
1

CS443: Digital Imaging and Multimedia
Edges and Contours

Spring 2008
Ahmed Elgammal

Dept. of Computer Science
Rutgers University

Outlines

What makes an edge?
Gradient-based edge detection
Edge Operators
From Edges to Contours
Edge Sharpening

Sources:
Burger and Burge “Digital Image Processing” Chapter 7
Forsyth and Ponce “Computer Vision a Modern approach”

2

What are edges

What is an edge? A sharp change in brightness
What generates an edge (Where edges occur) ?

Boundaries between objects
Reflectance changes (within object)
Change in surface orientation (within object)
Illumination changes: e.g., cast shadow boundary
(within object)

Edge: A sharp change in brightness
But which changes we would like to mark as an edge?
Meaningful changes. Hard to defined.
How to tell a semantically meaningful edge from a
nuisance edge ?
Both low level and high level information

3

Edges in Biological Vision

We have seen evidence before of edge/bar
detectors at different stages of our visual system.

4

5

Edge Detection

An image processing task that aims to find edges and
contours in images

Characteristic of an edge

Edge: A sharp change in brightness
Ideal edge is a step function in certain direction.

x

I(x)

I’(x)

6

1-D edges
Realistically, edges is a smooth (blurred) step function
Edges can be characterized by high value first derivative

More realistically, image edges are blurred and the
regions that meet at those edges have noise or
variations in intensity.

blur - high first derivatives near edges
noise - high first derivatives within regions that meet at
edges

x

I(x)

x

I’(x)

7

Characteristics of an edge
Ideal edge is a step function in certain direction.
The first derivative of I(x) has a peak at the edge
The second derivative of I(x) has a zero crossing at the
edge

x

I(x)

I’(x)

I(x)

I’(x)

I’’(x)

How can we compute the derivative of a discrete function?

8

Function Gradient

Let f(x,y) be a 2D function. It has derivatives in all directions
The gradient is a vector whose direction is in the direction of the
maximum rate of change of f and whose magnitude is the maximum rate
of change of f (direction of maximum first derivative)

If f is continuous and differentiable, then its gradient can be determined from
the directional derivatives in any two orthogonal directions - standard to use x
and y

magnitude =

direction =

2/122])()[(
y
f

x
f

∂
∂

+
∂
∂

)(tan 1

x
f

y
f

∂
∂

∂
∂

−

T

y
f

x
ff ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=∇ ,

Image Gradient
Image is a 2D discrete function
Image derivatives in the horizontal and vertical directions

Image gradient and any given location (u,v)

Gradient Magnitude

Gradient direction

9

Derivative Filters
Recall: How can we compute the derivative of a discrete function

This is called finite differences
Can we make a linear filter that computes this derivative?

Derivative Filters

10

Partial Image derivatives

With a digital image, the partial derivatives
are replaced by finite differences:

Δxf = f(x,y) - f(x-1, y)
Δyf = f(x,y) - f(x, y-1)

Alternatives are:
Δ2xf = f(x+1,y) - f(x-1,y)
Δ2yf = f(x,y+1) - f(x,y-1)

Robert’s gradient
Δ+f = f(x+1,y+1) - f(x,y)
Δ-f = f(x,y+1) - f(x+1, y)

0 1
-1 0

1 0
0 -1

-1 1 1
-1

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1

-1 0 1
1
0

-1
-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Prewitt

Sobel

11

Finite differences and noise
Finite difference filters respond strongly to noise

obvious reason: image noise results in pixels that look very
different from their neighbors

What is to be done?
intuitively, most pixels in images look quite a lot like their
neighbors
this is true even at an edge; along the edge they’re similar, across
the edge they’re not
suggests that smoothing the image should help, by forcing pixels
different to their neighbors (=noise pixels?) to look more like
neighbors

Edge Operators

Prewitt and Sobel Operators
Prewitt Operator:

Sobel Operator

12

Gaussian Derivative Filters

So smoothing should help before taking the derivatives.
Recall: smoothing and differentiation are linear filters
Recall also: linear filter are associative

Smoothing then differentiation ≡ convolution with the
derivative of the smoothing kernel.
If Gaussian is used for smoothing: We need to convolve
the image with derivative of the Gaussian

I
x
gIgKIgK xx ∗

∂
∂

=∗=∗ ∂∂∂∂)*()*(

Ix
G ∗∂

∂ σ Iy
G ∗∂

∂ σ

Noise σ=3% Noise σ=9%

x- derivative - No smoothing

Convolution with x-derivative of a Gaussian (σ=1 pixel)

13

The scale (σ) of the Gaussian has significant effects on the
results - tradeoff…

1 pixel 3 pixels 7 pixels

Other operators

Many other edge operators with different
properties
Roberts operator

14

Gradient-based edge detection:
Compute image derivatives (with smoothing) by
convolution

Compute edge strength - gradient magnitude

Compute edge orientation - gradient direction

What’s after computing the gradient magnitude and orientation?
now mark points where gradient magnitude is particularly large wrt
neighbors

Problem: The gradient magnitude is large along thick trail; how do we
identify the significant points?

σ=1 σ=2

15

• We wish to mark points along the curve where the
magnitude is biggest.

• We can do this by looking for a maximum along a slice
normal to the curve (non-maximum suppression).

• These points should form a curve.
• There are then two algorithmic issues: at which point is the

maximum, and where is the next one?

I’(x)

I(x)

Non-maxima suppression

Non-maxima suppression - Retain a point as an edge point
if:

its gradient magnitude is higher than a threshold
its gradient magnitude is a local maxima in the gradient direction

simple thresholding will
compute thick edges

16

Non-maximum
suppression

At q, we have a maximum if
the value is larger than
those at both p and at r.
Interpolate to get these
values.

Predicting
the next
edge point

Assume the marked point
is an edge point. Then
we construct the tangent
to the edge curve (which
is normal to the gradient
at that point) and use this
to predict the next points
(here either r or s).

17

Problem of scale and threshold
Usually, any single choice of scale σ does not
produce a good edge map

a large σ will produce edges form only the largest
objects, and they will not accurately delineate the object
because the smoothing reduces shape detail
a small σ will produce many edges and very jagged
boundaries of many objects.

Threshold:
Low threshold : low contrast edges. a variety of new edge
points of dubious significance are introduced.
High threshold: loose low contrast edges ⇒ broken
edges.

18

fine scale
high
threshold

coarse
scale,
high
threshold

19

coarse
scale
low
threshold

Hysteresis
Which Scale:

Fine scale: fine details.
Coarser scale: fine details disappear.

Solution: Scale-space approaches
detect edges at a range of scales [σ1, σ2]
combine the resulting edge maps

trace edges detected using large σ down through scale space to obtain
more accurate spatial localization.

What Threshold:
Low threshold : low contrast edges. a variety of new edge points of
dubious significance are introduced.
High threshold: loose low contrast edges ⇒ broken edges.

Solution: use two thresholds
Larger threshold: more certain edge, use to start an edge chain
Smaller threshold: use to follow the edge chain

20

Canny Edge detector

A popular example of a method that operates at
different scales and combine the results

Minimize the number of false edge points
Achieve good localization of edges
Deliver only a single mark on each edge
Used hystersis to follow edges
Typically a single scale implementation is used
Available code in ImageJ, matlab and most image
processing utilities.

21

Detecting edges based on second derivatives

Recall: an edge corresponds to a zero crossing at
the second derivative
Laplacian:

2

2

2

2
2),(

y
f

x
fyxf

∂
∂

+
∂
∂

=∇

22

Laplace Operator

Laplacian:
Its digital approximation is:

∇2f(x,y) = [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] +
[f(x,y+1)-f(x,y)] - [f(x,y) - f(x,y-1)]

= [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4 f(x,y)

2

2

2

2
2),(

y
f

x
fyxf

∂
∂

+
∂
∂

=∇

0 1 0
1 -4 1
0 1 0

1 1 1
1 -8 1
1 1 1

Laplace Operator

23

Laplacian of Gaussian

Laplacian is a linear filter
Bad idea to apply a Laplacian without smoothing
If we smooth by a Gaussian before applying a
Laplacian:

IGIGKIGK ∗∇=∗∗=∗∗
∇∇

)()()(2
22 σσσ

Laplacian of Gaussian (LoG)
“Mexican Hat”

0 0 -1 0 0
0 -1 -2 -1 0

-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

Laplacian of Gaussian

Can be approximated as difference of two
Gaussians
This is called Difference of Gaussians filter DoG

0 0 -1 0 0
0 -1 -2 -1 0

-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

2
2

2

2
1

2

2
2

2
1

2)(σσ
xx

ececxg
−−

−≈∇ 21 σσ <

24

Algorithm (Marr and Hildreth 1980):
Convolve the image with a LoG
Mark the point with zero crossings:

these are pixels whose LoG is positive and which have neighbor’s
whose LoG is negative or zero

Check these points to ensure the gradient magnitude is
large (to avoid low contrast edges) ⇒ Threshold

Note : Two parameters: Gaussian scale, contrast threshold

Laplacian of Gaussian

5x5 Mexican Hat - Laplacian of
Gaussian

Zero crossings

25

Laplacian of Gaussian

13 x 13 Mexican hat zero crossings

26

Things to notice:
As the scale increases, details are suppressed
As the threshold increases, small regions of edge
drop out
No scale or threshold gives the outline of the head
Edges are mainly the stripes
Narrow stripes are not detected as the scale
increases.

sigma=2 sigma=4

t=2

t=4

LoG zero crossings

27

Problems with the Laplacian approach
Poor behavior at corners
Computationally: we need to computer both the
LoG and the gradient.

We have unfortunate behavior at corners:
• Zero crossing bulges out at corners
• More than two edges meet: strange behaviors

28

Image Sharpening

Making images look sharper is common to make
up for bluring happened after scanning or scaling
Amplify high frequency components. What that
means?
High frequencies happen at edges.
We need to sharpen the edges.

Edge Sharpening

29

Unsharp Masking (USM)

Unsharp masking is a technique for edge sharpening!
Sharpening an image is achieved by combining the image
with a smoothed version of it.
Subtract a smooth version (Gaussian smoothing) from the
image itself to obtain an enhanced edge mask:

Add the mask to the image with a weight.

Together:

30

