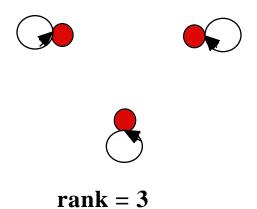
# Section 6.5 Equivalence Relations

| Now we group properties of relations together to define new types of important relations.                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Definition:</b> A relation $R$ on a set $A$ is an <i>equivalence</i> relation iff $R$ is                                                                                                                                                          |
| • reflexive                                                                                                                                                                                                                                          |
| • symmetric                                                                                                                                                                                                                                          |
| and                                                                                                                                                                                                                                                  |
| • transitive                                                                                                                                                                                                                                         |
| It is easy to recognize equivalence relations using digraphs.                                                                                                                                                                                        |
| • The subset of all elements related to a particular element forms a universal relation (contains all possible arcs) on that subset. The (sub)digraph representing the subset is called a <i>complete</i> (sub)digraph. <u>All</u> arcs are present. |
| • The number of such subsets is called the <i>rank</i> of the equivalence relation                                                                                                                                                                   |

## Examples:

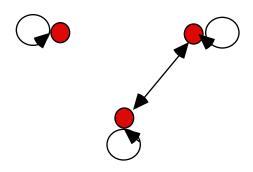
### A has 3 elements:



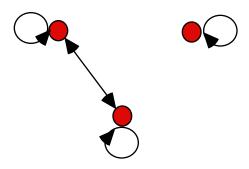




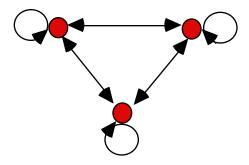
rank = 2



rank = 2



rank = 2



rank = 1

\_\_\_\_\_

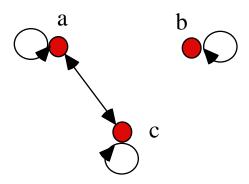
• Each of the subsets is called an equivalence class.

• A bracket around an element means the equivalence class in which the element lies.

$$[x] = \{y \mid \langle x, y \rangle \text{ is in } R\}$$

• The element in the bracket is called a *representative* of the equivalence class. We could have chosen any one.

Examples:



$$[a] = \{a, c\}, [c] = \{a, c\}, [b] = \{b\}.$$
  
 $rank = 2$ 

\_\_\_\_\_

An interesting counting problem:

Count the number of equivalence relations on a set A with n elements. Can you find a recurrence relation?

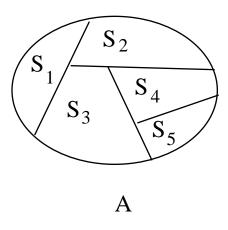
The answers are

- 1 for n = 1
- 3 for n = 2
- 5 for n = 3

How many for n = 4?

**Definition:** Let  $S_1, S_2, \ldots, S_n$  be a collection of subsets of A. Then the collection forms a *partition* of A if the subsets are nonempty, disjoint and *exhaust* A:

- $\bullet S_i$
- $S_i$   $S_j = \text{if } i \ j$
- $\bigcup S_i = A$



**Theorem:** The equivalence classes of an equivalence relation R *partition* the set A into disjoint nonempty subsets whose union is the entire set.

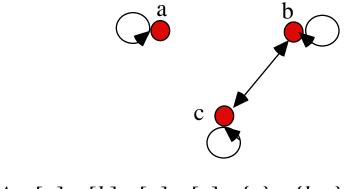
This partition is denoted A/R and called

- the quotient set, or
- the partition of A induced by R, or,
- A modulo R.

Examples:

- $\bullet A \times A$
- A =

•



$$A = [a]$$
  $[b] = [a]$   $[c] = \{a\}$   $\{b,c\}$   
 $rank = 2$ 

**Theorem:** Let R be an equivalence relation on A. Then

$$[a] = [b]$$

or

[a] 
$$[b] =$$

**Theorem:** If  $R_1$  and  $R_2$  are equivalence relations on A then  $R_1$   $R_2$  is an equivalence relation on A.

Proof: It suffices to show that the intersection of

• reflexive relations is reflexive,

either

• symmetric relations is symmetric,

and

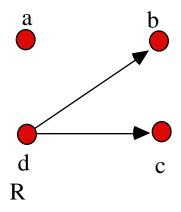
• transitive relations is transitive.

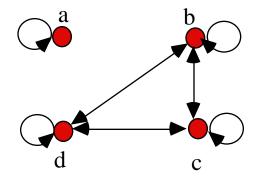
You provide the details.

\_\_\_\_\_

**Definition:** Let R be a relation on A. Then the reflexive, symmetric, transitive closure of R, tsr(R), is an equivalence relation on A, called the *equivalence relation induced by* R.

#### Example:





$$tsr(R)$$
 $rank = 2$ 
 $A = [a] [b] = \{a\} \{b, c, d\}$ 
 $A/R = \{\{a\}, \{b, c, d\}\}$ 

\_\_\_\_\_

**Theorem:** tsr(R) is an equivalence relation

#### Proof:

We have to be careful and show that tsr(R) is still symmetric and reflexive.

- Since we only add arcs vs. deleting arcs when computing closures it must be that tsr(R) is reflexive since all loops  $\langle x, x \rangle$  on the diagraph must be present when constructing r(R).
- If there is an arc  $\langle x, y \rangle$  then the symmetric closure of r(R) ensures there is an arc  $\langle y, x \rangle$ .

• Now argue that if we construct the transitive closure of sr(R) and we add an edge  $\langle x, z \rangle$  because there is a path from x to z, then there must also exist a path from z to x (why?) and hence we also must add an edge  $\langle z, x \rangle$ . Hence the transitive closure of sr(R) is symmetric.

Q. E. D.