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Abstract—We are witnessing a rapid growth of electrified
vehicles because of the ever-increasing concerns over urban
air quality and energy security. Compared with other electric
vehicles, electric buses have not yet been prevailingly adopted
worldwide due to the high owning and operating costs, long
charging time, and the uneven distribution of charging facilities.
Moreover, the highly dynamic environment factors such as the
unpredictable traffic congestions, different passenger demands,
and even changing weather, can significantly affect electric bus
charging efficiency and potentially hinder further development
of large-scale electric bus fleets. To deal with these issues, in this
paper, we first analyze a real-world dataset including massive
data from 16,359 electric buses, 1,400 bus lines and 5,562 bus
stops, which is obtained from the Chinese city Shenzhen, who has
the first and the largest full electric bus network for public transit.
Then we investigate the electric bus network to understand
its operating and charging patterns, and further verify the
feasibility and necessity of a real-time charging scheduling. With
such understanding, we design bCharge, a real-time charging
scheduling system based on Markov Decision Process to reduce
the overall charging and operating costs for city-scale electric
bus fleets, taking the time-variant electricity pricing into account.
To show the effectiveness of bCharge, we implement it with the
real-world streaming dataset from Shenzhen, which includes GPS
data of the electric bus fleet, the bus lines and stops data, coupled
with the 376 electric bus charging stations data. The evaluation
results show that bCharge can dramatically reduce the charging
cost by 23.7% and 12.8% electricity usage simultaneously.

I. INTRODUCTION

With the growing concerns over the air quality and energy

security, more countries such as China and U.K. have started

their electric vehicle initiatives to reduce emissions and energy

consumption [1]. It is reported that the worldwide sales of

electric vehicles have been nearly quadrupled since 2014, and

half of the vehicle sales will be electric vehicles by 2027 [2].

As one of the most common mass transportation, buses play

an important role in people’s daily life [3]–[6]. Because of

the long travel distance and high-frequency services, electric

buses (e-bus) have greater potentials to reduce the carbon

dioxide and nitrogen oxides emissions [1] compared to other

electric vehicles, e.g., electric private vehicles (e-pvs) [7] and

electric taxis (e-taxis) [8]–[11]. Yet till date, e-buses have

not been extensively adopted in the worldwide because of

the following distinctive characteristics: (i) lack of spacious

charging infrastructures for large-scale e-bus fleets, e.g., large

charging stations with lots of parking spaces and charging

stations [12]; (ii) high purchase costs due to the relatively

new technologies, e.g., a BYD e-bus is around $263,000 [12]

in 2017, which is 2.5 times of a diesel bus; (iii) relatively high

operating cost caused by the charging fees (i.e., electricity)

compared to one-time costs of infrastructure construction and

ownership. For example, the yearly charging cost for one e-bus

is about $18,000 [13] in Shenzhen, resulting in the day-to-day

charging costs being one of the key concerns that hinder the

e-buses to release their potentials fully [1].

There are many works have been conducted on how to re-

duce the charging costs for e-taxis and e-pvs [8], [9], [14], and

some other works [15]–[22] have built the theoretical models

and simulations for e-buses. However, few works, if any, have

been done on the data-driven modeling and optimization for

real-world e-bus fleets charging. More importantly, results for

e-taxis [8], [9], [14], [23] can hardly be directly applied to

the e-buses because of the following fundamentally different

features. (i) The charging activities of e-taxis are directly

related to the income of e-taxi drivers, so their charging and

routes will be incentive-based; whereas e-bus drivers are not.

(ii) The charging activities of e-taxis are mostly distributed and

flexible. An e-taxi driver can decide when and where to charge,

while the e-bus network is based on centralized operating

and charging management. These two key differences lead to

different charging incentives and optimization goals [7].

E-buses are centrally managed with fixed timetables, which

makes it possible to design offline charging schedules and

operating strategies. However, such offline strategies are not

always optimal. The high dynamics of the real-world envi-

ronments bring great challenges for optimal solutions, making

e-buses very different from the flexible e-taxis and e-pvs. Such

dynamics may include the unexpected break-downs of e-buses,

unpredictable traffic congestions, time-variant electricity rates,

as well as the changing weather/temperature and the traffic-

light conditions [13]. For example, both too hot or too cold

weather will require the e-buses to open their air conditioners,

which drain their energy quickly. These dynamic factors will

lead to both (i) the non-deterministic departure and arrival

time for each e-bus and (ii) unpredictable State of Charge

(SOC, i.e., the remaining battery level) of e-buses when they

arrive at terminals. Note that the fixed timetables only require

e-buses to leave the terminal in time. As a result, the off-

line charging schedule and operation strategies, i.e., all e-bus

lines follow the predesigned and fixed operating and charging

patterns, may be far from the high operating and charging

efficiency. For example, some e-buses may wait too long in

the charging stations for available charging points, while other
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charging stations have a lot of unoccupied charging points.

To address these real-time issues, we develop bCharge, a

data-driven real-time charging scheduling system for large-

scale e-bus fleets based on real-world data. The dataset is

obtained from the Chinese city Shenzhen, a pilot city that

promotes e-buses in China. Shenzhen has electrified 100% of

its public transit buses and became the first and the only city

with a full e-bus network in the world. Moreover, Shenzhen

also has the largest installation base of e-buses, e.g., 16,359 e-

buses [24] in December 2017. Based on Shenzhen e-bus data,

we perform a set of data-driven analyses to understand the

behaviors of e-bus fleets and then design a data-driven real-

time scheduling strategy to reduce the overall charging cost of

the fleets. Our key contributions are as follows:

• To our best knowledge, we are the first to conduct

the city-scale data-driven investigation of the real-time

scheduling for electric bus fleets. Our investigation has

two key features based on four-year real-world e-bus data

including (i) the largest e-bus fleet in the world with

more than 16,000 e-buses; (ii) the largest number of e-bus

charging stations and charging points, e.g., 376 charg-

ing stations for e-buses. Such a large-scale data-driven

investigation enables us to identify the real-world e-bus

operating and charging issues, which are challenging to

reveal by using simulation studies.

• We design a data-driven real-time charging schedul-

ing system called bCharge taking factors of the e-bus

daily and per-charge operating distances, charging spatial-

temporal and cost distribution, charging station utiliza-

tion rate into account. bCharge is based on a thorough

data-driven analysis, which reveals some novel insights

including e-bus adoption process, e-bus demand/supply,

charging network distribution, charging activities distri-

bution, charging cost, etc. To our knowledge, this is the

first time that such detailed analyses were performed for a

large-scale e-bus fleet to support data-driven scheduling.

• Given these data-driven insights, bCharge is designed

based on the Markov Decision Process by considering

the status of the e-bus fleet and the contextual factors.

In particular, we consider both revenues and charging

cost, along with timetables and time-of-use electricity

prices to schedule e-buses among different bus lines. We

also theoretically investigate the real-time features of our

MDP-based scheduling by analyzing its time complexity.

Finally, we elaborate on how our scheduling strategy

guarantees timetables for the real-time requirement.

• We implement and evaluate bCharge based on the real-

world data in Shenzhen. The results show bCharge re-

duces 23.7% of the overall charging cost and 12.8% of

the electricity usage. Besides, some lessons learned and

experience were reported, which are helpful for other

cities to promote and optimize their e-bus fleets.

The rest of the paper is organized as follows. Section II

introduces our dataset and conducts the detailed analyses. Sec-

tion III presents the design and implementation of bCharge.

Section IV evaluates the performance of bCharge. The lessons

learned and related works are summarized in Sections V

and VI. Finally, we conclude this paper in Section VII.

II. bCharge: DATASETS AND ANALYSES

In this section, we first describe our large-scale real-world

dataset generated from the Shenzhen e-bus fleet. Based on the

dataset, we then comprehensively investigate the operating,

charging and cost patterns of the Shenzhen e-bus fleet to

motivate our real-time charging scheduling.

TABLE I
SPECIFICATIONS OF ONE TYPE E-BUS IN SHENZHEN

Model Capacity Length Charging Max. Speed Max. Dist
BYD K9 324 kWh 12m 3h 90 km/h 250 km
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Fig. 1. Number of e-buses and diesel buses.

Our bCharge is

based on large-scale

e-bus datasets obtained

from Shenzhen, the

4th-largest city in the

Chinese mainland. The

time span of these

datasets is from the

year 2014 to 2018,

during which Shenzhen has experienced a very fast growth

of e-buses, i.e., the percentage of e-buses among all buses

(i.e., e-buses and diesel buses) has raised from 7.8% to 100%

as shown in Fig. 1. One of the most popular e-bus vehicle

models in Shenzhen is BYD K9, whose specifications are

shown in Tab. I. The battery capacity and maximum traveling

distance of BYD K9 are 324 kWh and 250 km, respectively

[25]. The four-year datasets include five different types of

data, and the details are given as follows.

• GPS Data include 1.92TB historical and real-time GPS

records of all buses in Shenzhen from July 2014 to May

2018. Each record includes 19 fields describing the status

of a bus, e.g., the time-stamps, the bus ID, the bus line ID,

the GPS location (i.e., longitude and latitude), the current

speed, the direction and the total mileage (i.e., odometer

data). The GPS data are collected by an onboard device

with a cellular connection in real time.

• Bus Stop Data include all bus stops’ information of 1,400

bus lines (including inbound and outbound directions)

with 5,562 unique bus stops. For each bus stop, there are

seven key fields including the route ID, the line direction,

the stop name, the GPS location, etc.

• Bus Transaction Data include all transaction records

of passengers’ trip fares. The average daily number of

passengers taking buses using smartcards is about 2.4

million, and 5 million in total. Each transaction has six

key fields including the route ID, the line direction, the

station ID, the station name and the GPS location.

• Bus Charging Station Data include the station names,

the station IDs, the GPS locations and the number of
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charging points in each station. There are 376 e-bus

charging stations in Shenzhen as of the end of 2017.

• Electricity Rate Data include the time-variant electricity

pricing within 24 hours of Shenzhen. Shenzhen adopts

the time-of-use rating, which breaks up 24 hours of a day

into several intervals and charges a different price for each

interval [26]. The rates in Shenzhen are divided into three

types, i.e., off-peak prices (low rates), semi-peak prices

(medium rates, also called flat rates) and peak prices (high

rates), and the corresponding electricity rates are 0.049,

0.121, and 0.173 $/kWh, respectively. The time-variant

electricity pricing in Shenzhen is shown as Fig. 2.

Based on these data, we perform an intensive data-driven

analysis to understand the operating and charging patterns of

the Shenzhen e-bus fleet. The details are shown below.
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Fig. 2. Time-variant industrial elec-
tricity prices in Shenzhen.
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Fig. 3. The number of lines served
for each bus in Shenzhen.

B. Operating Patterns

A visualization of Shenzhen e-bus network is shown as

Fig. 4, where the yellow and red parts stand for the bus lines

across Shenzhen. There are more passengers in the yellow part

and fewer passengers on the red lines.

# Bus 16 359 
# Bus Line 1 400 
# Bus Station 5 562 
# Bus Passenger  M

# Bus Passenger

Fig. 4. Station and line distribution of Shenzhen bus network.

We found that the bus lines reach to the most remote areas

although the highest density of lines is in the central business

district area. We also found that the bus in Shenzhen may serve

different lines at different times of a day, e.g., rush hour and

non-rush hour. The number of lines served by each bus can

be seen from Fig. 3. We found that about one-fifth of buses in

Shenzhen serve for more than one fixed line, which indicates

it is feasible for us to schedule e-buses to serve other lines.

We further investigate the daily operating distances and the

distances between two charges of Shenzhen e-buses. The Cu-

mulative Distribution Function (CDF) of operating distances

between two charges of all e-buses is in Fig. 5.

Fig. 5. Distance betw. two charges. Fig. 6. Daily operating distance.

We found that about 50% e-buses operate no more than

97 km between two charges, even though their maximum

operating distance is around 250 km, which is caused by many

real-world factors, e.g., the availability of charging points, the

electricity prices, and the range anxiety. Further, we show the

CDF of total daily operating distances of each e-bus in Fig. 6.

We found that the daily operating distances of 68% e-buses

are less than 200 km, which is the maximum practical distance

most e-buses would travel before a charge. Besides, 32% e-

buses travel more than 200 km per day, which means they

need at least two charges per day. Considering 50% e-buses’

operating distance between two charges is no more than 97

km, most e-buses need to charge at least two times per day.

C. Charging Patterns

We utilize long-term bus data and charging station data to

fully understand the overall e-buses charging patterns in Shen-

zhen. The spatial distribution of the e-bus charging stations is

in Fig. 7, where the sizes of the circles indicate the number

of charging points in each station.

Bus Charging Station

Downtown Area

Fig. 7. Spatial distribution of Shenzhen e-bus charging network.

We found that most large stations are located in suburban

areas, which is because there are more available and cheaper

land resources in these areas than that in downtown areas.
Fig. 8 shows the charging start time distribution of the e-

bus fleet. We found that there are two clustering charging time

durations, i.e., 00:00-6:00 and 16:00-20:00, while very few

charging events occur around 12:00 due to high electricity

prices. The probability of charging events starting at various

types of electricity rates is shown in Fig. 9. We also found that

about 60% charging events start at off-peak hours but there is

about 18% charging occurring during peak hours.
We further investigate the daily charging time of each e-

bus. As shown in Fig. 10, only 13% e-buses spend less than

3 hours for charging each day but the charging time of over

80% e-buses is no more than 5 hours, which indicates most

e-buses spend 3-5 hours for at least two charges in each day.
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Fig. 11. Dist. to charging stations.

In the Shenzhen bus network, all the e-buses for the same

line typically utilize the same charging stations, but they may

not be the closest charging stations to their terminals. It leads

them to take detours to charge due to parking issues even

though there are closer charging stations. As a result, we

investigate the distances between bus lines’ terminals and

the closest charging stations to them. Besides, we also study

the distances between bus lines’ terminals and the charging

stations they actually went to charge. As shown in Fig. 11, we

rank the bus lines according to the actual traveling distances

to charge in ascending order. Even though 52% bus lines have

charging stations within one kilometer, there are still 7% bus

lines need to go to charging stations beyond 5 km away.

To study the station effectiveness, we define Charging

Station Utilization Rate at a station si in a day as follows.

UR(si) =
CE(si)

CP (si)
, (1)

where CE(si) is the daily number of charging events in the

station si; CP (si) is the number charging points in station si.
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Fig. 12. Daily station utili. rate.

Fig. 12 shows the daily

charging station utilization

rates in Shenzhen. We found

that the utilization rates of

50% charging stations are no

more than 4. However, there

are also some charging sta-

tions with very high utiliza-

tion rates, e.g., 12. These unbalanced utilization rates lead to

the charging resources waste in some stations while crowded

and long-waiting charging events in some other stations.

Besides, we have conducted a series of field studies in 2018

to investigate the charging patterns of e-buses in Shenzhen.

Fig. 13 shows the e-buses and a charging station we visited

in Shenzhen. More details will be given in Section V.

Shelter

a E-buses in Shenzhen b Charging station in Shenzhen

Charging PointCharging Point

Fig. 13. Electric buses and charging stations in Shenzhen.

D. Cost Patterns

Based on these charging station utilization rates, we further

study charging start time and charging distribution over time

of day to understand the electricity usage and charging costs.

As shown in Fig. 14, the highest electricity usage for e-

bus charging occurs in the off-peak hours, accounting for

63% of the total electricity usage. However, there is still

13.6% electricity usage during the peak hours. Although the

percentage of electricity usage in the peak hours and flat hours

is much lower than the usage in the off-peak hours, the usage

in these two durations can cause more charging costs than the

peak-hour charging due to the time-of-use pricing strategy.
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Fig. 14. Electricity usage.
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Fig. 15. Charging cost distribution.

In Fig. 15, the charging cost distribution is different from

the electricity usage distribution. In particular, we found the

electricity cost gap between 8:00-20:00 and 20:00-8:00 in

Fig. 15 is much smaller than the electricity usage gap between

the same two periods in Fig. 14. This indicates that even

though the bus fleet does not charge much during 8:00-20:00,

the costs are almost as high as 20:00-8:00, during which the

e-buses charge substantially. As a result, it motivates us to

answer a question that whether we can reduce the charging

cost by scheduling more charges in off-peak hours, i.e., further

increasing the electricity usage gap between 8:00-20:00 and

20:00-8:00 since a small usage decrease during peak hours

will result in a huge cost decrease.

III. bCharge: SCHEDULING DESIGN

We first present our problem formulation by showing the

existing operating and charging scheduling for Shenzhen e-

buses and our scheduling idea. Then, we introduce the detailed

design of our bCharge in terms of scheduling formulation,

scheduling design, and scheduling complexity analyses. Fi-

nally, we describe the timetables guarantee of our scheduling.

A. Problem Formulation

1) Existing Operating and Charging Patterns: Fig. 16

shows the operating patterns of buses in Shenzhen. In Shen-

zhen, a bus line generally has two terminals, e.g., Terminal A
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and Terminal B in Fig. 16. Based on the timetable for this line,

a Bus 1 travels from Terminal A to Terminal B (or from B to A)

through some intermediate bus stops, and then goes back to the

Terminal A (or B). During the same time, multiple buses are

serving for this line with same or different directions, e.g., Bus

2. For e-buses, they need to charge when their SOC decrease

to a pre-defined low threshold. Besides, different from other

electric vehicles (e.g., e-taxis and e-pvs), e-buses generally

make charging decisions (i.e., to charge or to continue to serve)

only after they arrive at bus terminals. This is because of their

operational feature, i.e., they normally cannot charge in the

middle of a trip with bus passengers onboard. As a result,

based on this feature, the charging stations in Shenzhen are

usually deployed near terminals or at terminals, which also

addresses the parking issues since e-buses need lots of space

for parking compared to taxis and private vehicles. Moreover,

in Shenzhen, nearly half of the e-buses in the fleets charge at

their closest terminals as Fig. 11 shows, (e.g., the terminals

they just arrived) which may potentially decrease the charging

efficiency of the entire e-bus charging network due to the

unbalanced charging points placement (e.g., fewer charging

points in the downtown and more in the suburb), resulting

in no charging points available when e-buses arrive at their

charging stations but many unoccupied charging points in

some other charging stations.

Terminal A Terminal B

Bus 1

Intermediate Stops
Bus 2

Fig. 16. Existing bus operating and charging patterns.

2) bCharge Operating and Charging Patterns: In this work,

we focus on the real-time charging scheduling problem for

e-bus fleets, considering the overall operational cost and

revenues of all e-buses in the fleet, instead of individual

vehicles, given its centralized management mode. Compared

to conventional diesel buses, e-buses are less flexible due to

their limited operating ranges and reliance on the charging

infrastructures, which makes it challenging to schedule the

e-bus fleet to operate and charge, especially for a large-scale

fleet. Besides, the lower flexibility of e-buses potentially makes

it necessary to (i) purchase more extra buses for contingency

plans to cover additional ranges on routes or (ii) redesign the

lines to accommodate e-buses. These two actions have been

taken in Shenzhen. Moreover, the time-variant electricity rates

compared with the 24-hour stable diesel price also cause the

charging issues of e-bus fleets more complicated.

In bCharge, we consider different real-world factors for e-

buses including time-variant electricity rates and scheduling

between different lines/extra e-buses. Weather conditions, con-

gestion, time of day, and demographic features as contexts

are implicitly considered since we leverage both the historical

and real-time GPS records to predict energy consumption

to serve a particular line with detailed routes. Based on

previous research [27]–[29], both periodic congestion and

static demographic features remain stable for the same spatial

temporal combination, e.g., for the same road segment during

the same time of different days. As a result, our historical GPS

records implicitly contains the period congestion and basic

demographic features. Our key idea for bCharge is that we

schedule some e-buses to serve other bus lines which share

the same terminals with it when they arrive at their terminal

based on some real-world factors. These factors we considered

include: (i) the real-time SOC of e-buses; (ii) the availability of

charging points in charging stations; (iii) the expected energy

consumption of different lines, which is related to both lengths

and travel time related to traffic; (iv) the expected charging cost

at particular terminals for different time slots of a day, which is

related to both charging point availability (e.g., staying without

charging if no point available) and electricity prices. Our final

consideration for the scheduling is that we have to guarantee

the timetables of all lines, which we will clarify in Sec. III-C.

Based on this key idea, we make streaming scheduling

decisions after each e-bus arrives at a terminal and drops

off all passengers since all e-buses arrive at terminals in an

online fashion [7]. In particular, bCharge has four potential

scheduling modes for an e-bus when it is in a terminal based

on the four factors we discussed in last paragraph: (i) stay at

the terminal; (ii) charge at the terminal immediately; (iii) keep

serving the current line, i.e., go back to the terminal it came

from; (iv) serve another line, i.e., go to a different terminal.

3) Scheduling Objective: The objective of our bCharge is

to optimize the e-bus fleet by reducing the overall operational

cost and increasing the profits by collecting fares for serving

passengers, which can be formulated as follows.

Fs − Cc =
∑
t∈24h

Neb∑
n=1

(F t
n −Rt · Ct

n) (2)

where Fs is the collected fare for serving passengers of the

whole e-bus fleet; Cc is the charging cost for operating the

e-bus fleet; Neb is the number of e-buses in the fleet; F t
n is

the fare collected by the nth e-bus during time t by serving

passengers for a particular line; Rt is the electricity rate at

time t; Ct
n stands for the electricity consumed (i.e., charged)

by the nth e-bus during time t. As Eq. 2 shows, the overall

optimization objective depends on three items, e.g., the real-

time electricity rates, the energy charged by each e-bus and the

fares collected by each e-bus. Compared to the taxi and private

vehicles, bus passenger demand is more stable and the fare is

flatter in Shenzhen [30], so the expected fare can be obtained

by historical data given a time and a bus line. As a result, we

focus on deciding on scheduling e-buses to serve which lines

and when to charge for reducing the overall charging cost.

An intuitive idea to achieve this goal is to have enough

buses and to schedule all the e-buses to serve their original

lines and to charge only during the off-peak hours, i.e., 23:00-

7:00. However, given the limited buses in Shenzhen and a large

number of lines as indicated by Fig. 6, around 32% e-buses

cannot accomplish the daily operating task with one charge

during nights alone. Note that for practical consideration, we

only focus on scheduling existing buses for improving the

charging efficiency, instead of adding new buses in this paper.
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B. Charging Scheduling

Since e-buses arrive at bus terminals in an online fashion,

we schedule the charging task for e-buses one by one. One

of our major technical contributions in this paper is that we

formulate the e-bus charging scheduling problem as a Markov

Decision Process (MDP) problem to reduce the charging cost.

An MDP is a discrete-time state transition system, which

aims to find an optimal policy to maximize the expected utility.

Formally, an MDP is defined as a 5-tuple (S, A, T, R, β) [31],

[32]. The MDP framework of bCharge is shown as Fig. 17.

• S is a set of states. For the charging scheduling scenario,

we define four different states according to the SOC of

e-buses. As Fig. 17 shows, the four states in bCharge are

(i) SOCf , which indicates an e-bus is at the Full SOC;

(ii) SOCf
c , which indicates the SOC of an e-bus is lower

than the Full SOC but higher than a SOC with which it

can serve the Current line, i.e., go back to the original

terminal; (iii) SOCc
l , which indicates the SOC of an e-bus

is lower than the required SOC to serve the Current line

but higher than a mandatory charging threshold, i.e., it

may still have SOC to serve other lines sharing the same

terminal with it; (iv) SOCl, which indicates the SOC of

an e-bus is below than the mandatory charging threshold,

i.e., it needs to charge and cannot serve any lines.

• A is a set of actions. In bCharge, there are four actions:

(i) AS : Staying at this terminal but not to charge; (ii)

AO: going back to the Original terminal, i.e., serving

the current line; (iii) AN : serving a New line; (iv) AC :

Charging at this terminal. For the charging scheduling,

the results of the former three actions follow the energy

non-increasing principle, i.e., the energy in the next state

does not exceed the current state; whereas, for the state

AC , i.e., charging, it increases the SOC of e-buses.

• T is a state transition matrix, which consists of the

probability transition from one state to another state by

taking an action. For example, T(SOCf , AO, SOCf
c )

=PAO

SOCf→SOC
f
c

= p01 means the probability of an e-bus

transferring from the full battery capacity SOCf to SOCf
c

by serving its own line (i.e., action AO) is p01.

• R is a reward function. For each action, the scheduling

strategy will cause a corresponding reward. In the charg-

ing scheduling problem, if an e-bus stays at the terminal

(i.e., AS), it will have no passengers (i.e., no revenue) and

also have no energy consumption (i.e., no cost), so the

current reward is 0. When e-buses serve for passengers

(i.e., the action AO or AN ), they will have passenger

fares for this line, so they will have a positive reward Vi,

which is based on which line they serve. But if they take

the action AC , there is a charging cost for electricity, so

the reward is negative, which is denoted as the -Wj in

Fig. 17, where 1 ≤ j ≤ 3. The different negative reward

values depend on the real-time electricity rates and the

current SOC, as well as their full battery capacity.

• β is the discount factor, which captures the fact that an

immediate reward might be worth more than the same

reward in the future. The value of β is generally selected

from [0,1), so the final expected utility will be convergent

and bounded to a finite number. β is set up to 0 if and

only if we do not consider the future reward.

SOCf SOCf
c

A A AN

A

SOCc
l SOCl

p11

A -w1 A -w2 -w3

v1 v2
A

1

A A

1 1

v3

1

p10

p20
p30

p23
p01 p12

p22

0 0 0 0
A

Fig. 17. Markov decision process for charging scheduling.

Definition 2: a policy π is defined as a distribution over

actions given states, which gives the e-bus an action to execute

at each state so as to maximize the expected utility.

π (a|s) = P [A = a|S = s] (3)

where a ∈ A(s) = {AS , AO, AN , AC} and s ∈ {SOCf , SOCf
c ,

SOCc
l , SOCl}.

Definition 3: an utility of a state for a given policy is

defined as Uπ(s), which can be formulated as

Uπ(s) = E

[
∞∑
t=0

βt ·R(st)|π, s0 = s

]
(4)

where s0 is the initial state; st is the state of the e-bus after

executing the policy π for t actions; βt is the discount after t

actions; and R(st) is the immediate reward at each state.

The objective of the data-driven charging scheduling strat-

egy is to derive an optimal policy π∗ that achieves the

maximum utility U∗ (s) for all states, which is formulated

as the Bellman Equation [33] as Eq. 5.

U∗ (s) = max
π

Uπ (s)

= max
a∈A(s)

[
Rsa + β ·

∑
s′

P a
ss′ · U

∗ (s′)

]
(5)

where Rsa is the immediate reward after taking the action a in

the state s, which is also the operational revenue or charging

cost after taking different actions.
∑
s′

P a
ss′ · U

∗ (s′) is the

expected future utility. As Eq. 5 shows, the immediate reward

Rsa, the discount factor β, and the transition probability P a
ss′

are required in order to obtain the best policy.

As shown in Eq. 2, the objective of our bCharge is to

minimize the overall charging cost of the e-bus fleet and

maximize fares collected for serving passengers. The fares

would be reduced if the e-buses do not keep the timetable,

e.g., some passengers may take taxis. In this work, we envision

that the fares are maximized if the timetables of all lines are

kept as much as possible, which is ensured by our scheduling

policy, which we will explain in Section III-C. As a result, the

objective of Eq. 2 is equivalent to the objective of Eq. 5, which

indicates we can leverage an existing MDP solver, i.e., MDP
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Toolbox, to solve the e-bus charging scheduling problem by

considering both charging cost and revenues of collected fares.

In the next section, we will theoretically investigate if this

MDP-based scheduling can satisfy the real-time requirement

by studying its scheduling complexity.

Scheduling Complexity: There are two common ap-

proaches to solve the MDP optimization problem, i.e., value it-

eration and policy iteration [34]. There are n unknowns needed

to solve in the equations when there are n states. If we leverage

the value iteration, we need to use max in the equations, which

is nonlinear, resulting in complexity of O
(
m · n2

)
for each

iteration for m actions. However, the policy iteration has the

operation
∑

instead of the operation max in the equations,

which implies that the equations are linear. Thus, solving these

n linear equations is with a complexity of O
(
n3

)
. Since we

have four states and four actions in our scheduling process,

the time complexity of the two approaches is similar for

each iteration. However, the policy iteration searches a finite

policy space instead of an uncountably infinite value space,

indicating the policy iteration converges much faster than the

value iteration. Now, we have shown that the policy iteration

satisfies the real-time requirement for scheduling. In the worst

case, the policy iteration for bCharge needs to search all the

policy space, which is limited by the number of our states

and the limited number of lines sharing the same terminals.

Then the total time cost of the policy iteration for bCharge is

linear, which can be easily realized at the second level for a

normal PC, so the policy iteration based MDP is fast enough

for the real-time charging scheduling requirement. Therefore,

we leverage the policy iteration to find the best charging

scheduling policy for e-buses.

C. Timetable Guarantee

Since keeping the timetable is critical for the bus fleet

operation, our algorithm considers the timetable constraint

and effectively guarantees timetables for e-bus lines when

performing the scheduling. Our scheduling can be regarded

as a priority-based scheduling and the priority is decided by

the utilities that different strategies can achieve, which means

a higher utility strategy has a higher priority. As follows, we

show how our scheduling algorithm guarantees timetables for

bus lines with an example. As shown in Fig. 18, the line L1

and line L2 share the same terminal T1, and there are many e-

buses serving for different lines, e.g., BL11 for L1 and BL21 for

L2. There are three different scenarios when bCharge makes

scheduling: (i) If the next e-bus BL11 for line L1 can have

a better scheduling to serve another line, e.g., L2, compared

to the original line L1 and another e-bus BL12 or BL13 is

available for L1, then we schedule BL11 to serve another line

(e.g., L2) and have BL12 or BL13 to take the place of BL11.

We utilize the charging deadline to break the tie if multiple e-

buses were available, which means our scheduling strategy will

choose the bus with the highest SOC to replace BL11. In this

way, the timetable of L1 is guaranteed. (ii) If we cannot find

the next bus BL12 and BL13 for L1 to guarantee the timetable

of BL11, we find all other lines that share the terminals with

L1, i.e., L2 in this example, for an extra backup bus for L1

(which do not affect their timetables). If there is an e-bus

available from BL21, BL22 and BL23, then the timetable of L1

can be guaranteed while we schedule BL11 for other lines. (iii)

if there are no available buses from all other lines (e.g., L2) to

guarantee the departure timetable of BL11, we keep bus BL11

on L1 to guarantee L1’s timetable. E-buses prioritize serving

the original lines over new lines when they can achieve the

same performance by serving different lines, which is also

for guaranteeing the timetables of all bus lines. For example,

at the beginning of a day, all e-buses have enough energy to

serve current lines and other lines so that they will keep their

current lines. In this case, the timetable is always kept.

Terminal T1 Terminal T2

Bus BL11

Intermediate Stops
Bus BL12

Bus BL13

2
Bus BL14

Line L1 Line L1

Terminal T3Intermediate Stops

22

Bus BL24

3
Bus BL25

Line L2

Bus BL21

Bus BL22
Line L2

Bus BL23

Fig. 18. Scheduling with timetable guarantee.

IV. EVALUATION

In this section, we extensively evaluate the performance of

our bCharge based on the massive e-bus data from Shenzhen

by three different metrics, i.e., temporal distribution of charg-

ing events, the spatial distribution of charging events, and the

most important electricity usage & charging cost.

A. Experimental Setup

Data Management: Due to the data-driven nature of our

bCharge, we introduce how we manage our multi-source

data related to e-buses as follows. In this project, we are

working with Shenzhen Transportation Committee, and we

utilize various data processing frameworks. The streaming data

from Shenzhen e-buses require significant efforts for efficient

management, querying, and processing. We employ a high-

performance cluster with Spark for data processing. The details

are given as follows: (i) 12 HP machines with 2 Tesla K80c

each; (ii) 10 Dell machines with 4 Tesla K80c each; (iii) 4

Xeon E5-2650 with a half TB memory each; (iv) A series

of 800GB SSD and 15TB of spinning-disk spaces; (v) 2 PB

additional disk space. Due to the large size of our bus data, we

performed a detailed cleaning process to filter out duplicate,

error, and incomplete GPS/transaction data. More importantly,

the key challenge in bus transaction data processing, compared

to bus GPS data processing, is to protect the privacy of

smartcard users and ensure the utility of the models at the

same time. Due to space limitation, we briefly mention our

privacy consideration in Sec. V.

Evaluation Data: In this evaluation part, as introduced

in Sec. II, we utilize one-week GPS records generated by

16,359 e-buses from January 13th -19th 2018, in Chinese city

Shenzhen. More than 69.6 million GPS records are generated

by the e-bus fleet during this period. In addition to GPS data,

the evaluation dataset also includes the static data of 376 e-bus

charging stations, 1,400 bus lines, and 5,562 bus stops.
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Parameter Setting: In our charging scheduling strategy

bCharge, four parameters are needed to decide, as follows:

• Four Different States: For SOCl, we decide it based on

the real-world interaction with Shenzhen e-bus drivers.

Based on our field studies in Shenzhen, drivers of e-buses

are very conservative, and they normally stop serving

passengers and go to find charging points if the SOC

declines to 30%. As a result, we set the SOCl to be

30%. Based on the expected real-time traffic and current

line serving, we can calculate the energy consumption

for serving the current line and other lines for each bus,

which gives us the SOCf
c and SOCc

l since we have SOCl.

• Discount Factor β: We empirically choose the discount

factor β as 0.9 to guarantee the convergence of the

algorithm similar to the previous work [35].

• Immediate Reward Rsa: For the immediate reward, the

Vi (1 ≤ i ≤ 3) is the expected revenue by serving

different lines, which are calculated based on historical

bus passenger demand; Wj (1 ≤ j ≤ 3) is the expected

charging cost, which is calculated based on the time of

scheduling and the real-time SOC of e-buses.

• Transition Probability P a
ss′ : For the state transition

probability, if an e-bus takes action AS , it will stay in

the same state, so the probability is set to 1. Since there

is also no electricity consumption and operational profits,

the reward is also set to 0 when taking action AS . If there

is only one possible transition, the probability is also 1

since the sum of the transition probabilities is 1, so p01 is

1 in Fig. 17. Other transition probabilities are calculated

in real time based on policies given in Sec. III-B.

Baseline Setting: To show the effectiveness of our real-

time charging scheduling for e-bus fleets, we compare the

performance of our bCharge with Ground Truth and an-

other real-time scheduling method called Earliest-deadline-

first (EDF), which is a common method for electric vehicle

charging scheduling [7], [8]. In EDF, we schedule the e-buses

with the earliest timetable deadline to charge first. Further,

we leverage three metrics to understand the performance of

bCharge. They are (i) the temporal distribution of charging

events, (ii) the spatial distribution of charging events, and (iii)

most importantly, the electricity usage and charging cost.

B. Temporal Distribution of Charging Events

Fig. 19 and Fig. 20 show the distribution of the charging

start time of bCharge, EDF and Ground Truth in different

electricity rates durations, i.e., different time slots of a day.

We found that there are more charging events happen in

23:00-7:00 under bCharge, resulting in less charging events

during the daytime. Especially during 18:00-21:00, the gap

between bCharge and the Ground Truth is more obvious. This

is because bCharge schedules some e-buses that have been

charged during 12:00-16:00 to serve other lines for some other

e-buses, leaving these e-buses to charge after 23:00 for a lower

rate. While during 16:00-18:00, more e-buses need to charge

after the long-time operation, which results in the increase

of charging events under EDF. Overall, bCharge has more

charging events during the late night to early morning, i.e.,

off-peak hours, which potentially lead to lower charging cost.
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Fig. 19. Charging start time during
the peak & flat hour.
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Fig. 20. Charging start time during
the off-peak hour.

C. Spatial Distribution of Charging Events

We leverage the Charging Station Utilization Rate that

we defined in Sec. II to describe the spatial distribution

of e-bus charging. As shown in Fig. 21, there are fewer

charging stations with too high or too low utilization rates

with bCharge and baselines. The number of charging stations

with the utilization rates between 3-6 accounts for 73%

under bCharge, achieving 7% improvement compared to the

Ground Truth. Since EDF does not change the charging

locations of e-buses, the utilization rate of EDF is same as

the Ground Truth. The balanced utilization of the charging

infrastructure can effectively reduce the under-utilization and

the overcrowded waiting phenomenon in the charging stations.
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Fig. 21. Comparison of the utili. rate.

The reason why bCharge

balances the charges be-

tween stations is that the

e-buses can be scheduled

to serve for different lines

under bCharge, which in-

creases the flexibility of

scheduling and potentially

leads to better performance. For example, when an e-bus

arrives at the terminal and it needs to charge, but no charging

points are available at this charging station. Besides, its SOC

is not enough for serving the current line, i.e., go back to

the original terminal. In this case, bCharge schedules the e-

bus to serve another shorter line with lower expected energy

consumption, e.g., a shorter distance or a less congested route.

Hence, bCharge can potentially improve the charging effi-

ciency of two charging stations at the same time, i.e., reducing

the utilization rate of one charging station and increasing the

utilization rate of the other to balance their rates.

D. Electricity Usage & Charging Cost

Fig. 22 and Fig. 23 show the electricity usage for e-bus

charging in different electricity rates durations. We found

bCharge have more electricity usage during the midnight to

early morning, especially during 23:00-23:59. This is because

bCharge schedules some e-buses with enough energy to serve

for other lines before this duration and then charge during this

period, resulting in more electricity usage during this period.

Besides, bCharge also reduces the electricity usage during

daytime peak hours, e.g., 14:00-16:00. EDF increases the

electricity usage during 16:00-18:00, due to the high charging

demand in this duration. In total, our bCharge reduces 12.8%
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Fig. 22. Electricity usage during the
peak & flat hour.
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Fig. 23. Electricity usage during the
off-peak hour.

(701 MWh) and 8.2% electricity energy for the e-bus fleet in

Shenzhen per day compared with the Ground Truth and EDF.

Fig. 24 and Fig. 25 show the charging cost distribution.

We found that the cost gap between bCharge and Ground

Truth/EDF is more obvious than Fig. 19 during the daytime.

This is because the electricity rates in the daytime are much

higher than the price of off-peak hours at late night. Even

though bCharge causes a slightly higher charging cost for

the fleet during 23:00-2:00, it reduces 23.7% ($106,870) and

17.8% of the overall charging cost for one day compared

with the Ground Truth and EDF, which indicates bCharge can

potentially reduce 39 million dollars for the Shenzhen e-bus

fleet per year based on the current Shenzhen e-bus budget.
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Fig. 24. Charging cost during the peak
& flat hour.
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Fig. 25. Charging cost during the off-
peak hour.

V. LESSONS LEARNED

Based on our results, we have been conducting a few rounds

of field studies to verify the patterns we found. In particular,

we have been communicating with bus drivers, fleet managers,

and charging station operators to fully understand the potential

impacts of our study and the implication of our scheduling.

We summarize a few lessons we learned from the project and

field studies regarding the e-bus fleet in Shenzhen below.

Data Issues: The most unexpected lessons we learned is the

data issues. In our field studies, we have been communicating

with various interested parties for data collection, data quality,

and data management. We summarize a few key insights as

follows. (i) Since the Shenzhen e-bus fleet is operated by

three companies, the data formats and access policies are very

different. It takes us a long time to prepare the bus GPS

data to understand the current operating patterns. (ii) Further,

Shenzhen bus fare data are managed separately by a smart-

card company, and the fare data regarding smartcards have

personal information, e.g., cellphone number and addresses.

The company staff at the smartcard company has removed all

these personal information from the smartcard data in order

to help us understand the bus passenger demand anonymously

without privacy concerns. (iii) The detailed charging data

at each charging point of all charging stations can provide

more detailed insights into the charging behaviors for our

scheduling. However, since the charging stations in Shenzhen

are operated separately by several companies and they compete

for each other, these charging data cannot be shared even after

multiple negotiations. As a result, our charging activities are

inferred by GPS data. (iv) Since Shenzhen just finished the

process to replace all their regular buses with e-buses, the

fleet management process is in transition. Lots of e-buses went

to different charging stations based on some ad-hoc factors,

e.g., charging station renovation and road work, which is hard

to make sense and quantify with real-world data. We have

reported many data issues to the fleet management team, and

some of the problems they already knew but lots of issues

are new to them. Based on our interactions with the fleet

management team, these issues will be addressed soon.

More Buses vs. Effective Scheduling vs. More Charging

Stations: Another lesson we learned from our analyses and

field studies is that Shenzhen right now just finished the first

stage of their e-bus plan, i.e., replacing all regular diesel buses

with e-buses for a fully electric bus fleet. The second stage (yet

more challenging and unclear) is the charging infrastructure

upgrade, which is expected to take a much longer time due

to various complicated issues, e.g., the land prices, the site

survey, and security issues. For example, Shenzhen has one of

the highest land prices in China and a charging station near the

downtown area will cost more than 60 e-buses based on our

interactions with the Shenzhen e-bus operators. As a result,

for now, effective scheduling or even buying more buses is

more practical than building new charging stations.

Additional Drivers Exclusively for Charging: The final

unexpected lesson is the labor-intensive charging operation in

the night. Fig. 26 shows a detailed charging station setting in

our field studies and their status at two different times of a day.

We can see that all charging points are occupied by e-buses at

23:05; whereas only one e-bus was charging at 17:06. This is

because the electricity rate between 23:00-7:00 is much lower

than the rate at 17:00. However, given limited charging points

Fig. 26. Charging station status in different times.

due to high costs, e.g., 80,000 US dollars for a charging point

deployment, e-buses need to be moved around before or after

charging, but the regular bus drivers will be off-duty after
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23:00 and before 7:00. Hence, the Shenzhen e-bus network

hires additional drivers just for moving buses during late night

and early morning charging. In particular, one of the three e-

buses operating companies in Shenzhen has 750 additional

drivers just for moving e-buses before or after charging. By

considering this labor cost factor, it may be more reasonable to

charge more buses during the daytime since regular drivers can

move the buses without cost for additional drivers. However,

based on our interactions with the fleet management team,

hiring additional drivers is a short-term and temporary issue

since the charging points will be upgraded soon, e.g., longer

and secure cables, to address this issue.

Implementation in Different Cities: The bus networks in

different cities typically have different operating patterns due

to geographic and demographic features, so it is extremely

significant to implement bCharge in different cities. Currently,

we are in the process of obtaining bus data from other cities

for dual-city modeling. But since only Shenzhen has a fully

electric bus network, it is hard to find such a large fleet

for a parallel study currently. One possible direction we are

exploring is to design transfer learning models to transfer the

knowledge (e.g., operating pattern, charging pattern, etc) from

the Shenzhen e-bus network to bus networks in other cities

for a “what if” investigation. For example, what if all regular

buses in Beijing or New York City were replaced by e-buses,

how much will it cost and how to schedule e-buses for these

cities. It opens some very interesting research directions.

VI. RELATED WORK

There are two different charging management modes for

electric vehicles, i.e., centralized and decentralized ones [7],

[36]. For the existing research, some works are based on large-

scale real-world data, while others leverage a small dataset

or experiment-based simulations. Based on these two factors,

we divide the electric vehicle research into four different

categories, which can be seen from Tab. II.

TABLE II
CATEGORIES OF RELATED WORK

Scheduling Small-Scale City-Scale (> 500 vehicles)
Decentralized [15], [16], [37]–[40] [8]–[11], [14], [17]
Centralized [7], [36], [41]–[45] bCharge

A. Decentralized Scheduling

Small-scale Scheduling: The decentralized charging schedul-

ing of electric vehicles has been widely studied by many

researchers, but most of them are based on the small-scale

or experiment-based simulations. [37] develops a reservation

recommendation algorithm for electric vehicles considering

the shortest distance and shortest waiting time. [16] presents a

distributed power schedule framework based on Game Theory

to obtain the optimal schedule for online electric vehicles.

These works are based on small-scale data or theoretical

models, which are hard to capture the dynamics of real-world

large-scale electric vehicles operating and charging patterns.

City-scale Scheduling: [9] designs a recommendation sys-

tem for e-taxis to reduce the total charging time cost for

each driver. [14] develops a charging station deployment and

charging point placement framework to minimize the overall

charging time of e-taxis. PickaChu [11] provides a charger

deployment scheme that maximizes the probability of picking

up passengers for e-taxis and minimizes the deployment cost.

They aim to schedule e-taxis or find the optimal locations

to deploy charging infrastructures for e-taxis for reducing the

operating cost or deployment cost based on real-world data.

But they are based on a distributed charging nature; whereas

in this work, we consider a centralized scheduling model.

B. Centralized Scheduling

Small-scale Scheduling: There are also some existing works

for the centralized scheduling of electric vehicles based on

small-scale data or experimental simulations. [43] introduces

and analyzes the electric transit bus system with wireless based

on one e-bus line in a research institute campus. [36] proposes

a population-based heuristic approach to minimize the total

charging cost, which is executed on a 20-bus test system.

[42] proposes an effective charging rate control algorithm

to optimize the social welfare of electric vehicles. However,

these small systems cannot fully reveal the complexity and

advantage of centralized scheduling for city-scale systems.

City-scale Scheduling: Different from the existing work, our

work addresses a practical charging issue for e-bus fleets by

centralized scheduling in a setting of city-scale systems. To

our best knowledge, bcharge is the first work of city-scale

data-driven investigation on studying the real-time scheduling

for e-bus fleets. Such a data-driven investigation enables us to

identify the real-world e-bus operating and charging issues,

which are challenging to reveal using simulation studies,

small-scale data or under a decentralized setting.

VII. CONCLUSION

In this paper, we conduct, to the best of our knowledge, the

first study called bCharge for real-time charging scheduling of

e-bus fleets based on a real-world dataset in Shenzhen, which

includes the data from 16,359 e-buses, 1,400 bus lines, and

376 charging stations. In bCharge, we consider various real-

world factors based on the long-term data including e-bus daily

and per-charge operating distances, charging spatial-temporal

distribution, charging station utilization rates and charging cost

distribution, etc. More importantly, we have shown that with

its effective scheduling, bCharge outperforms the ground truth

by 23.7% and outperforms the baseline method by 17.8%

regarding the total charging cost. For the immediate benefit,

bCharge can reduce the operating cost for the Shenzhen e-

bus network with its data-driven real-time scheduling. For the

long-term benefit, our results in bCharge may be used for other

cities to promote e-buses for green public transportation.
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