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Outlines

* What are Filters

» Linear Filters

* Convolution operation

= Properties of Linear Filters

= Application of filters

* Nonlinear Filter

* Normalized Correlation and finding patterns in images
= Sources:

= Burger and Burge “Digital Image Processing” Chapter 6
= Forsyth and Ponce “Computer Vision a Modern approach”
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What 1s a Filter

» Point operations are limited (why)

* They cannot accomplish tasks like sharpening or
smoothing

Smoothing an image by averaging

= Replace each pixel by the average of its neighboring pixels
» Assume a 3x3 neighborhood:
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= In general a filter applies a function over the values of a small
neighborhood of pixels to compute the result

= The size of the filter = the size of the neighborhood: 3x3, 5x5, 7x7, ..
21x21,..

= The shape of the filter region is not necessarily square, can be a
rectangle, a circle...

= Filters can be linear of nonlinear

L]
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(0,0) = Hot Spot

Linear Filters: convolution
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Averaging filter
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Types of Linear Filters
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= Computing the filter operation

The filter matrix H moves over the original image I to compute the
convolution operation

We need an intermediate image storage!

We need 4 for loops!

In general a scale is needed to obtain a normalized filter.

Integer coefficient is preferred to avoid floating point operations

Inter-
mediate
Image

Inter-
mediate
Image

Version A Version B
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= For a filter of size (2K+1) x (2L+1), if the image size is
MxN, the filter is computed over the range:

K<u <(M-K-1) and L<v <(N-L-1)

B "',; 5 l", no coverage
H u
; 2
,,,,,,,,,,,,,,,,,,,,,,,, - .
l. full coverage
N
,,,,,,,,,,,,,,,,,,,,,,,,,, u}
I
’
M
1 public void run(ImageProcessor orig) { ..
2 int w = orig.getiideh(); H(i,j) =1 0.125 0.2 0.125
3 int h = orig.getHeight();
4 // 3 x 3 filter matriz
5 double[][] filter = { 0075 0125 0075
6 {0.075, 0.125, 0.075},
7 {0.125, 0.200, 0.125},
8 {0.075, 0.125, 0.075}
9 };
10 ImageProcessor copy = orig.duplicate();
11
12 for (int v = 1; v <= h-2; v++) {
13 for (int u = 1; u <= w-2; u++) {
14 // compute filter result for position (u,v)
15 double sum = 0;
16 for (int j = -1; j <= 1; j++) {
17 for (int i = -1; i <= 1; i++) {
18 int p = copy.getPixel(u+i, v+j);
19 // get the corresponding filter coefficient:
20 double ¢ = filter[j+1][i+1];
21 sum = sum + C * p;
22 }
23 }
24 int q = (int) Math.round(sum);
25 orig.putPixel(u, v, q);
26 }
27 }
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Integer coefficient

0.075 0.125 0.075 ) 5
H(i,j)=| 0.125 0.200 0.125 | = 10 8
0.075 0.125 0.075 5
= Ex: linear filter in Adobe photoshop
=2 =2
I'(u,v) « Offset + Sl .22 | 2I(u+’i,v+j) - H(i,7)
Jj==2 i=—
3 I_ [1— ’z_ ,1— ’_ Reset
[k B Rk [ Load.
[ B [ s
I_ [— ,— l— ,— v Preview
Scale: [I5 Offset: [0
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Mathematical Properties of Linear
Convolution
» For any 2D discrete signal, convolution is defined

as:

I/(u7v): Z Z I(U—Z,’U—])H(l,])

i=—00 j=—00
I'=IxH
I(u,v) I'(u,v)
| .w B -
e, HG.I)

Properties

= Commutativity

» Linearity

(s-I)xH = Ix(s-H) = s-(IxH)
(L+L)«xH = (IL«H)+ (IaxH)
(notice) (b+I1)xH # b+ (I*H)

= Associativity

Ax(B+xC)=(A*B)xC
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Properties
= Separability
H=HxHy*...xH,

I«H=1x(Hy*xHy*...x Hp)
= (...((I * Hy)* Hy) *...x Hy)

Types of Linear Filters
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Smoothing by Averaging vs. Gaussian

Flat kernel: all weights equal 1/N

Smoothing with a Gaussian

= Smoothing with an

average actually doesn’t

compare at all well with a

defocussed lens

= Most obvious difference is

that a single point of light
viewed in a defocussed lens
looks like a fuzzy blob; but
the averaging process
would give a little square.

» A Gaussian gives a good
model of a fuzzy blob

10
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An Isotropic Gaussian

= The picture shows a
smoothing kernel
proportional to

(which is a reasonable model

of a circularly symmetric
fuzzy blob)

Smoothing with a Gaussian

1
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Gaussian smoothing

» Advantages of Gaussian filtering

= rotationally symmetric (for large filters)

= filter weights decrease monotonically from central
peak, giving most weight to central pixels

* Simple and intuitive relationship between size of o and
the smoothing.

» The Gaussian is separable...

Advantage of seperability

First convolve the image with a one dimensional
horizontal filter

Then convolve the result of the first convolution
with a one dimensional vertical filter

For a kxk Gaussian filter, 2D convolution requires
k? operations per pixel

But using the separable filters, we reduce this to
2k operations per pixel.

12
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Separability
2 13]3 11
| 1 |2 |1 | 3|5 |5 18
4 |4 |6 18

65

1 1] |2 ]3]3 =2+6+3=11

2|4 |2]| [3[5]5]| =6+20+10=36

112 (1] (4 |al6 =4+8+6=18
65

Advantages of Gaussians

= Convolution of a Gaussian with itself is another
Gaussian
= so we can first smooth an image with a small Gaussian

= then, we convolve that smoothed image with another
small Gaussian and the result is equivalent to smoother
the original image with a larger Gaussian.

= [f we smooth an image with a Gaussian having sd o
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation (20)

13
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Nonlinear Filters

» Linear filters have a disadvantage when used for
smoothing or removing noise: all image structures
are blurred, the quality of the image is reduced.

= Examples of nonlinear filters:

* Minimum and Maximum filters
I'(u,v) < min{I(u+1i,v+7)| (,5) € R}
I'(u,v) < max {I(u+i,v+j) | (4,7) € R}

(a) ) (e)
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Median Filter

= Much better in removing noise and keeping the structures

I'(u,v) « median {I(u+i,v+j)| (i,7) € R}

13 0 po
3|7]2 17| 0
1[0[0|——— 12| 1
9/5[8 1] 2| P
0|—— Sort —*|3|—> PK=
I(u,v) E 5| pra median
9 7
8
8] 9| p2x
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Weighted median filter

13 10 po
31712 171 10]
110/0 171 10]
915(8 12| 10|
1] 0]
I(u,v) 1] 1]
10| 1|PK—
E’j—‘ 10| Sort 2 PK =
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1/2]1 % %
2 H 7
112]1 =1
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B [9] pax

(0,0) = Hot Spot

Linear Filters: convolution

.-_-__-_-__’i
'
'
T

I(uv) — > I(u+iv+j)- H(i,j)
(i,j)ERH
i=1 j=1

I'(u,v) Z Z I(u+i,v+j)-H(i,7)

i=—1 j=—1
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Convolution as a Dot Product

= Applying a filter at some point can be seen as
taking a dot-product between the image and some
vector

= Convoluting an image with a filter is equivalent to
taking the dot product of the filter with each image
window.

weights .

mopuip

—

weights

/C{ginal image Filtered image

= Largest value when the vector representing the image is
parallel to the vector representing the filter

= Filter responds most strongly at image windows that looks
like the filter.

= Filter responds stronger to brighter regions! (drawback)

Insight:
= filters look like the effects they are intended to find

» filters find effects they look like

Ex: Derivative of Gaussian used in edge detection looks
like edges

weights .

MOpUIA
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Normalized Correlation

= Convolution with a filter can be used to find templates in
the image.

» Normalized correlation output is filter output, divided by
root sum of squares of values over which filter lies

= Consider template (filter) M and image window N:

?V M nNuy

VV M. N ?V Nilar|

—_—
=4 —
] 1itered 1image
e ,
—|Original image (Normalized

Correlation
Result)

Normalized Correlation
? V M nNuy

VV M. N ?V Nilar|

= This correlation measure takes on values in the range [0,1]

* itis 1 ifand only if N = ¢cM for some constant c

* so N can be uniformly brighter or darker than the template,
M, and the correlation will still be high.

» The first term in the denominator, 2XM? depends only on
the template, and can be ignored

* The second term in the denominator, ZXN? can be
eliminated if we first normalize the grey levels of N so that

their total value is the same as that of M - just scale each
pixel in N by 22X M/ ZX N

18
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Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale
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Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

20



