Digital Imaging and Multimedia

Filters

Ahmed Elgammal
Dept. of Computer Science
Rutgers University

Outlines

- What are Filters
- Linear Filters
- Convolution operation
- Properties of Linear Filters
- Application of filters
- Nonlinear Filter
- Normalized Correlation and finding patterns in images
- Sources:
 - Burger and Burge "Digital Image Processing" Chapter 6
 - Forsyth and Ponce "Computer Vision a Modern approach"

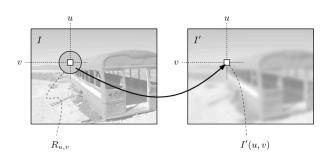
What is a Filter

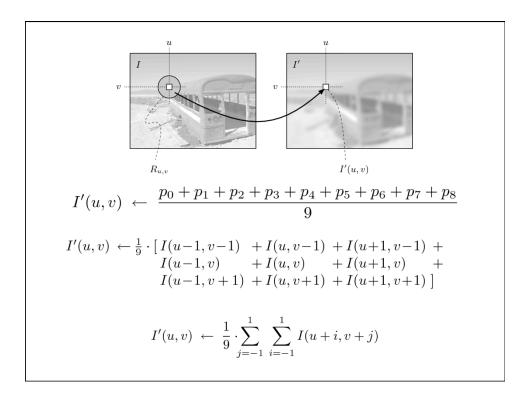
- Point operations are limited (why)
- They cannot accomplish tasks like sharpening or smoothing

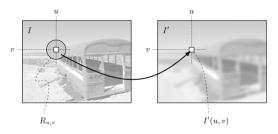
Smoothing an image by averaging

- Replace each pixel by the average of its neighboring pixels
- Assume a 3x3 neighborhood:

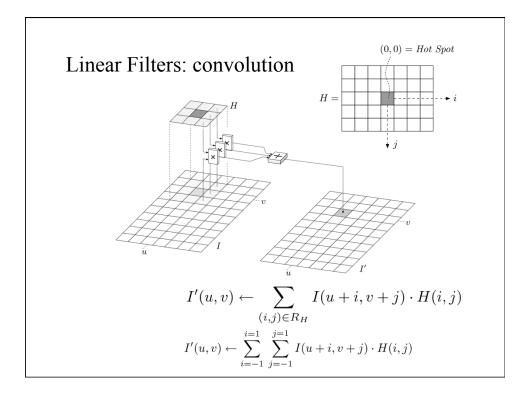
$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$







- In general a filter applies a function over the values of a small neighborhood of pixels to compute the result
- The size of the filter = the size of the neighborhood: 3x3, 5x5, 7x7, ..., 21x21,...
- The shape of the filter region is not necessarily square, can be a rectangle, a circle...
- Filters can be linear of nonlinear



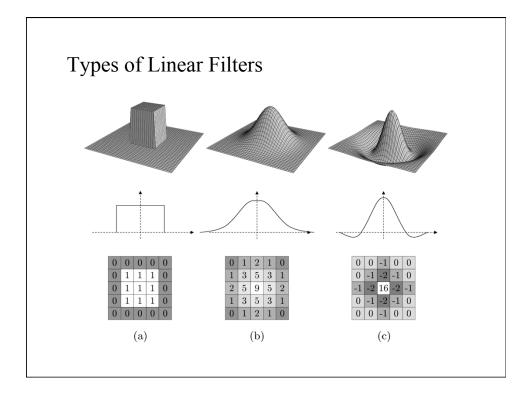
Averaging filter

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

$$\begin{array}{c} I'(u,v) \, \leftarrow \frac{1}{9} \cdot \big[\, I(u-1,v-1) \, \, + I(u,v-1) \, + I(u+1,v-1) \, + \\ I(u-1,v) \, \, + I(u,v) \, \, + I(u+1,v) \, \, + \\ I(u-1,v+1) \, + I(u,v+1) \, + I(u+1,v+1) \, \big] \end{array}$$

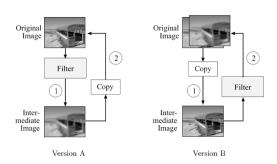
$$H(i,j) = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{i=1} \sum_{j=-1}^{j=1} I(u+i,v+j) \cdot H(i,j)$$



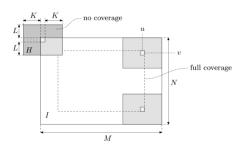
Computing the filter operation

- The filter matrix H moves over the original image I to compute the convolution operation
- We need an intermediate image storage!
- We need 4 for loops!
- In general a scale is needed to obtain a normalized filter.
- Integer coefficient is preferred to avoid floating point operations



• For a filter of size (2K+1) x (2L+1), if the image size is MxN, the filter is computed over the range:

$$K \le u' \le (M-K-1)$$
 and $L \le v' \le (N-L-1)$



Another smoothing filter

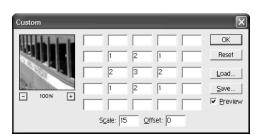
```
\begin{bmatrix} 0.075 & 0.125 & 0.075 \end{bmatrix}
             0.125
                                                                                                                                                                                            0.125
                                                                                                                                             0.075 \quad 0.125 \quad 0.075
                           {0.075, 0.125, 0.075},
{0.125, 0.200, 0.125},
{0.075, 0.125, 0.075}
                    ImageProcessor copy = orig.duplicate();
11
                    for (int v = 1; v <= h-2; v++) {
                          r (int v = 1; v <= h-2; v++) {
  for (int u = 1; u <= w-2; u++) {
    // compute filter result for position (u, v)
    double sum = 0;
    for (int j = -1; j <= 1; j++) {
        for (int i = -1; i <= 1; i++) {
            int p = copy.getPixel(u+i, v+j);
            // get the corresponding filter coefficient:
            double c = filter[j+1][i+1];
            sum = sum + c * p;
    }
}</pre>
14
17
18
20
                                                 sum = sum + c * p;
21
23
                                  int q = (int) Math.round(sum);
                                  orig.putPixel(u, v, q);
26
27
```

Integer coefficient

$$H(i,j) = \begin{bmatrix} 0.075 & 0.125 & 0.075 \\ 0.125 & \underline{0.200} & 0.125 \\ 0.075 & 0.125 & 0.075 \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 3 & 5 & 3 \\ 5 & \underline{8} & 5 \\ 3 & 5 & 3 \end{bmatrix}$$

• Ex: linear filter in Adobe photoshop

$$I'(u,v) \leftarrow \mathsf{Offset} \, + \, \frac{1}{\mathsf{Scale}} \sum_{j=-2}^{j=2} \, \sum_{i=-2}^{i=2} I(u+i,v+j) \cdot H(i,j)$$

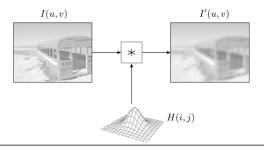


Mathematical Properties of Linear Convolution

For any 2D discrete signal, convolution is defined as:

$$I'(u,v) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(u-i,v-j) \cdot H(i,j)$$

$$I' = I * H$$



Properties

Commutativity

$$I * H = H * I$$

Linearity

$$(s\cdot I)*H = I*(s\cdot H) = s\cdot (I*H)$$

$$(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$$

(notice)
$$(b+I)*H \neq b+(I*H)$$

Associativity

$$A*(B*C) = (A*B)*C$$

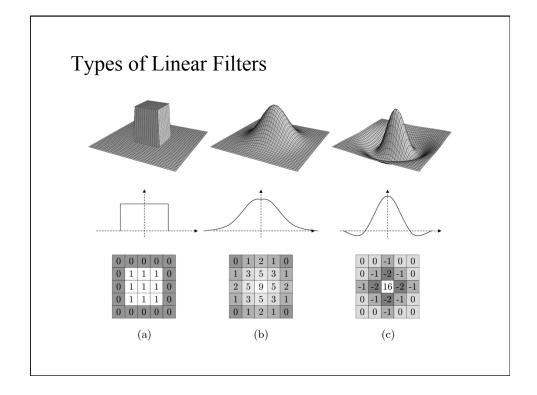
Properties

Separability

$$H = H_1 * H_2 * \dots * H_n$$

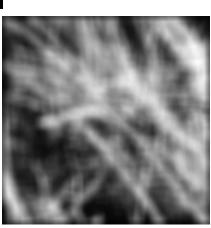
$$I * H = I * (H_1 * H_2 * \dots * H_n)$$

$$= (\dots ((I * H_1) * H_2) * \dots * H_n)$$



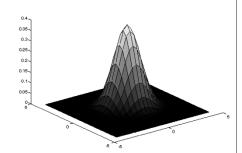
Smoothing by Averaging vs. Gaussian

Flat kernel: all weights equal 1/N



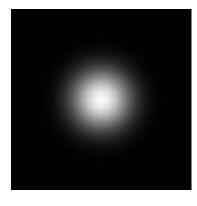
Smoothing with a Gaussian

- Smoothing with an average actually doesn't compare at all well with a defocussed lens
 - Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.



 A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian

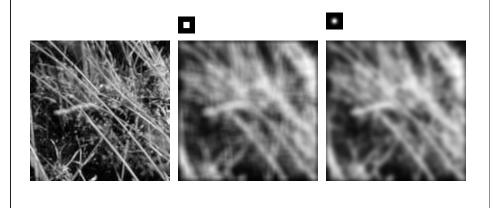


 The picture shows a smoothing kernel proportional to

$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian



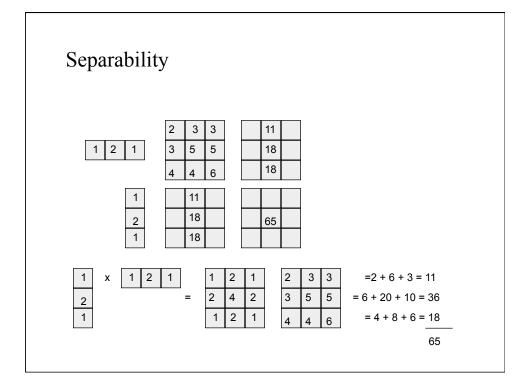
Gaussian smoothing

- Advantages of Gaussian filtering
 - rotationally symmetric (for large filters)
 - filter weights decrease monotonically from central peak, giving most weight to central pixels
 - Simple and intuitive relationship between size of σ and the smoothing.
 - The Gaussian is separable...

4 5

Advantage of seperability

- First convolve the image with a one dimensional horizontal filter
- Then convolve the result of the first convolution with a one dimensional vertical filter
- For a *k*x*k* Gaussian filter, 2D convolution requires *k*² operations per pixel
- But using the separable filters, we reduce this to 2k operations per pixel.



Advantages of Gaussians

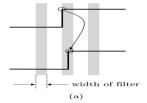
- Convolution of a Gaussian with itself is another Gaussian
 - so we can first smooth an image with a small Gaussian
 - then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoother the original image with a larger Gaussian.
 - If we smooth an image with a Gaussian having sd σ twice, then we get the same result as smoothing the image with a Gaussian having standard deviation (2σ)

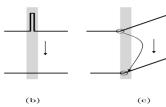
Nonlinear Filters

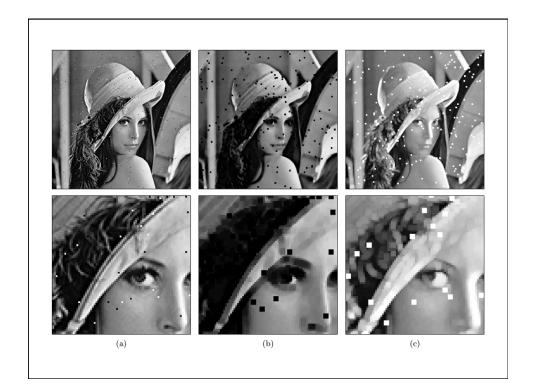
- Linear filters have a disadvantage when used for smoothing or removing noise: all image structures are blurred, the quality of the image is reduced.
- Examples of nonlinear filters:
 - Minimum and Maximum filters

$$I'(u,v) \leftarrow \min \{I(u+i,v+j) \mid (i,j) \in R\}$$

$$I'(u,v) \leftarrow \max \left\{ I(u\!+\!i,v\!+\!j) \mid (i,j) \in R \right\}$$



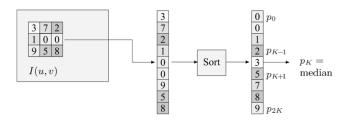


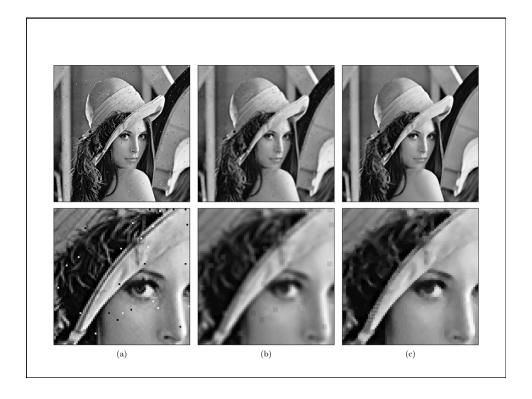


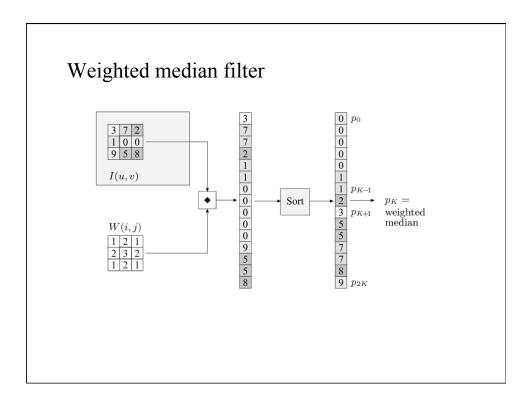
Median Filter

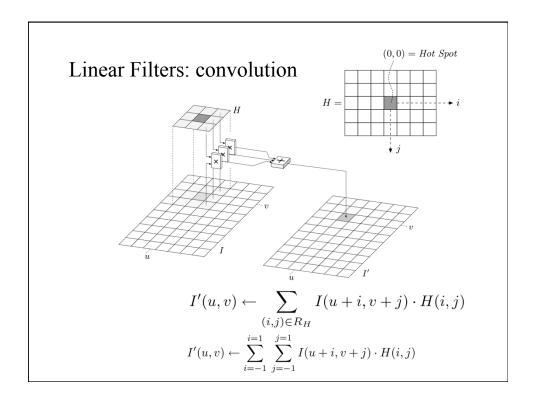
Much better in removing noise and keeping the structures

$$I'(u,v) \leftarrow \text{ median} \left\{ I(u+i,v+j) \mid (i,j) \in R \right\}$$



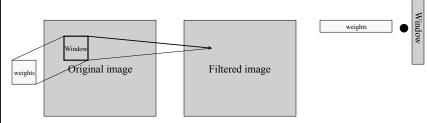




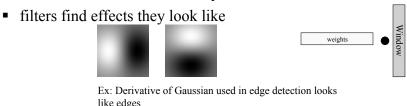


Convolution as a Dot Product

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Convoluting an image with a filter is equivalent to taking the dot product of the filter with each image window.

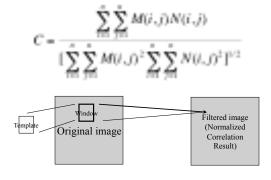


- Largest value when the vector representing the image is parallel to the vector representing the filter
- Filter responds most strongly at image windows that looks like the filter.
- Filter responds stronger to brighter regions! (drawback) Insight:
- filters look like the effects they are intended to find



Normalized Correlation

- Convolution with a filter can be used to find templates in the image.
- Normalized correlation output is filter output, divided by root sum of squares of values over which filter lies
- Consider template (filter) M and image window N:



Normalized Correlation

$$C = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} M(i, j) N(i, j)}{\left[\sum_{i=1}^{n} \sum_{j=1}^{n} M(i, j)^{2} \sum_{i=1}^{n} \sum_{j=1}^{n} N(i, j)^{2}\right]^{n/2}}$$

- This correlation measure takes on values in the range [0,1]
- it is 1 if and only if N = cM for some constant c
- so N can be uniformly brighter or darker than the template,
 M, and the correlation will still be high.
- The first term in the denominator, $\Sigma\Sigma M^2$ depends only on the template, and can be ignored
- The second term in the denominator, $\Sigma\Sigma N^2$ can be eliminated if we first normalize the grey levels of N so that their total value is the same as that of M just scale each pixel in N by $\Sigma\Sigma$ M/ $\Sigma\Sigma$ N

