CS443: Digital Imaging and Multimedia

Filters

Spring 2008
Ahmed Elgammal
Dept. of Computer Science
Rutgers University

Outlines

= What are Filters

= Linear Filters

= Convolution operation

= Properties of Linear Filters

= Application of filters

= Nonlinear Filter

= Normalized Correlation and finding patterns in images
= Sources:

= Burger and Burge “Digital Image Processing” Chapter 6
= Forsyth and Ponce “Computer Vision a Modern approach”

What is a Filter

= Point operations are limited (why)

» They cannot accomplish tasks like sharpening or
smoothing

Smoothing an image by averaging

= Replace each pixel by the average of its neighboring pixels
= Assume a 3x3 neighborhood:

Pot+p1L+Pp2+pP3+pPa+ps+ps+pr+ps

Flu,v) «

Buo Flu,v)

™ -
I-iu,g, I;(u,‘ll)
Pot+p1+pP2t+ps+ps+ps+ps+pPrt+ps

I(u,v) « 9

Ilu,v) L [H{u—1,v—1) +I{u,v—1) +I{u+l,v—1) +
{u—1,v) +I{u,v) +I{utlv) +
Hu—1,v+1) +I{u,v+1) + I{u+1,v+1)]

1 1

Flu,v) « %z Z Hu+i,v+3)

F=—1 i=—1

R Pl

= In general a filter applies a function over the values of a small
neighborhood of pixels to compute the result

= The size of the filter = the size of the neighborhood: 3x3, 5x5, 7x7, ...,
21x21,..

= The shape of the filter region is not necessarily square, can be a
rectangle, a circle...

= Filters can be linear of nonlinear

Linear Filters: convolution

F{uv)— 3 I(u+iv+3)- H(i,j)
(i.5)ERm
i=1 §=1

Plup)e— Y Y Ifw+iv+35)-H(,5)

i=—1 j=—1

Averaging filter

Po+p1+p2+p3s+ps+pPs+ps+Pr+ps
9

I'(u,v) «

Plu,v) « % [I{u—1,v—1) +I(u,v—1) +I{u+l,o—1) +
Iu—1,v) + I{u,v} +Iu+lv) +
Hu—-1,v+1) + I{u,v+1) + I{ut+l,v+1})]

b v th 11
- 1 1 1

H(i,3) = [1/9 Yo o
Flyw)e= Y Y Iu+iv+d)- H{,)

Yo Yo Yo

D] =

Computing the filter operation

= The filter matrix H moves over the original image | to compute the
convolution operation

We need an intermediate image storage!

We need 4 for loops!

In general a scale is needed to obtain a normalized filter.

Integer coefficient is preferred to avoid floating point operations

Another smoothing filter

19

0.075 0.125 0.075

public void run(ImageProcessor orig) {

e] H(,j)= [0125 02 0125
3 x 3 filter matriz 0.075 0.125 0.075

double[][] filter = {
{0.075, 0.125, 0.075},
{0.125, 0.200, 0.125},
{0.075, 0.125, 0.075}
Y;
ImageProcessor copy = orig.duplicate();

for (int v = 1; v <= h-2; w++) {
for (int u = 1; u <= w-2; u++) {
compute filter result for position (u,v)
double sum = 0;
for (int j = -1; j <= 1; j++) {
for (int i = -1; i <= 1; i++) {
int p = copy.getPixel(u+i, v+j);
get the corresponding filter coefficient:
double ¢ = filter[j+1][i+1];
sum = sum + ¢ * p;
}
Iy
int q = (int) Math.round(sum);
orig.putPixel{u, v, g);

Integer coefficient

0.075 0.125 0.075 . 3 5
H(i,j)=| 0.125 0.200 0.125 | = 10 5 8
0.075 0.125 0.075 3 5
= Ex: linear filter in Adobe photoshop
j=2 i=2
I'(u,v) — Offset + Z Z Hu+i,v+3)- H(i, 7}
=—2 i=-—2

Custom

scale: IS Offset: [0

= For afilter of size (2K+1) x (2L+1), if the image size is
MxN, the filter is computed over the range:

K< <(M-K-1) and L<v <(N-L-1)

_HE”'.__K /-mm
["

____IJ I -

" .
;__..-”P_HI T
H N
&

I
A

Types of Linear Filters

Smoothing by Averaging vs. Gaussian

Flat kernel: all weights equal 1/N

Smoothing with a Gaussian

= Smoothing with an

average actually doesn’t

compare at all well with a

defocussed lens

= Most obvious difference is

that a single point of light
viewed in a defocussed lens
looks like a fuzzy blob; but
the averaging process
would give a little square.

= A Gaussian gives a good
model of a fuzzy blob

An Isotropic Gaussian

= The picture shows a
smoothing kernel
proportional to

(which is a reasonable model
of a circularly symmetric
fuzzy blob)

Smoothing with a Gaussian

10

Gaussian smoothing

= Advantages of Gaussian filtering
= rotationally symmetric (for large filters)

= filter weights decrease monotonically from central
peak, giving most weight to central pixels

= Simple and intuitive relationship between size of ¢ and
the smoothing.

= The Gaussian is separable:

Advantage of seperability

= First convolve the image with a one dimensional
horizontal filter

= Then convolve the result of the first convolution
with a one dimensional vertical filter

= For a kxk Gaussian filter, 2D convolution requires
k2 operations per pixel

= But using the separable filters, we reduce this to
2k operations per pixel.

11

Separability

11

[1]7 []

18

18

65

=2+6+3=11
=6+20+10=36
=4+8+6=18

65

Advantages of Gaussians

= Convolution of a Gaussian with itself is another

Gaussian

= 50 we can first smooth an image with a small Gaussian

= then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to smoother
the original image with a larger Gaussian.

= |f we smooth an image with a Gaussian having sd o
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation

(25)12

12

Mathematical Properties of Linear
Convolution

= For any 2D discrete signal, convolution is defined

as.
Pluv)y= Y Y Hu—i,v—j)- H(,35)

f=—0C j=—0C

I'=IxH

I{u,v} I(n,v)

" * | ~ -

Properties

= Commutativity
I«H=H=xI

= Linearity

(s-I)*H = Ix(s-H) = s-(IxH)

(I]_-l-Iz)*H = (Il *H)-l-(Iz*H)

(notice) (p+Ij«H # b+ (I+H)
= Associativity

Ax(BxC)=(A*B)xC

13

Properties
= Separability
H = Hl*Hz*.-.*Hn

T+ H=IT«{H\xHy%...xH,)
=(...((I*xH) s Ha)*...x Hy,)

Nonlinear Filters

= Linear filters have a disadvantage when used for
smoothing or removing noise: all image structures
are blurred, the quality of the image is reduced.
= Examples of nonlinear filters:
= Minimum and Maximum filters
{u,v) — min{I{u+i,v+75)| (i, 5) € R}
I'(u,v) — max {I(u+i,v+j)| (i.7) € R}

—

14

Median Filter

= Much better in removing noise and keeping the structures

I'(u,v) < median {I(u+i,v+7) | (,7) € R}

3 10 1 pe
3|712] 7 | 0
100 f—— 2] 11
91518 | 1] |12 P
0 Sort 3 PR =
I(u,v) 0] [5|puyy medion
B 7
5] 8]
18 19 |pan

Weighted median filter

Slolo]o of=[~[a][w[w]r|r-[e] o~
[

=
=]
w2

oeeS—[=[s]s]o[o]o][E[E]E]

5

) 7

S|l T =]
O I G [
= =

15

16

Linear Filters: convolution

F{uv)— 3 I(u+iv+3)- H(i,j)
(i.7)ERm
i=1 j=1

P{u,v) — Z Z Ifu +i,v+34) - H(i, 5)

i=—1 j=—1

Convolution as a Dot Product

= Applying a filter at some point can be seen as
taking a dot-product between the image and some
vector

= Convoluting an image with a filter is equivalent to
taking the dot product of the filter with each image
window.

weights .

MOPUIM

—

weights

/eff;inal image Filtered image

17

= Largest value when the vector representing the image is

parallel to the vector representing the filter

= Filter responds most strongly at image windows that looks
like the filter.

= Filter responds stronger to brighter regions! (drawback)
Insight:

= filters look like the effects they are intended to find

= filters find effects they look like

Ex: Derivative of Gaussian used in edge detection looks
like edges

T

MOPUIA

Normalized Correlation

= Convolution with a filter can be used to find templates in
the image.

= Normalized correlation output is filter output, divided by
root sum of squares of values over which filter lies

= Consider template (filter) M and image window N:
2> MG,)N, j)
C i=1 j=1

(33 MG 2SS NG T

i=1 j=1 i=1 j=1

| — _
/ 0 \
/ | ——— Filtered image
Templdt == N
"4*_—~Original image (Normalized

Correlation
Result)

Normalized Correlation
> MG.NG.J)
C i=1 j=1

IS MG)TS S NG Y

i=1 j=1 i=1 j=1

= This correlation measure takes on values in the range [0,1]
= jtis1ifand only if N = cM for some constant ¢

= s0 N can be uniformly brighter or darker than the template,
M, and the correlation will still be high.

= The first term in the denominator, ¥XM?2 depends only on
the template, and can be ignored

» The second term in the denominator, XN? can be
eliminated if we first normalize the grey levels of N so that
their total value is the same as that of M - just scale each
pixel in N by £X M/ ZX N

Positive responses

Zero mean image, -1:1 scale

Zero mean image, -max:max scale

19

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

