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Abstract—In taxicab industry, a long standing challenge is how
to reduce taxicab’s mileage spent without a fare, i.e., cruising
mile. The current solution for this challenge usually requires the
participation of the passengers. To solve the issue without the
passengers involved, in this paper, we propose a cruising system,
pCruise, for taxicab drivers to maximize theirs profits by finding
the optimal route to pick up a passenger, thus reducing the
cruising mile. In pCruise, base on collected GPS records about
other near taxicabs, a taxicab characterizes its cruising process
with a cruising graph. When a taxicab becomes vacant and tries
to find a passenger, cruising graph will provide the shortest
cruising route with at least one expected available passengers
for this taxicab. With the shortest cruising routes, taxicabs will
significantly reduce theirs cruising miles. We evaluate pCruise
based on a 7 days 10 GB real world GPS dataset from a city
with more than 15, 000 taxicabs. The evaluation results show that
pCruise can assist taxicab drivers to reduce cruising miles by
41% on average.

I. INTRODUCTION

Nowadays, among all different transportation, taxicabs play

an particularly prominent role in big metropolitan residents’

daily commute. According to a recent survey in New York

City [1], over 100 taxicab companies operate more than

13, 000 taxicabs in New York City. There is a fairly stable

taxicab ridership of 660, 000 passengers per day, and taxicabs

in New York City transport more than 25% of all paying

passengers, accounting for 45% of all fares paid.

Taxicab service availability is one of most important service

quality in taxicab industry. In a New York City taxicab survey,

the top ranking unsatisfactory reason about taxicabs is that

taxicabs are not available when needed [2], but nearly 40%
of total taxicab mileage, a total of 314 million miles per

year, is spent to cruise for passengers. Thus, it is important

to address this discord between the high cruising miles for

drivers and the low ride availability for passengers. This

issue can be tackled from two different perspectives. From

the passengers’ perspective, the straightforward solution is to

spend the minimal amount of time or distance to find an

available taxicab on the street; from the drivers’ perspective,

the obvious solution is to find a passenger with the minimal

amount of cruising miles (i.e., miles spent without a fare). In

this paper, we focus on the perspective of taxicab drivers to

maximize their profits by reducing cruising miles.

In large metropolitan areas of United State and China, e.g.,
New York City, Beijing, Shanghai, and Shenzhen, taxicabs

are equipped with GPS and communication devices, and they

upload their vehicle statuses back to taxicab companies’ dis-

patching centers periodically. Thus, these dispatching centers

can schedule taxicabs to the optimal routes to pick up passen-

gers, which will reduce the cruising miles. However, the cur-

rent solution in dispatching centers requires the participation of

passengers. Typically, the existing dispatching centers function

under the scenario where a passenger contacts a dispatching

center, and then the dispatching center assigns a task about this

passenger to a nearby vacant taxicab accordingly. But most

passengers will hail a taxicab along the street directly, rather

than booking a taxicab from a dispatching center. Therefore,

we face a challenge that how to schedule taxicabs to find

passengers with the minimal length routes to reduce their

cruising miles, yet without the participation of passengers.

In this paper, we propose a cruising system, pCruise, i.e.,
cruising with purposes, which schedules the taxicabs based on

pick-up events from GPS records about their nearby taxicabs

in taxicab networks. The key insight about pCruise is that

it utilizes only several key GPS records to model a cruising

process about a taxicab, and then provides a scheduling

strategy to find a passenger with the minimal cruising miles.

Specifically, our key contributions are as follows:

• We introduce a mathematical concept, cruising graph,

for pCruise, where vertices represent intersections and

edges represent road segments connecting intersections.

We characterize a cruising graph by weights on its edges,

which are represented by the expected number of arrival

passengers during a taxicab cruises on road segments.

• According to characterization on edges, pCruise utilizes

a cruising graph by an efficient scheduling. During the

scheduling, pCruise will select the cruising route for a

taxicab with at least one arrival passenger yet having the

minimal length, thus reducing the cruising miles for the

taxicab driver.

• More importantly, we evaluate pCruise with a real world

10 GB dataset, collected from taxicabs in Shenzhen,

China. The dataset consists of 7 days of GPS traces from

more than 15, 000 taxicabs. Based on this dataset, we

conduct both a large scale trace-driven simulations and

a small scale testbed experiment. The evaluation results

show that with the assistance of pCruise, a taxicab driver

can reduce the cruising miles by 41% on average.

The rest of the paper is organized as follows. In Section II,

we present our design goal. In Section III, we propose our

pCruise design. In Section IV, we evaluate pCruise through

simulation and testbed study. In Section V, we present related

work. In Section VI, we conclude the paper.
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II. DESIGN GOAL

Our work is mainly motivated by the observation that the

taxicab drivers suffer from long cruising miles. On the other

hand, passengers cannot find a taxicab when they need one.

We bridge this gap by proposing a cruising system which can

guide vacant taxicabs to find a passenger with the minimal

cruising miles, thus maximizing the profits of taxicab drivers.

To illustrate the current cruising miles in a taxicab network

and our design goal, we plot the average percentage of miles

without passengers among total miles, i.e., cruising miles, by

comparing Ground Truth GPS traces and the traces obtained

by a trace-driven simulation where 10% of total taxicabs using

pCruise. The evaluation setup is given in Section IV.
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Fig. 1. Illustration of pCruise Design Goal.

Figure 1 plots the percentages of cruising miles among total

miles on every 1 hour time window from 0 : 00 to 23 : 59 of a

day, comparing the ground truth of a real world dataset and a

trace-driven simulation under pCruise. From this figure, we

observe that during the rush hours of a day, e.g., from 06 : 00
to 10 : 00 or from 16 : 00 to 20 : 00, both of two schemes have

percentages of cruising miles below 20%; during the non-rush

hours of a day, e.g., from 00 : 00 to 06 : 00, percentages of

cruising miles are higher than 60%. But pCruise has a better

performance than Ground Truth during the rush or non-rush

hours by 41% and 21% on average, respectively. This figure

illustrates the design goal of pCruise, which is to reduce the

cruising miles for taxicab drivers.

Given the existence of a plethora of dispatching and data

mining schemes that extract the knowledge from the entire

GPS dataset, we decide to design pCruise as a lightweight

yet effective system which can be implemented either in

frontend, i.e., taxicabs, or in backend, i.e., dispatching centers.

In addition, we design an efficient scheduling for pCruise
based on the GPS records of their own nearby taxicabs, instead

of the entire GPS dataset. Since every taxicab has different

nearby taxicabs and starting time, pCruise introduces unpre-

dictability and randomness in the system to compensate for

more taxicabs head to the same area with the same cruising

route. pCruise provides a unified solution for a highly diverse,

heterogeneous route selection scheme that may be deployed at

individual mobile devices from various applications.

III. pCruise DESIGN

In this section, we introduce the detailed design for pCruise.
We first present the main idea of pCruise, which is to model

a taxicab’s cruising process to reduce cruising miles. Then,

we demonstrate how to model a cruising process. Further,

we explain how to characterize a cruising process with GPS

records collected from nearby taxicabs. Finally, we show how

to utilize a characterized cruising process to select the optimal

cruising routes for taxicab drivers to reduce the cruising miles.

A. Main Idea

There are two basic situations for a taxicab, i.e., driven

with a fare or driven without a fare. Total miles spent with

a fare are called live miles, while total miles spent without

a fare are called cruising miles, which consists of multiple

cruising routes. In pCruise, the optimal strategy to maximize

drivers’ profits is to minimize every cruising route and then to

minimize the total cruising miles, while finding at least one

expected passenger on every minimal cruising route. Note that

to design pCruise with a more generic philosophy, we describe

pCruise as a distributed solution, even though it can be easily

customized to a centralized solution.

The key idea of pCruise is simple. During both live and

cruising miles, every taxicab broadcasts its GPS records to

other taxicabs periodically, while collecting GPS records from

nearby taxicabs. Whereas during cruising miles, pCruise pro-

vides a model for a cruising process based on collected GPS

records. This model can be used to find the optimal cruising

route with the minimal length, while satisfying that at least one

expected passenger will arrive during the cruising process.

Several questions rise up with respect to this idea.

1) How to model a cruising route: When a vacant taxicab

is cruising on the street, a taxicab driver can make decisions

about cruising routes anytime, but can only take actions at

an intersection on the street. Therefore, an intersection is

a basic yet crucial unit for the optimal cruising route. To

capture fundamental characteristics about a cruising process

on every intersection, we propose a mathematical concept

Cruising Graph. Subsection B will elaborate this concept.

2) How to characterize the optimality of a cruising route:
To characterize the optimality of a route on a given cruising

graph, we characterize a cruising graph by assigning weights

on its edges, representing corresponding road segments of

a cruising route. The weights represent the lower bound of

expected number of available passengers that will arrive on

this road segment, during time period that a taxicab is cruising

on it. This expected number of available passengers can be

obtained by two metrics we proposed. Subsection C introduce

the details of other two parameters.

3) How to utilize the characterized optimality to find the
optimal cruising route: Based on the characterization of a

cruising process, we propose an efficient scheduling scheme

pCruise to obtain the optimal cruising route with the minimal

cruising length, while satisfying that at least one passenger

will arrive on this route during the cruising. Subsection D
will present this scheduling scheme.
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B. Creation of Cruising Graph

In this subsection, we demonstrate how to model a taxicab

cruising process. Note that to show the key principle of

pCruise, we assume a road map is given, and directly present

a model based on it. But in the appendix, we provide a simple

yet effective method to model a cruising process without a

corresponding road map.

We model a taxicab cruising process with a mathematical

concept, i.e., Cruising Graph. A cruising graph is a sim-

ple graph where vertices represent intersections and edges

represent road segments between intersections. The key step

to create a cruising graph is to identify intersections and

road segments connecting them, which can be performed by

several schemes [3] [4]. To fucus on a system level, we now

assume that intersections are given in a road map, but in the

appendix we propose a simple method to identify intersections.

For every intersection, we create a corresponding vertex;

for every two adjacent vertices, we create the two directed

edges between them from one to another and vice versa. The

rationale behind creating two directed edges, instead of one

undirected edge, between two adjacent vertices is that the

optimality from one intersection I1 to another intersection I2
could be total different to that from I2 to I1. In addition, in

some one-way situations, it does not even exist. Figure 2 shows

a cruising graph created according to a given road map.

A
21 3 5 9

6 1042

7 11

8 12

Intersections as Vertices

Road Segments as Edges

Fig. 2. Cruising Graph

Fig. 3. Pick-up or Drop-off Spots. The most of the pick-up or drop-off spots
is on main streets, only a small subset of them is off the street. In addition,
pick-up or drop-off spots are roughly uniformly distributed on main streets.

C. Characterization of Cruising Graph

In this subsection, given a cruising graph obtained in last

subsection, we characterize it by assigning weights on its

edges, indicating the attractiveness of cruising on correspond-

ing road segments. The key feature of our characterization is

that we do not rely on the entire GPS trajectories, only a small

portion of records, whereas most of current schemes functions

with the entire GPS trajectories. Therefore, before presenting

the characterization, we first introduce how to utilize GPS

records about taxicab networks in Subsection 1).
With collected GPS records, we characterize an edge, i.e.,

road segment [sbegin, send] in a time duration [tbegin, tend]
with a novel metric: Available Passenger Ratio ρ. It indicates

that given an arbitrary location sx ∈ [sbegin, send] and an

arbitrary moment tx ∈ [tbegin, tend], the probability that there

is an available, i.e., unserved, passenger in two dimensional

temporal-spacial spot px = [tx, sx]. We propose the available

passenger ratio ρ in Subsection 2).
The available passenger ratio ρ alone is not enough to char-

acterize a road segment, and the number of total passengers

(including both available and unavailable) arriving at the road

segment is also very important. This is because in a road

segment with a high available passenger ratio ρ yet a low

number of total arrival passengers, the number of available

arrival passengers will still be small. But with current GPS

records, even with the entire trajectories of all taxicabs, it

is impractical to obtain such accurate number of passengers

arriving at certain road segments. Nevertheless, with current

GPS records, we can obtain with another metric on a road

segment: Passenger Arrival Rate λ, which indicates the lower

bound of the total passenger arrival rate, given a road segment

[sbegin, send] and a time duration [tbegin, tend]. We present the

passenger arrival rate λ in Subsection 3).
1) GPS Records: In pCruise, every taxicab will broadcast

its GPS records to other nearby taxicabs periodically. A GPS

record consists of following parameters: (1) Plate Number; (2)

Date and Time; (3) GPS Coordinates; and (4) Availability Bit:

whether or not a passenger is in this taxicab when the record

is broadcasted. Thus, we can map GPS coordinates received

by a taxicab into a temporal-spacial coordinate system where

all GPS records are represented by points.

Instead of considering all GPS records, in pCruise, we

shall focus on the records with a change on Availability Bit

compared to previous records. For example, if an Availability

Bit turns to 1 from 0 in two consecutive records of a Taxicab

i, then it indicates that this taxicab just picks up a passenger

in a location indicated by the GPS coordinates. Therefore, we

name this physical location si and corresponding moment ti
as a pick-up spot pi = (ti, si). Similarly, we name a physical

location as a drop-off spot, if an Availability Bit turns to 0 from

1. Figure 3 gives an example of these spots on a road map,

which implies that pick-up or drop-off spots can be treated

as representative samples for all GPS records to reduce the

total number of processed GPS records for characterization of

a taxicab cruising process on a cruising graph.
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2) Available Passenger Ratio ρ: In general, a road segment

with more available passengers will lead to a high possibility

of pick-up, thus minimizing cruising miles for a taxicab driver.

In pCruise, a taxicab driver shall favor a road segment with

a higher available passenger ratio ρ, which can be obtained

by collected pick-up spots in GPS records, via observing how

long nearby vacant taxicabs picked up passengers on this road

segment before. The sooner a nearby taxicab picked up a

passenger on this road segment, the higher available passenger

ratio ρ on this road segment. In the following, we show how

to quantify ρ based on pick-up spots.

For the simplicity, when computing a weight on a road

segment, we transform a two-dimensional GPS coordinate

(x, y) into a one dimensional variable s ∈ [sbegin, send] on

this road segment. Based on a pick-up spot pi of Taxicab i, we

can map pi in a temporal-spacial cartesian coordinate system

in terms of a pick-up location si on a road segment and a

pick-up moment ti, as in Figure 4. The origin of coordinates

oi is (tbegin, sbegin) where tbegin is the moment that Taxicab

i enters this road segment; sbegin is the beginning location of

this road segment.

If pCruise is under the assumption that all the trajectories

are given, in this two dimensional temporal-spacial system, the

triangle-like shape �′oisipi indicates a temporal-spacial area

without any available passenger. This is because if there is an

available passenger within �′oisipi, e.g., a spot pj = (tj , sj)
in Figure 4, then the pick-up location of Taxicab i should be

sj , instead of si. But there could be an available passenger

outside �′oisipi, e.g., a spot pk = (tk, sk) in Figure 4, since

at moment tk, Taxicab i has already passed location sk, and

cannot verify whether or not there is a passenger waiting at

location sk from moment tk, by picking the passenger up.

Therefore, in this 1 taxicab scenario, for a road segment r
connecting an intersection m and an intersection n, we can

obtain the available passenger ratio ρ
′(1)
r at a time period of

[tbegin, tend] as follows.

ρ′(1)r = 1− |�′oisipi|
|tend − tbegin| × |send − sbegin| ,

where |�′oisipi| is the area of �′oisipi. The physical mean-

ing of |tend− tbegin|× |send− sbegin| is the total 2 dimension

in terms of time and space, while the physical meaning of

|�′oisipi| is the time and space that confirmed by Taxicab

i that there is no passengers. Note that in Figure 4, any

available passenger can exist within square |tend − tbegin| ×
|send − sbegin| but outside �′oisipi. This is the reason why

ρ is the probability that there exists an available passenger

in arbitrary location sx ∈ [sbegin, send] at arbitrary moment

tx ∈ [tbegin, tend].
In the above analysis, we utilize the trajectory of Taxicab

i to obtain �′oisipi. However, since pCruise is designed to

employ only a few pick-up spots instead of all the trajec-

tories, we approximate the triangle-like shape �′oisipi with

the triangle �oisipi in Figure 5. The rationale behind this

approximation is that in a road segment we can assume that

a taxicab is with relatively even speed. We will verify the

effect of this approximation on Evaluation section. After the

approximation, we have a new available passenger ratio ρ
(1)
r

as in Figure 5, which is given by

ρ(1)r = 1− |�oisipi|
|tend − tbegin| × |send − sbegin| ,

where |�oisipi| is the area of �oisipi.
Figure 6 and 7 consider multiple taxicabs scenarios where

the triangles of every taxicab overlap with each other. The

union area of all triangles indicates an area without any

available passengers in terms of space and time. For example,

in Figure 6, when Taxicab i enters the road segment from

oi, Taxicab j has already been on this road segment at oj . At

moment tj , Taxicab j first picks up a passenger at location sj .
After that at moment ti, Taxicab i then picks up a passenger

at location si. Since tj < ti and sj < si, �ojsjpj is inside of

�oisipi. Note that even though there is a passenger at point

pj that is inside �oisipi, but this passenger is not available
for Taxicab i, since she or he is picked up by Taxicab j.

Therefore, for 2 taxicabs scenario in Figure 6,

ρ(2)r = 1− |�oisipi| ∪ |�ojsjpj |
|tend − tbegin| × |send − sbegin| .

Similarly, for 3 taxicabs scenario in Figure 7,

ρ(3)r = 1− |�oisipi| ∪ |�ojsjpj | ∪ |�okskpk|
|tend − tbegin| × |send − sbegin| .

To generalize the above results, for an edge connecting ver-

tex m and vertex n, associating the road segment r connecting

intersection m and intersection n, we have

ρr = 1− ∪∀i∈I |�oisipi|
|tend − tbegin| × |send − sbegin| ,

where I is a set of all pick-up spots.
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3) Passenger Arrival Rate λ: In this subsection, we in-

troduce λ, which indicates the lower bound of passenger

arrival rate for a road segment [sbegin, send] in time duration

[tbegin, tend]. With λ, we can have the lower bound of total

arrival passenger number at a time duration.

To obtain an accurate passenger arrival rate, we need a time

period and the number of passengers arriving during this time

period. But based on the collected GPS records alone, it is

impractical to obtain such accurate information. Alternatively,

we may obtain the lower bound of passenger arrival rate λsi

at a pick-up location si during a time period.

For example, in Figure 8, at moment tbegin, Taxicab j is

ahead of Taxicab i, but the pick-up location si of Taxicab i is

ahead of the pick-up location sj of Taxicab j. This indicates

when Taxicab j arrives in location si at moment F−1
j (si),

there is no available passenger, where F−1
j is the inverse

function of line segment ojpj . This is because if these is

an available passenger, then the pick-up spot pj of Taxicab

j should be (F−1
j (si), si), instead of (tj , sj). But since the

pick-up spot of Taxicab i is pi = (ti, si), it indicates that

when Taxicab i arrives at location si, there is a passenger

in location si at moment ti. This implies that at least one

passenger arriving at location si in time duration [F−1
j (si), ti].

Note that there may be more than one passenger at location si
arriving at duration [F−1

j (si), ti], but since a taxicab can pick

up only one passenger at a time, we only can confirm that at
least one passenger arrived. This is the reason why λ is the

lower bound of passenger arrival rate.

Therefore, the lower bound of passenger arrival rate at a

pick up location si is given by

λsi =
1

ti − F−1
j (si)

.

The similar situation is in Figure 9 where at least one

available passenger arrived at the location sj in time duration

[F−1
i (sj), tj ]. But in Figure 10, we observe that a situation

where λ cannot be computed, because no pick-up happens

when a later taxicab passes a former taxicab’s cruising route.

Finally, the lower bound of passenger arrival rate at road

segment r during [tbegin, tend] is given as follows.

λr = Σi∈Iλsi ,

where I is a set of all pick-up spots.

D. Utilization of Cruising Graph

In this subsection, based on the creation and characterization

of a cruising graph, we present how to utilize a character-

ized cruising graph to select the optimal cruising route with

minimal cruising miles, while having a reasonable number of

passengers. This is because that a taxicab driver shall select

a cruising route with at least one passenger arrival, since a

taxicab can only take one passenger at a time. Note that in

our context a passenger means a ridership which may contain

more than one person.

Given a cruising graph, we can have different routes for

a taxicab driver by different traversal strategies. Since every

route consists of several road segments, we characterize a

route based on its road segments, which are evaluated by the

two metrics proposed, i.e., Available Passenger Ratio ρ and

Passenger Arrival Rate λ. During the time period that a taxicab

is cruising on a selected route R, several passengers may arrive

at every road segment on this route R. Since there are other

competing taxicabs, among total arrival passengers, only some

of them are available for pick-ups of this taxicab. Therefore,

for a road segment r in a route R, given its crossposting

passenger arrival rate λr and available passenger ratio ρr, we

can obtain Available Passenger Arrival Rate, i.e., ρr × λr. In

addition, for a given road segment r, the time spent on it,

τr, can be obtained by a road segment length set S based on

GPS records. Therefore, we can obtain the expected number

of arrival available passengers, κr, on the road segment r by

κr = ρr × λr × τr.

Since a cruising route R consists of multiple route seg-

ments, we can obtain the expected number of arrival available

passengers κR on a route R by the following.

κR =
∑

r∈R
κr =

∑

r∈R
ρr × λr × τr.

Based on the above formula of κR, we can obtain the

expected number of arrival available passengers in every

intersection of a route. Since only one available passenger will

be enough for a taxicab, we compute all the routes with the

expected number of arrival available passengers larger than 1.

Among these candidate routes, we select the one with minimal

length as the optimal route to reduce the cruising miles.
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Fig. 11. Utilization of Cruising Graph. Given a cruising graph in the left, we give an example how pCruise utilizes it to obtain the optimal cruising
route for a Taxicab i starting at intersection 1. During an instance of a depth-first traversal, pCruise will compute the expected number of arrival available
passengers κR by the unit of road segments between intersections. For example, in the first depth-first traversal (bold) with intermediate vertices 1, 3, 1, 3,
1, 3,..., the first vertex traversed is vertex 3 which is corresponding to the intersection 3 adjacent to the intersection 1. So the expected number of arrival
available passengers, κ1

R, on this traversal at 1st intersection is κ1
R = κ13 = ρ13 ×λ13 × τ13. κ2

R on this traversal at 2nd intersection is κ2
R = κ13+κ31.

Similarly, κ3
R = κ13 + κ31 + κ13. In ith traversed vertex, pCruise compares κiR with 1. If κiR is larger than 1, then pCruise ends this traversal, and

considers it as a candidate for the optimal cruising route.

Given a cruising graph G and a road segment length set

S, the following algorithm describes the scheduling scheme

of pCruise, which will provide the optimal cruising route R
with minimal cruising miles.

Algorithm 1 pCruise Scheduling

Require: (1) Cruising Graph G; (2) Road Segment Length

Set S;

Ensure: Optimal Cruising Route R;

1: Based on G, perform a depth-first traversal; and obtain

a route R′ whose expected number of arrival available

passengers κR is larger than 1;

2: Compute the cruising miles of R′ based on road segment

length set S, and compare it with the cruising miles of

current optimal cruising route R;

3: Select the cruising route from R′ or R with shorter

cruising miles as the new optimal cruising route R;

4: Continue to perform depth-first traversal until all cruising

routes with expected number of arrival available passen-

gers larger than 1 are obtained;

In the above scheduling, pCruise obtains all qualifying

cruising routes one by one, and compares them with the

current optimal cruising route R. If there is a cruising route

R′ shorter than the current optimal cruising route R, then R′

becomes the new current optimal cruising route R. pCruise
scheduling is over when all qualifying cruising routes are

considered, and the running time of this algorithm is bounded

by the terminal condition that the expected number of arrival

available passengers is larger than 1.

In Figure 11, we give an example of the utilization of cruis-

ing graph in pCruise scheduling. Based on the cruising graph

in the left figure, pCruise can compute the all qualifying

cruising routes that satisfy the terminal condition in the right

of Figure. To show the principle of our pCruise scheduling,

we assume that a taxicab can only receive or broadcast the

GPS records from or to other taxicabs within one block.

IV. TRACE-DRIVEN EVALUATION

In this section, to examine the effectiveness of pCruise, we

perform a large-scale simulation and a small-scale testbed in

subsection A and B, respectively.

To evaluate pCruise in a real-world scenario, we collected a

real world 10 GB dataset about 7 days of GPS traces of 15405
taxicabs belonging to different taxicab companies in Shenzhen,

a Chinese city with 10 million population. This dataset is

from an government agency for urban transportation pattern

search. The dataset is obtained by letting every taxicab upload

4 records with a speed 1/s to redundantly report its GPS trace

records to a base station every 30 seconds on average. A record

mainly contains following information: (1) Plate Number: as

a primary key for every taxicab; (2) Date and Time: date and

time of every record uploaded; (3) Availability: whether or not

a passenger is on this taxicab when the record is uploaded;

(4) GPS Coordinates: GPS coordinates when the record is

uploaded. Based on the dataset of above GPS trace records, we

can obtain location and time distributions of pick-up events,

which are used to evaluate the performance of pCruise.
To show the effectiveness of pCruise, we compare the

performance of pCruise with Ground Truth, which is the

original GPS traces from the dataset without any modifi-

cations. In addition, since pCruise only employs the pick-

up spots, instead of the entire trajectories, we also compare

pCruise with an Oracle scheme, which can store and process

all the collected trajectories of nearby taxicabs, and utilizes the

triangle-like shape �′ to compute available passenger ratio ρ′

as in Section III.C.2). In contrast, pCruise utilizes the triangle

shape � to obtain ρ based on only pick-up spots.

The performance metric is the percentage of cruising miles

in total driving miles. We investigate this metric on every 1

hour time window of a day. In addition, we investigate the

sensitivities of pCruise’s performances on two key parame-

ters of taxicab networks, i.e., broadcasting speed as well as

broadcasting range.
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Fig. 12. Cruising Miles VS. Time of One Taxicab
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Fig. 13. Cruising Miles VS. Speed of One Taxicab
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Fig. 14. Cruising Miles VS. Range of One Taxicab
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Fig. 15. Cruising Miles VS. Time of 10% Taxicab
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Fig. 16. Cruising Miles VS. Speed of 10% Taxicab
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Fig. 17. Cruising Miles VS. Range of 10% Taxicab

A. Trace-driven Simulation Evaluation

In this simulation, we report the results of only one taxicab

or 10% of total taxicabs using pCruise or Oracle.

1) Only one taxicab with pCruise or Oracle: Figure 12

plots the percentage of cruising miles in every 1 hour time

window of a day. We observe that in the rush hours of a day,

e.g., 06 : 00−10 : 00, the percentages of cruising miles for all

three schemes are below 20%. In contrast, in non-rush hours

of a day, e.g., 00 : 00 − 6 : 00, the percentages of cruising

miles for all three schemes are over 60%. But during every

1 hour time window of a day, we observe that both pCruise
and Oracle outperform Ground Truth with an average gain

of 32% and 37%, which verifies the effectiveness of taking

nearby taxicab’s activities into consideration. In addition,

Oracle outperforms pCruise by 11% on average in non-rush

hours of a day, and by 3% on average in rush hours, indicating

that even though in rush hours Oracle considers the entire

trajectories, the effect is limited. It implies during rush hours,

pick-up spots alone used by pCruise can effectively reduce the

cruising miles, and considering the entire trajectories in rush

hours is not as effective as in non-rush hours.

Figure 13 plots the effect of different broadcasting speeds

on the percentage of cruising miles. In Figure 13, we observe

that with the increase of the speed, the percentages of cruising

miles in pCruise and Oracle decrease significantly as much

as 36%, when the speed is larger than 6 records per mins,

and the decreasing slows down when the speed is larger than

12 records per mins. This is because when the speed first

becomes larger, pCruise and Oracle will have more frequently

updated GPS records to obtain the optimal route, but when

the speed is larger than 12 records per mins, the records

received by taxicabs are becoming redundant, and cannot be

efficiently used for route selections. We also observe that

Oracle outperforms pCruise slightly when the speed is small,

e.g., 6 records per mins. The gain is becoming bigger when

the speed is between 6 to 22 records per mins.

Figure 14 plots the effect of different broadcasting ranges

on the percentage of cruising miles. We observe that with the

increase of ranges from 0.3KM to 3.0KM, the percentage of

cruising miles in pCruise and Oracle continuously decrease.

When the range is larger than 0.6KM, the decrease becomes

more significant, but when the range is larger than 1.5KM, it

becomes more stable. This is because when the ranges become

larger, pCruise and Oracle will select a route based on more

nearby taxicabs’ information. But when the range is larger

than 1.5KM, the GPS records about the taxicabs that are far

away cannot receive any related information about nearby road

segments. Thus, the decrease of cruising miles becomes less

obvious. Again, Oracle always has a better performance than

pCruise by average 8, which thanks to the utilization of entire

trajectories in Oracle.

2) 10% of total taxicabs with pCruise or Oracle: Figure 15

plots the performance of 10% of total taxicabs in terms of

the percentage of cruising miles. We observe that in the rush

hours of a day, e.g., 06 : 00 − 10 : 00 or 16 : 00 − 18 : 00,

the percentages of cruising miles for all three schemes are

below 20%. In contrast, in non-rush hours of a day, e.g.,
00 : 00 − 6 : 00 or after 22 : 00, the percentages of

cruising miles for all three schemes are significantly higher

than these of rush hours. In addition, both pCruise and Oracle

outperform Ground Truth with an average gain of 36% and

41%, which implies that when more taxicabs take other pick-

up spots into consideration, the whole system has a better

performance. Furthermore, Oracle outperforms pCruise by

8%. This performance gain decreases compared to one taxicab

using pCruise scenario, which implies that pCruise performs

better when more taxicabs employ pCruise.
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Fig. 20. Cruising Miles VS. Density in Testbed

Figure 16 and 17 plot the effects of different broadcasting

speeds and ranges on the percentage of cruising miles, re-

spectively. In both Figure 16 and 17, we observe that with the

increases of broadcasting speeds and ranges, the percentage

of cruising miles in Ground Truth keeps the same, while

those in pCruise and Oracle decrease significantly when the

broadcasting speed and range is larger than 6 record/mins

and 0.75KM, respectively. Compared to results in Figure 13

and 14, the results in Figure 16 and 17 have the similar

tendency yet with better performances. But the values from

which the percentages of cruising miles decrease significantly

are smaller. One explanation for this is that when more

taxicabs take other pick-up spots into consideration, the routes

used by taxicabs with pCruise or Oracle will distribute more

uniformly on the entire road network, which reduces the

cruising miles.

B. Trace-driven Testbed Evaluation

To evaluate pCruise in a real world setting, we conduct a

testbed experiment with the real world taxicab dataset.

1) Testbed Setup: We implement pCruise and Oracle in

fully connected networks with 10 TelosB sensor devices on

the TinyOS/Mote platform. We simulate two street blocks

for a mobile toy car attached with a TelosB node as in

Figure 21, which provides the toy car 6 intersections and 7
road segments to make different routes. The other 9 nodes

serve as nearby taxicabs to broadcast normalized GPS records

about this two street blocks based on the real-world dataset.

The normalization of GPS records is to map GPS records of

two real-world street blocks into these two simulated blocks

in terms of time and space. We utilize pick-up spots of same

time period but in the previous day in the dataset to simulate

passenger distributions for the pick-up events of the toy car.

The toy car is controlled by the attached TelosB node and

imaginarily picks up a passenger at a spot on these two street

blocks, only if there is a similar pick-up event in the previous

day of GPS records. We also use the normalized trip length

of similar pick-up events in the previous day to decide trip

length for a simulated pick-up event. All the experiments are

conducted 10 times and average results are reported.

2) Testbed Evaluation: Since we cannot obtain Ground

Truth of taxicab traces constrained in real world two street

blocks, we only compare pCruise and Oracle in different time

windows and broadcasting speeds. Because we conduct the

testbed experiment in a fully connected network, we use the

1 6

43

2 5

Fig. 21. Testbed Setup

different numbers of broadcasting nodes to change the density

of networks, instead of broadcasting ranges.

Figure 18 plots the percentage of cruising miles in every 30
seconds time window of total 12 mins, which is mapped by 2
rush hours in real world dataset. We observe that as cumulative

time increases, the percentages of cruising miles for both of

schemes decrease, and at the end of the experiment the curves

of both schemes overlap with each other. This is because after

cumulatively collecting GPS records from nearby taxicabs

simulated by sensor nodes, both of schemes can select more

effective cruising routes. In addition, the performance gain

between Oracle and pCruise decreases from 12% to 4%, when

cumulative time increases from 1 to 8 mins. This is because

even though Oracle has more information than pCruise to

select the route, the number of different routes obtained by

two street blocks is limited .

Figure 19 and 20 plot the effects of different broadcasting

speed and the number of broadcasting nodes on the percentage

of cruising miles, respectively. In both Figure 19 and 20, we

observe that with the increases of the speed and the number

of nodes, the percentages of cruising miles in pCruise and

Oracle decrease significantly when the speed and the number

of broadcasting nodes is larger than 6 record/mins and 4,

respectively. When the speed is 10 record/mins and the number

of broadcasting nodes is 6, the percentage of cruising miles

achieves its maximal decreasing ratio, respectively. Compared

to results in simulation, the testbed results has a similar

tendency. Nevertheless the values from which the percentages

of cruising miles decrease significantly are different due to

the configuration of testbed. The testbed results verify that

selecting an appropriate broadcasting speed and the density of

networks will reduce the cruising miles significantly.

92

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2020 at 21:45:02 UTC from IEEE Xplore.  Restrictions apply. 



V. RELATED WORK

There are two types of systems related to our work, i.e.,
Dispatching Systems and Recommendation Systems.

A. Dispatching Systems

Taxicab dispatching systems are proposed along with the

development of intelligent transportation systems and the pop-

ularization of GPS sensors [5] [6]. Currently, in most of dis-

patching systems, a dispatching center assigns a pick-up task

to taxicab drivers according to the nearest neighbor principle in

terms of distance or time. Phithakkitnukoon et al. [7] employ

the naive Bayesian classifier with an error-based learning

approach, which can obtain the number of vacant taxicabs at

a given time and location to enhance the dispatching system.

Yang et al. [8] propose a mode for urban taxicab services,

which indicates the vacant and occupied taxicab movements

as well as the relationship between passengers and taxicab

waiting time. Yamamoto et al. [9] present an adaptive routing

scheme and a clustering scheme to enhance dispatching system

via assigning vacant taxicabs to the locations with a high

expected potential passengers number adaptively. Chang et
al. [10] propose a model that can predict taxicab demand

distribution based on weather condition, time and locations.

Gonzalez et al. [11] compute the fastest route by taking into

account the speed and driving patterns of taxicabs, which are

obtained from historical GPS trajectories. Ziebart et al. [12]

utilize GPS trajectories obtained from 25 taxicabs, instead of

providing the fastest route for drivers, aiming to predict the

destination of drivers.

Different from the above centralized dispatching systems,

our cruising system pCruise provides suggestions to taxicab

drivers with an efficient scheduling, and provides the optimal

cruising route at a road segment level. Most importantly, for a

dispatching system, the passengers need to provide the demand

for taxicab companies by booking a taxicab via telephone

or Internet in advance, and the reservation is usually not

free of charge. In contrast, most passengers hail a taxicab

along the street directly, rather than booking a taxicab from a

taxicab company. In addition, our approach can be used as a

middleware under an existing dispatching system to enhance

its performance.

B. Recommendation System

Recommendation system are proposed to provide useful

business intelligence for drivers, passengers, or taxicab com-

panies to maximize their profits [13] [14]. Based on GPS

data from a metropolitan area, Zheng et al. [15] [16] [17]

present several novel methods to model the transportation in

the area. Ge et al. [18] present a model to recommend a taxicab

driver with a sequence of pick-up points so as to maximize

the profit, via a centralized solution. According to a mobile

sequential recommendation problem, the author formulates the

target problem. Li et al. [19] study how to find passengers via

several strategies for taxicab drivers in Hangzhou. They select

several features to classify the passenger-finding schemes in

terms of performances. Recently, Powell et al. [20] propose an

approach to suggest profitable grid-based locations for taxicab

drivers by constructing a profitability map where according

to the potential profit calculated by the historical data, the

nearby regions of the driver are scored serving as a metric for

a taxicab driver decision making process.

Our cruising system pCruise is different from the above

schemes in the following two key aspects: (1) The most of

above schemes utilize the entire GPS trajectories of taxicabs

to analyze or model the behaviors of taxicabs, but pCruise
only employs an ”on/off” information, i.e., Pick-up or Drop-

off spots, for the analysis. Therefore, we significantly reduce

the size of data needed to be proceeded, thus making pCruise
suitable for the implementation on low-cost devices, e.g., smart

phones. (2) Existing systems suffer from the fact that multiple

taxicabs may have the same recommended route, which com-

promises the performance of the system. In contrast, pCruise
introduces unpredictability and randomness in the system by

letting every taxicab to create its own cruising graph, which

solves the problem of multiple taxicabs selecting the same

optimal route.

VI. CONCLUSION

In this paper, we introduce pCruise, a cruising system

to reduce cruising miles for taxicab networks. Our work is

motivated by the fact that current schemes to reduce taxicabs’

cruising miles require the participation of the passengers. To

reduce cruising miles without the passengers involved, we

create a cruising graph for every taxicab and characterize it

with weights on its edges based on GPS records about nearby

taxicabs. According to the cruising graph, we propose an

efficient scheduling scheme to provide the shortest routes with

at least one passenger. Based on a 10 GB real world dataset,

we evaluate pCruise in both simulation and testbed. The results

show that pCruise is able to effectively reduce 41% of total

cruising miles on average compared to the Ground Truth. In

this work, we mainly focus on the efficiency and leave the

fairness among the taxicabs in the network as a in the future.
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APPENDIX

In this appendix, we demonstrate how to create a cruising

graph without the requirement of a background road map.

In Figure 3, we observe that pick-up or drop-off spots can

be treated as representative samples for all GPS records, and

these spots are uniformly distributed in the main streets. It

implies that these spots can serve as a virtual road map used

to create a cruising graph. Among these spots, some of special

spots form a concave spot group, which can identify a physical

intersection on the underlying road map. We can identify these

concave spot groups by the geometrical properties of spots in

them, and thus we can identify intersections.

To obtain these concave spots, we uniformly select pairs

of spots, and then construct the shortest paths among them.

Based on the geometrical properties of concave spots, the most

frequently chosen spots among all the shortest paths should

be the concave spots, if we set the radius of a spot is slighter

longer than the average distance between spots. For example,

in Figure 22, given several pick-up or drop-off spots, we show

how to identify a concave spot group and thus an intersection,

by constructing the shortest paths among uniformly selected

pairs of spots.
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a1
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b1

b2

d1 d2
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a3

c3
Concave Spot
Group Identifies
an Intersection

Fig. 22. Identify an Intersection

In Figure 22, the spots a1, a2, b1, b2, c1, c2, d1 and d2 will

become the most frequent spots in all shortest paths, and thus

form a concave spot group to identify this intersection. All the

shortest paths from spots in Group A to spots in Group B have

a1 as an intermediate point, e.g., the shortest path from a3 to

c3 will go through a1. The similar situations exist for other

concave spots. Thus, these spots can identify this intersection.
Based on concave spot groups we identified, we can create

a cruising graph to capture the natures of taxicab cruising

processes. For every intersection identified by concave spot

groups, we create a vertex. To examine the number of pick-

up or drop-off spots between two vertices, we shall identify

adjacent vertices. For every two adjacent vertices, we create

the two directed edges between them from one to another

and verse visa. Figure 23 shows an example of cruising graph

created according to pick-up or drop-off spots.

A
21 3 5 9

6 1042
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8 12

Intersections as Vertices

Road Segments as Edges

Fig. 23. Cruising Graph

In the above figure, we can see that for every intersection

in left figure, there is a corresponding vertex in right figure;

every road segment connecting two adjacent vertices has a

corresponding edge in right figure.
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