defined for a
given function. The opposite is also true.

* Fourier transform pairs

g(z) o* G(w)




Function Transform Pair g(z) o G(w)

Figure

Cosine function g(z) = cos(woz)
with frequency wq G(w) = \/; (5(w7wo) + 5(w+w0))

13.3(a,c)

Sine function with g(x) = sin(wox) 13.3(b,d)
frequency wn Gw) = iy/T - (8(w—wo) — 5(w+w))
Gaussian function glz)=21-¢e" o 13.4 (a,b)
of width o Glw) = ot
R‘ec'tang;llar pulse | g(z) = II(z) = (f)otlhe‘lix‘/lib 13.4 (¢, d)
of width 2b Gw) = 21152,;1;)

-9 -5 -3 -l 1 7

(a) cosine (wo=3): g(x) =cos(3z) o Gw)=/3 (6(w—3)+w+3))

(¢) cosine (wo=5): g(x) = cos(bz
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(6(w—=3) = 6(w+3))

=

(b)  sine (wo=3): g(x) = sin(3x) o G(w) =1/

o

(d)  sine (wo=5): g(z) = sin(bx) oo Gw) =1i\/F - (§(w=5) — §(w+5))

22 w2
(a)  Gauss (6=1): g(z)=¢ 2 o—e Gw)=¢e =
1 1
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(¢) rect. pulse (b=1): g(z) = II,(x) o Gw) = L"”]

(d) rect. pulse (b=2): g(x) = IIx(z) o

= Since of FT of a real function is generally
complex, we use magnitude and phase
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Lower frequencies = narrower power spectrum

A . . .
Higher frequencies = wider power spectrum




Properties
* Symmetry: for real-valued functions
G(w) =G (—w)
* Linearity
c- g(z) oo c- G(w)
91(z) + g2(z) °* G1(w) + G2(w)

= Similarity

g(sz) o 13- G (%)

= Shift Property

g(z—d) o e . G(w)
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Important Properties:
* FT and Convolution

= Convolving two signals is equivalent to multiplying their
Fourier spectra

9(z) * h(zx) °=* G(w) - H(w)

= Multiplying two signals is equivalent to convolving their
Fourier spectra

9(z) - h(x) o* G(w) * H(w)

= FT of a Gaussian is a Gaussian

Discrete Fourier Transform

= [f we discretize f{x) using uniformly spaced samples £(0),
f(1),....f(N-1), we can obtain FT of the sampled function

= — 1N
mjm] - [Juisiy
=0

= I [ |
— I
nisl - [ mi=iy Forier —
=1 Signal _— Spectrum
= Important Property:
Periodicity F(m)=F(m+N) J&xmv'v J Copyand
Shatt
Seml  Tnsiorm /.I\ Bt
+—>
One period
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Image from Computer Graphics: Principles and Practice

by Foley, van Dam, Feiner, and Hughes

Impulse function

d(z) =0 for A0 and / d(z)dx =1
1
d(sz) = B O(z) fors#0
s
N i~ _ Jg(zo) for z==x
g(z) = g(2) - o(z—20) = {0 otherwise
g(z) 5(z—3) 9(x)
f : f
3 x [ -
F|ﬁ4]+*”)->1 T
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T=1

N Comb function: IH| = lII 1)

WL,

— =T =1

4 Fourier transform: IH(iw)

4 Fourier transform: 31II( 2
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“— aliasing

g(z) - M(Z) o G(w) * 71 (L w)

Sampling and Aliasing

= Differences between continuous and discrete images

= Images are sampled version of a continuous brightness
function. successful sampling

unsuccessful sampling
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successful sampling

Sampling and Aliasing

= Sampling involves loss of
information

= Aliasing: high spatial
frequency components appear
as low spatial frequency
components in the sampled
signal

Input frequency: |7000 Hz  Piot | [V Inputsignal | Grid [V Samplepoints [V

Java applet from: http://www.dsptutor.freeuk.com/aliasing/AD102.htm]

Aliasing y
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» Nyquist theorem: The
sampling frequency
must be at least twice
the highest frequency
present for a signal to
be reconstructed from
a sampled version.

(Nyquist frequency)

™
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Temporal Aliasing

SPLSVRYUVISY;

The wheel appears to be moving backwards at about V4
angular frequency
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Sampling, aliasing, and DFT

= DFT consists of a sum of copies of the FT of the original signal shifted
by the sampling frequency:
= If shifted copies do not intersect: reconstruction is possible.

= If shifted copies do intersect: incorrect reconstruction, high frequencies
are lost (Aliasing)

Fourier

Transform Magnitude
'/m{ _— /{\ Spr 1 - n anstorm r::)\ itude
Sample Copy and Sample oy o
e Shift

Sampled
Magnitude Sampled er
Signal h sform
: Specrum ] S aiom Sem
maliphegion Pkt
plicatic multiplication
. . with bos filter with bos filter
nverse ly erse sotn
A e e Inverse

Reconstructed Fourier
\un al Transform
-—

Magnitude
Spectrum

Magnitude
Spectrum

ccu
eco
Signal Transform
} -~

2-dimension

e o -l ™

In two dimension

TR Ty ¥

._|-|-l-| - ...I-h ] -II [ ] I IH-h u -II

» These terms are sinusoids on the x,y plane whose
orientation and frequency are defined by u,v

N
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DFT in 2D

* For a 2D periodic function of size MxN, DFT is
defined as:

M—1N—1
1
G(m,n) = ﬁ z Z g(u,v) -
MV =0 v=0
M—-1N-1

1 o (mu | nwv
= — g(u,v) - e 2GR
Ay 2 2

u=0 v=0

i9mu i9nu
671277 ML ei2T Ty

» [nverse transform

M-1N-1
1

g(u,v) = —— G(m,n) - 2™ . 27N
o= SN G

m=0 n=0
M—-1N-1
1

= —— G(m,n) - 2R+ Y
vVMN Z Z

m=0 n=0

6i27r(%+%) — ei(wmu—f-wnv)
B [2 (mu+nv)}+' , [2 (mu+nv)}
= COS ™ M N 1-81n ™ M N
Cin (u,v) Sy (u,)
M.N mu nv
C,n (u,v) = cos [27r <ﬁ + Wﬂ = cos(wmu + wy)
MN ) mu  nv -
Snn (u,v) = sin [27 (ﬁ + Nﬂ = sin (wmu + wpv)
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n—2

I i

o =2 (2

Vim,ny = ArcTan(%%, &) = ArcTan(mN, nM )

(m,n) = +f- (M cosp, N sin )
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Visualizing 2D-DFT

= The FT tries to represent all images as a summation of
cosine-like images

<4— Images of pure cosines

* Center of the image:the origin of the frequency
coordinate system

* y-axis: (left to right) the horizontal component of
frequency

* v-axis: (bottom-top) the vertical component of
frequency

* Center dot (0,0) frequency : image average

<4 T

« high frequencies in the vertical direction will cause bright dots
away from the center in the vertical direction.

* high frequencies in the horizontal direction will cause bright dots
away from the center in the horizontal direction.

= Since images are real numbers (not complex) FT
image is symmetric around the origin.

=M
I
=

FT is shift invariant

FT: symmetry
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* In general, rotation of the image results in
equivalent rotation of its FT

\Q
%x

Why it is not the case ?
+ Edge effect !

» FT always treats an image as if it were part of a periodically replicated array of
identical images extending horizontally and vertically to infinity

* Solution: “windowing” the image

Edge effect

21



(a) square window

(b) cosine” window

(c) Bartlett window

(d) Hanning window

(e) Parzen window

* notice a bright band going to high
frequencies perpendicular to the
strong edges in the image

* Anytime an image has a strong-
contrast, sharp edge the gray
values must change very rapidly.
It takes lots of high frequency
power to follow such an edge so
there is usually such a line in its
magnitude spectrum.

22



Scaling

Periodic image patterns

23



Rotation

Oriented, elongated structures
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Natural Images

« notice a bright band going to high
frequencies perpendicular to the
strong edges in the image

* Anytime an image has a strong-
contrast, sharp edge the gray
values must change very rapidly.
It takes lots of high frequency
power to follow such an edge so
there is usually such a line in its
magnitude spectrum.

25



Print patterns

Linear Filters in Frequency space

Image space: g(u,v) * h(u,v) = ¢'(u,v)
l ! 7
DFT DFT DFT!
! ! 7

Frequency space: G(m,n) - H(m,n) — G'(m,n)

26



Inverse Filters - De-convolution

= How can we remove the effect of a filter ?

Iblur = Yorig * Pblur

Gplur = Gorig - Hypur

Inverse Filters - De-convolution

= How can we remove the effect of a filter ?

Iblur = Yorig * Pblur

Gplur = Gorig - Hypur

G X (m ’]"L) — Gblur(m7 n)
one ’ Hblur (ma n)

27



= What happens if we swap the magnitude spectra ?
= Phase spectrum holds the spatial information (where things are),
= Phase spectrum is more important for perception than magnitude spectrum.

The Discrete Cosine Transform (DCT)

* FT and DFT are designed for processing complex-
valued signal and always produce a complex-
valued spectrum.

* For a real-valued signal, the Fourier spectrum is
symmetric

» Discrete Cosine Transform (DCT): similar to DFT
but does not work with complex signals.

* DCT uses cosine functions only, with various
wave numbers as the basis functions and operates
on real-valued signals

28



One dimensional DCT

M—1

= DCT: G’(m) =4/ % Z g(U) + Cm COS <W771(§X;r1)>
u=0
\/LE form =0
Cm = :
= Inverse DCT 1 otherwise
M-1
i m(2u+1
o) =/ 2 Glm) - cos (w1550
m=0

DCT functions has half the period and shifted by 0.5

DFT: C3 (u) = cos(2r2),

m M
. Moy o (—mQ2utl)\ m(u+0.5)
DCT: D, (u) = cos(n ™57 = cos(2r ™5 7)

* DC component: the coefficient of the D,
= AC components: the rest of the coefficients

Ch(w) = cos (") S5, () = sin (2" u)
[m=0]

Ci(u) Si(u) Dij(u) |m=0 Di(u) |m=4
r | i} ,
\ M
u

Di(u) [m=5
‘ k\
,

Ci(u) S3(u) Di(u) [m=2 Di(u) [m=6
! !

DAL A
: ‘\U/ -\

Ci(u)

DET: CM (u)

m

cos (271'%),

DCT: Dﬁf(u) M) _ Cos(27rm(“+0'5))

005(7‘— oM M
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G(m) = ‘/ Z g(u) - ¢, cos <7T '”(il\'[“))

Implementing DCT

M—1

u=0

m=0
double[] DCT (doublell g) { // forward DCT of signal g(u) 17 double[] iDCT (double[] G) { /
int M = g.length; 18 int M = G.length;
double s = Math.sqrt(2.0 / M); //common scale factor 19 double s = Math.sqrt(2.0 / M);
double[] G = new double[M]; 20 double[] g = new double[M];
for (int m = 0; m < M; m++) { 21 for (int u = 0; u < M; u++) {
double cm = 1.0; 22 double sum = 0;
if (m == 0) cm = 1.0 / Math.sqrt(2); 23 for (int m = 0; m < M; m++) {
double sum = 0; 24 double cm = 1.0;
for (int u = 0; u < M; ut+) { 25 if (m == 0) cm = 1.0 / Math.sqrt(2);
double Phi = (Math.PI * m % (2 * u + 1)) / (2.0 * M); 26 double Phi = (Math.PI * (2 * u + 1) * m) / (2.0 * M);
sum += glul * cm * Math.cos(Phi); 27 double cosPhi = Math.cos(Phi);
28 sum += cm * G[m] * cosPhi;
G[m] = s * sum; 29 }
} 30 glul = s * sum;
return G; 31
32 return g;
33

M—1

)=\ X ctm

- Cyp COS (7r

m(2u+1)

2M

inverse DCT of spectrum G(m)

ommon scale factor

2D DCT

G(m,n) =

2(:,”(:”

M—-1N—-1

u=0 v=0
M—-1N-1

> > 9(uww)-Dyl(u)- Dy (v)

Y MN u=0 v=0

g(u,v) = \/f

VMN

M—-1N-1

Z Z G(m,n)-cp (Ob( (Z;'T,l)m)f” cos(
m=0 n=0

M—1N-—

Z Z G(m,n) C,,,D,\”[( )~C”Df;](l?)

m=0 n=0

0<u<M,0<v<N

w(2v+1)n
2N

o TRu+1)m o m(2u+1)n
\/ﬁ > > guv)-en COS(T) ‘C"COS(T

)

)
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* DC component: the coefficient of the D,
* AC components: the rest of the coefficients
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An 8 x 8 block from the Y image of ‘Lena’

200 202 189 188 189 175 175 175
200 203 198 188 189 182 178 175
203 200 200 195 200 187 185 175
200 200 200 200 197 187 187 187
200 205 200 200 195 188 187 175
200 200 200 200 200 190 187 175
205 200 199 200 191 187 187 175
210 200 200 200 188 185 187 186

£(i,9)

51665-12 4 1 2-8 5
-16 3 2 0 0-11-2 3
-12 6 11-1 3 0 1-2
-8 3 4 2-2 -3-5-2
0-2 754 0-1-4
0-3 -1 04 1-10
3-2 333 -1-13
-2 56 -2 4-2 2-30
F(u,v)

§E /
L

Another 8 x 8

70 70100 70
85100 96 79
100 85116 79
136 69 87 200

block from the Y image of ‘Lena’

87 87 150 187
87 154 87 113
70 87 86196
79 71117 96

161 70 87200103 71 96113
161 123 147 133113113 85161
146 147 175100 103 103 163 187
156 146 189 70113 161 163 197

£(i,9)

-80
-135

-1
5
6

-5

-20 37-28
-23 33-30 17

-40 89-73 44
-59-26 6 14

-9-22 8 32
-20 28-46 3

F(u,v)

32 53 -3
-3-13-28
47-76 66 -3-108-78 33 59
-2 10-18 0 33 11-21 1

65-36 -1
24-30 24

12-35 33 17

-5 -4 20
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Separability

= 2D DCT can be implemented as two 1D DCTs

one-dimensional DCT([g(-, v)]

£2% f"&’-}ﬁ
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