
1

UrbanCPS: a Cyber-Physical System based on Multi-source Big
Infrastructure Data for Heterogeneous Model Integration

Desheng Zhang
zhang@cs.umn.edu

University of Minnesota, USA

Juanjuan Zhao, Fan Zhang
{jj.zhao, zhangfan}@siat.ac.cn
SIAT, Chinese Academy of Sciences

Tian He
tianhe@cs.umn.edu

University of Minnesota, USA

Abstract
Data-driven modeling usually suffers from data sparsity,

especially for large-scale modeling for urban phenomena
based on single-source urban infrastructure data under
fine-grained spatial-temporal contexts. To address this chal-
lenge, we motivate, design and implement UrbanCPS, a
cyber-physical system with heterogeneous model integra-
tion, based on extremely-large multi-source infrastructures
in a Chinese city Shenzhen, involving 42 thousand vehicles,
10 million residents, and 16 million smartcards. Based on
temporal, spatial and contextual contexts, we formulate an
optimization problem about how to optimally integrate
models based on highly-diverse datasets, under three practi-
cal issues, i.e., heterogeneity of models, input data sparsity
or unknown ground truth. Based on an integration of five
models, we propose a real-world application called
Speedometer, inferring real-time traffic speeds in urban ar-
eas. The evaluation results show that compared to a
state-of-the-art real-world system, Speedometer increases
the inference accuracy by 21% on average.

1 Introduction
The recent advance of urban infrastructures increases our

ability to collect, analyze and utilize big infrastructure data
to improve urban phenomenon modeling [18]. Numerous
data-driven models have been proposed based on these in-
frastructure data to capture urban dynamics [2] [13] [16].
However, although each infrastructure produces abundant
data, almost all resultant models suffer from data sparsi-
ty [18]. This is because urban phenomena are typically in an
extremely large scale, and so it is almost impossible to col-
lect complete data about a particular phenomenon under
fine-grained spatial-temporal contexts. For example, traffic
speeds can be modeled by GPS data from taxicabs [2], but
under fine-grained spatial-temporal contexts, such a speed
model suffers from data sparsity. As shown by our empiri-
cal analysis on a Chinese city Shenzhen, given a
middle-length time slot of five minutes during 24 hour a
day, 57% of its 110-thousand road segments on average do
not have any taxicab, which leads to data sparsity.

In this work, we argue that with increasing updates of
urban infrastructures, one urban phenomenon can be sepa-
rately modeled by many heterogeneous infrastructure
datasets. For example, a traffic speed can be directly mod-
eled by vehicle GPS data and loop detector data [2], or
indirectly modeled by cellphone and transportation smart-
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card data [10]. Integrating these relevant yet heterogeneous
models can provide complementary predictive powers by
combining the expertise of heterogeneous infrastructures,
which is used to address data sparsity issues about single in-
frastructures. Although many effective models have been
proposed based on infrastructure data, they are typically
based on single-source data [2] [10] [3] [11]. Due to various
technical and logistical reasons, little work, if any, has been
done to integrate single-source heterogeneous models into a
unified multi-source model based on large-scale infrastruc-
ture data (TB level data) to address practical issues, e.g.,
sparse data, for real-world applications.

To this end, we motivate and design UrbanCPS, a CPS
system with a generic heterogeneous-model integration
based on extremely-large infrastructure data. In UrbanCPS,
we implement five heterogeneous models based on data
from five infrastructures of Shenzhen (the most crowded c-
ity in China with 17,150 people per KM2), including a 14
thousand taxicab network, a 15 thousand truck network, a
13 thousand bus network, a 10 million user cellular
network, and an automatic fare-collection system with 17 t-
housand smartcard readers and 16 million smartcards.
Based on these five highly-diverse heterogeneous models,
we propose a model-integration technique to address their
data sparsity, e.g., integrating traffic-speed models based on
vehicles data and urban-density models based on cellphone
data. However, we face three challenges as follows.

1. Among all heterogeneous models, some models are
only indirectly relevant to a particular phenomenon of
interest, e.g., an urban-density model is only indirectly
revelent to traffic speeds. Thus, it is challenging to ef-
fectively integrate directly-relevant models with
indirectly-relevant models due to their heterogeneity.

2. Indirectly-relevant models normally cannot output a
measurement about phenomena of interest directly.
Thus, even with complementary knowledge from
indirectly-relevant models, it is a non-trivial problem
to solve data sparsity for directly-relevant models.

3. During a model integration, different models have dif-
ferent weights under different temporal, spatial and
contextual conditions, and the optimal weights are usu-
ally obtained by regression with the ground truth. But
the ground truth of urban scale phenomena is almost
impossible or really expensive to be obtained.

A unique combination of the above three challenges
makes our work significantly different from the previous
model integration, where integrated models are often ho-
mogenous and based on complete data with known ground
truth. The key contributions of the paper are as follows:

• We propose the first generic CPS system UrbanCPS
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with heterogeneous model integration based on
metropolitan-scale multi-source infrastructure data. To
our knowledge, the integrated models have by far the
highest standard for urban modeling in two aspects: (i)
modeling based on most complete infrastructure data
including cellular, taxicab, bus, subway and truck data
for the same city, and (ii) modeling based on the
largest residential and spatial coverage (i.e., 95% of 11
million permanent residents and 93% of 110 thousand
road segments in Shenzhen). The sample data are
given in [1].

• We theoretically formulate an optimization problem to
integrate heterogeneous models. We propose a tech-
nique to dynamically measure heterogeneous-model
similarity on phenomena of interest under different
temporal, spatial and contextual conditions to address
three practical issues as follows: (i) how to integrate
indirectly-relevant heterogeneous models; (ii) how to
use an integrated model to address data sparsity; (iii)
how to assign weights to different models without a
regression process based on the ground truth.

• We design and implement a real-world application
called Speedometer, which infers real-time traffic
speeds in urban areas based on an integration of five
models built upon taxicab, bus, truck, cellphone, and
smartcard-reader networks. We test UrbanCPS based
on a comprehensive evaluation with 1 TB real-world
data in Shenzhen. The evaluation results show that
compared to a current system, UrbanCPS increases the
inference accuracy by 21% on average.

We organize the paper as follows. Section 2 gives our
motivation. Section 3 presents the UrbanCPS. Section 4
describes our model integration. Section 5 validates Ur-
banCPS with a real-world application, followed by the
related work and the conclusion in Sections 6 and 7.

2 Motivation
To show our motivation, we compare two traffic-speed

models built upon large-scale empirical data we collected in
Shenzhen. The first model is called SZ-Taxi [14], which is a
real-world system deployed and maintained by Shenzhen
Transport Committee to infer real-time traffic speeds based
on taxicab GPS data in Shenzhen. The second model is
called TSE [13], which is a state-of-the-art traffic model in
the research community based on vehicle GPS data. We
feed our bus and truck GPS data to TSE and obtain two
models TSE-Bus and TSE-Truck, respectively. The details
are given in Section 5.2. As in Figure 1, we compare three
models based on taxicab, bus and truck data to the ground
truth on a major road segment in Shenzhen called Shahe
Road in 5-min slots during a regular Monday.

In general, all three models have data sparsity issues, i.e.,
among a total of 288 5-min slots, SZ-Taxi, TSE-Bus and
TSE-Truck have data on 87, 49 and 39 slots, i.e., 30%, 17%
and 14%, restrictively. If the data are all complete for all
three models, we should have 24 points for every model,
i.e., a total of 72 points, for every red box covering a 2 hour
period, but we have much fewer than 72 points as shown in
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Fig 1. Inferred Traffic Speeds by Three Models

Figure 1. (i) SZ-Taxi has a major data sparsity issue during
the early morning when no taxicabs are on this road seg-
ment. Further, it typically overestimates the speed in the
nighttime since taxicab drivers typically drive much faster
than regular drivers in the nighttime when passengers are
few, but it underestimates the speed in the daytime due to
frequent stopping for pickups and dropoffs as well as
long-time waiting for passengers. (ii) TSE-Bus has sparse
data in the nighttime when the bus service is not available,
and in some regular daytime. Further, it underestimates the
speed in the non-rush hour due to frequent stops, but it over-
estimates the speed in the rush hour because of dedicated
fast traffic lines for bus only. (iii) TSE-Truck has sparse da-
ta in the morning and evening rush hour, because trucks are
forbidden to use several major roads during the rush hour to
relief traffic congestion. Even for the time period where
trucks are allowed, it still has such an issue. Also, it usually
underestimates the speed during other times due to the
speed limit of trucks. Note that this road segment was se-
lected as one of ten major road segments in Shenzhen, but
we still face major data sparsity issues, which are much
worse on other small road segments where taxicabs, buses
or trucks are much fewer as shown in Section 3.2.

A seemingly promising solution is to integrate these
three models to address data sparsity issues from a homoge-
nous complimentary view. However, such a straightforward
homogenous-model integration may still face data sparsity
issues due to their inherent homogeneity, e.g., all three mod-
els have incomplete data in common slots in the red boxes.
In this work, we address this challenge by introducing other
heterogeneous models (e.g., urban-density models) based on
different datasets (e.g., cellphone data) under the observa-
tion that the traffic speed is correlated with urban density in
same spatial-temporal contexts [4]. Based on these hetero-
geneous models, we propose an integration technique in a
reference implementation of an extremely-large CPS
system, which presented as follows.
3 Urban Cyber Physical System

Broadly, a CPS can be considered as a system of system-
s. Therefore, in this work, we consider a set of urban
infrastructure systems (e.g., cellular, taxicab, bus, subway
and truck networks) as a Urban Cyber Physical System (Ur-
banCPS) from a broad perspective: any device in urban
infrastructures is considered as a pervasive sensor in Urban
CPS, if it generates data that can be used to build a model to
describe phenomena of interest. Built upon an integration of
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models based on multiple data sources, UrbanCPS provides
unseen urban dynamics under extremely fine-grained
spatio-temporal resolutions to support real-world applica-
tions, which cannot be achieved by any model from single
data source in isolation, e.g., a monolithic infrastructure. In
Figure 2, we outline UrbanCPS with four components, i.e.,
Data Collection, Model Generation, Model Integration and
Model Utilization. These four components span the whole
data-processing chain in UrbanCPS.

As in Figure 2, we provide a road map for the rest of pa-
per as follows. (i) In Section 3.1, we first introduce the data
collection where we individually collect multiple-source da-
ta from urban infrastructures of Shenzhen. (ii) In Section
3.2, we generate various heterogeneous models based on
collected single-source data. (iii) In Section 4, we effective-
ly combine these heterogeneous models by our model
integration based on their similarity and domain knowledge.
(iv) In Section 5, to close the control loop, we propose an
application to estimate real-time traffic speeds based on in-
tegrated models and other supporting data, e.g., map data
and urban partition data. We envision that urban residents
would use this application to find efficient routes, which in
turn provides feedback to urban infrastructures. As a result,
with the highlights on extremely-large data collection and
highly-generic heterogeneous model integration, UrbanCPS
builds an architectural bridge between multiple
domain-independent urban infrastructures and real-world
knowledge output tailored by applications.
3.1 Data Collection

In our project, we have been collaborating with several
service providers and the Shenzhen Transport Committee
(hereafter STC) for the real-time access of urban infrastruc-
tures. In Figure 2, we consider five kinds of devices in this
version of implementation, which detects urban dynamics
from complimentary perspectives.

• Cellphones are used to detect cellphone users’ loca-
tions at cell tower levels based on call detail records.
We utilize cellphone data through two major operators
in Shenzhen with more than 10 million users. The
cellphone data give 220 million locations per day.

• Smartcard Readers are used to detect locations of a
total of 16 million smartcards used to pay bus and sub-
way fares. These readers capture more than 10 million
rides and 6 million passengers per day. We study read-

er data from STC, which accesses real-time data feeds
of a company that operates the smartcard business.

• Buses are used to detect real-time traffic and bus pas-
sengers’ locations by cross-referencing data of onboard
smartcard readers for fare payments. We study bus da-
ta through STC to which bus companies upload their
bus status in real time, accounting for all 13 thousand
buses generating 2 GPS records/min.

• Taxicabs are used to detect real-time traffic and taxi-
cab passengers’ locations based on taxicab status (i.e.,
GPS and occupancy). We study taxicab data through
STC to which taxicab companies upload their taxicab
status in real time, accounting for all 14 thousand
taxicabs generating 2 GPS records/min.

• Trucks are used to detect real-time traffic by logging
real-time GPS locations of a fleet of 15-thousand
freight trucks, which travel within Shenzhen and
around nearby cities. We study this truck network
through a freight company that installs GPS devices on
all these trunks for daily managements. Every truck u-
ploads its real-time GPS location and driving speed
back to the company server every 15s on average,
which then are routed to our server.

Since our paper concentrates on system aspects, we briefly
introduce our data related issues due to space limitation. We
establish a secure and reliable transmission mechanism,
which feeds our server the above data collected by STC and
service providers with a wired connection. As in Figure 3,
we have been storing a large amount of data to generate
single-source models. We utilize a 34 TB Hadoop Distribut-
ed File System (HDFS) on a cluster consisting of 11 nodes,
each of which is equipped with 32 cores and 32 GB RAM.
For daily management and processing, we use the MapRe-
duce based Pig and Hive. We have been finding several
kinds of errant data, e.g., missing data, duplicated data and
data with logical errors, and thus we have been conducting a
detailed cleaning process to filter out errant data on a daily
basis. We protect the privacy of residents by anonymizing
all data and presenting models in aggregation. In short, our
endeavor of consolidating the above data enables extremely
large-scale fine-grained urban phenomenon rendering based
on existing single-source models, which is unprecedented in
terms of both quantity and quality shown as follows.
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Beginning 2013/10/1 Beginning 2011/7/1 Beginning 2013/1/1 Beginning 2012/1/1 Beginning 2013/9/11

# of Users 10,432,246 # of Cards 16,000,000 # of Buses 13,032 # of Taxis 14,453 # of Trucks 15,001

 Size 1 TB  Size 600 GB  Size 720 GB  Size 1.7 TB  Size 1.2 TB

# of Records 19 billion # of Records 6 billion # of Records 9 billion # of Records 22 billion # of Records 16 billion

SIM ID Date&Time Card ID Date&Time  Plate ID Date&Time Plate ID Date&Time  Plate ID Date&Time

Cell Tower Activities Device ID Station ID Stop ID GPS&Speed  Status GPS&Speed Odometer GPS&Speed
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Fig 3. Datasets from Model Generation

3.2 Model Generation
Fellow researchers have proposed many effective

single-source models [18], so we restrain ourselves from de-
veloping new models. Instead, we directly use our data to
generate single-source models based on existing methods.

3.2.1 Model Summary
We implement two kinds of models based on the data

collected in UrbanCPS. (i) Speed Models: including MT ,
MB, MF , which use GPS data from Taxicab, Bus and
Freight truck networks individually to estimate real-time
traffic speeds. They are implemented similarly according to
a state-of-the-art speed model TSE, which uses historical
and real-time vehicle data as well as contexts (e.g., physical
features of roads) for a collaborative filtering [13]. In addi-
tion, we consider all Vehicles as a single fleet and feed its
data to TSE to obtain a new model MV . (ii) Density Models:
including MC and MS, which use the Cellphone and Smart-
card data to estimate real-time urban density (i.e., count of
residents). MC is based on a population density model that
predicts future CDR records based on the previous CDR
records to indicate the density [10]. MS is based on a Gaus-
sian process-based predictive model that uses contexts, e.g.,
time of day and day of week, to infer transit passenger den-
sity [3]. We provide a summary of these models in Table 1
based on their results in one day.

Table 1. Heterogeneous Models
Model Spatial Temporal Resident
Name Resolution Resolution Coverage
MT 87% of Roads 30s N\A
MB 59% of Roads 30s N\A
MF 45% of Roads 15s N\A
MV 93% of Roads 7.5s N\A
MC 17,859 Towers Various 95%
MS 10,442 Stations Various 55%

During one day, based on the GPS uploading speeds and
traveling patterns, MT , MB, MF , and MV cover 87%, 59%,
45%, and 93% of all 110 thousand road segments in Shen-
zhen. During one day, MC covers 95% of 11 million
residents and produces their locations as one of 17,859 cell
towers when they use their phones. MS covers 55% of all
residents and produces their locations as one of 10,442
transit stations when they use their smartcards.

3.2.2 Data Sparsity in Fine Granularity
Although all these models have comprehensive daily da-

ta, real-world applications typically require knowledge
under fine-grained spatial-temporal contexts [2] [13] [16]
where all these models experience data sparsity issues.

We show the percentage of segments where speeds can be
captured by speed models in 5-min slots in Figure 4.
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Fig 4. Covered Road Segments
We found that these models capture a low percentage of
segments under 5-min slots, e.g., even for MV based on all
vehicle data, we only have 49% of road segments on
average with vehicles, which leads to data sparsity.

Similarly, we show the number of residents captured by
MC and MS in Figure 5 where the result for MS is shown by
a factor of 10 in order to show the fluctuation.
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Fig 5. Covered Urban Residents
We found that these two density models also have data spar-
sity issues due to high total population in Shenzhen, e.g.,
among 11 million permanent residents, MC can only capture
1 million of them at most during a 5-min slot around 15:00,
accounted for only 9% of all residents. MC can only capture
80 thousand of them at most during a 5-min slot of the
morning rush hour, accounted for only 0.7% of all residents.
3.2.3 Opportunity for Model Integration

In this work, we found that although all these models
have data sparsity issues, MC and MS have more complete
data than others, e.g., for every 5-min slot in both MC and
MS, we have density data at cell tower and transit station
levels. Therefore, by resetting their spatial granularity to
road segment levels (i.e., the details are given in Section
5.2), density models MC and MS are capable of providing
complimentary knowledge for speed models MT , MB and
MF , which have severe data sparsity issues on road segment
levels, e.g., if a speed model does not have GPS data about a
road segment during a time slot, we infer missing GPS data
based on GPS data from another road segment with similar
urban density, shown by our model integration as follows.
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4 Model Integration
We introduce our integration technique by combining

models directly or indirectly relevant to phenomena of inter-
est (hereafter direct and indirect models for conciseness). In
this work, we simply identify a model as a direct model to
an urban phenomenon, if it is based on the data with direct
measurements of this phenomenon, e.g., a model based on
taxicab data is a direct model for the phenomenon of traffic
speeds, because taxicab data have direct measurements of
speeds. But a model based on cellphone data is only an in-
direct model for speeds because it does not have direct
measurements on speeds. Note that direct and indirect mod-
els are different from classic supervised and unsupervised
models in data mining, which are both direct models in our
context since they are based on data with direct
measurements for phenomena of interest.
4.1 Problem Formulation

Let xt·s be an urban phenomenon we want to characterize
associated with a temporal context t and a spatial context
s, and let y be a class label, where xt·s and y are selected
from a phenomenon space X and a label space Y. Based on
K different data sources in various urban infrastructures, we
have a set of K models, i.e., from M1 to MK , and each of
them is independently formulated based on a corresponding
data source. For example, in our later application, xt·s is a
traffic speed on a road segment s during a time period t; y is
a label of 20km/h; M1 is a model based on taxicab data and
assigns a particular label y to xt·s.

Formally, based on the Bayesian model averaging ap-
proach, we have the probability distribution about y as
follows.

P(y|xt·s) =
K

∑
k=1

P(y|Mk,xt·s)×P(Mk|xt·s), (1)

where P(y|Mk,xt·s) is the prediction made by Mk regarding
to xt·s; P(Mk|xt·s) is considered as a model weight for a par-
ticular model Mk given a particular urban phenomenon xt·s
under with a temporal context t and a spatial context s.

To integrate different models in small-scale systems, E-
q.(1) can be directly used. In particular, P(y|Mk,xt·s) can be
accurately obtained by a direct model Mk directly-relevant
to the phenomenon of interest xt·s, based on the complete
data. Further, the ground truth of conditional probability
P(y = yi|xt·s) can also be measured and then used by a re-
gression process to obtain the optimal weight P(Mk|xt·s) for
a model Mk given xt·s. However, to integrate models in our
UrbanCPS with Eq.(1), we face three challenges to directly
obtain the two factors, i.e., P(y|Mk,xt·s) and P(Mk|xt·s).

First, the models in our UrbanCPS are mostly heteroge-
neous and based on the data generated by service providers
primarily for their own benefits, and thus these models may
be only indirectly relevant to the phenomenon of interest.
As a result, given an indirect model Mk to the phenomenon
xt·s, P(y|Mk,xt·s) in Eq.(1) is unknown.

Second, due to large-scale phenomena of interest, the data
in UrbanCPS are typically quite sparse. As a result, even for
a direct model Mk for the phenomenon xt·s, P(y|Mk,xt·s) in
Eq.(1) may still be unknown.

Third, due to technical issues and high costs for direct
measurements on urban phenomena, the ground truth for
certain phenomena is typically unknown. Without the
ground truth, we cannot use a regression process to obtain
the optimal weights for all models during integration. Thus,
even with known P(y|Mk,xt·s) based on a direct model with
complete data, P(Mk|xt·s) in Eq.(1) may still be unknown.

A combination of these three challenges provides us a u-
nique design space for our model integration compared to
the existing work. As follows, we first show how to solve
this problem optimally, and then deal with these challenges.

4.2 Optimal Solution
Suppose the label space Y is mapped into discrete labels

{y1, ..,y|Y|} where |Y| is the number of labels. Let Ht·s be a
|Y| ×K matrix where Hk

j = P(y = y j|Mk,xt·s) is the k j en-
try, and thus it represents all predictions made for xt·s from
all K models. Let wt·s be a K × 1 weight vector where
wk

t·s = P(Mk|xt·s), and thus it represents weights of all K
models. As a result, a |Y| × 1 vector Hwt·s is the output of
our model integration for xt·s, which gives a probability dis-
tribution of xt·s on a label space Y of {y1, ..,y|Y|}. With this
output, we aim to minimize the distance from this output to
the true conditional probability (given by the ground truth),
which is represented by a |Y| × 1 vector ft·s where
f j = P(y = y j|xt·s). Therefore, based on a straightforward
squared error loss without regularization, the key objective
of our model integration is to find an optimal weight vector
w∗t·s that minimizes the distance between the true ft·s and our
output Hwt·s as follows.

w∗t·s = argmin
wt·s

(ft·s−Hwt·s)
T (ft·s−Hwt·s).

The optimal solution of this function can be directly obtained
by a least-square linear regression.

However, as discussed before, this optimal solution has
three impractical assumptions (i.e., all directly-relevant
models, complete data and known ground truth), which
leads to two issues. First, an element in Ht·s, e.g.,
Hk

j = P(y = y j|Mk,xt·s), is not always available for an indi-
rect model Mk or a direct model Mk based on sparse data.
Second, the true conditional distribution ft·s is mostly un-
known due to the unknown ground truth. As in following
three subsections, we relax these three assumptions one by
one and discuss the issues of (i) how to obtain P(y|Mk,xt·s)
for an indirect model, (ii) how to obtain P(y|Mk,xt·s) for a
direct model based on sparse data, and (iii) how to infer the
weights without the ground truth, respectively.

4.3 Indirect Models
In our UrbanCPS, various models are built based on the

collected data, and some of these may not be directly rele-
vant to the urban phenomenon we try to characterize.
Suppose we have a set of urban phenomena associated with
different real-world temporal and spatial contexts
X = {xt1·s1 ,xt1·s2 ,xt2·s1 ,xt2·s2}, and aim to characterize them
into a label space of Y = {y1,y2,y3}. Suppose among all K
models, the models from M1 to Md are direct models, and
the models from Md+1 to MK are indirect models. For a
direct model Mp ∈ (M1, ...,Md), P(y|Mp,xt·s) is directly ob-
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tained; but for an indirect model Mq ∈ (Md+1, ...,MK),
P(y|Mq,xt·s) is typically unknown. The main objective of
the following is to infer P(y|Mq,xt·s) for an indirect model
Mq. The key idea of our method is to use the internal simi-
larity between an indirect model Mq and all direct models to
infer P(y|Mq,xt·s) for Mq for a particular temporal spatial
combination. However, the internal similarity between
models is difficult to be directly quantified, so we introduce
a process of categorizing all elements in the phenomenon
space X by individual models as follows.
4.3.1 Categorizing

Based on a direct model Mp, we directly categorize all
elements in X = {xt1·s1 ,xt1·s2 ,xt2·s1 ,xt2·s2} into |Mp| cate-
gories, and each of category is associated with a unique
label in Y. Thus, for a direct model Mp, |Mp| = |Y|. Simi-
larly, based on an indirect model Mq, we also categorize all
elements in X into |Mq| categories by a given clustering
algorithm (the metric for clustering could be the direct mea-
surement of data used to build Mq). Normally, an indirect
model Mq cannot directly characterize the elements in X be-
cause Mq has a different phenomenon space Z. But we use
a temporal-spatial context t · s to perform one to one map-
ping from elements in Z to elements in X in order to let Mp

categorize X. For example, if an indirect model Mq clusters
elements in its own phenomenon space
Z = {zt1·s1 ,zt1·s2 ,zt2·s1 ,zt2·s2} into two categories
{zt1·s1 ,zt1·s2} and {zt2·s1 ,zt2·s2}, then it also categorizes X in-
to two categories {xt1·s1 ,xt1·s2} and {xt2·s1 ,xt2·s2} under an
observation of similarity between elements in X and Z with
the same spatial and temporal conditions. Note that for an
indirect model Mq, |Mq| is based on a given clustering
algorithm, and thus is not necessarily equal to |Y|.

Table 2. Categorizing Example
Label ID Similarity Vectors

M1 M2 M3 M1 M2 M3

D D I c1
1 c1

2 c1
3 c2

1 c2
2 c2

3 c3
a c3

b
xt1 ·s1 y1 y2 a 1 0 0 0 1 0 1 0
xt1 ·s2 y1 y1 a 1 0 0 1 0 0 1 0
xt2 ·s1 y2 y1 b 0 1 0 1 0 0 0 1
xt2 ·s2 y3 y3 b 0 0 1 0 0 1 0 1

For example, as in Table 2, we have K = 3 models a-
mong which M1 and M2 are Direct models, and M3 is an
Indirect model. Thus, M1 categorizes all elements in
X = {xt1·s1 ,xt1·s2 ,xt2·s1 ,xt2·s2} into |Y = {y1,y2,y3}|= 3 cat-
egories, i.e., c1

1,c
1
2,c

1
3, where the elements of X in c1

i are
with the label yi. As in Table 2, suppose the model M1 (i)
assigns a label of y1 to xt1·s1 and xt1·s2 , leading to its first cat-
egory c1

1 = {xt1·s1 ,xt1·s2}, (ii) assigns a label of y2 to xt2·s1 ,
leading to its second category c1

2 = {xt2·s1}, and (iii) assigns
a label of y3 to xt2·s2 , leading to its third category
c1

3 = {xt2·s2}. Similarly, we have three categories for the
direct model M2 as well, and each of categories is also asso-
ciated to a label in Y. But for the indirect model M3, we
only have two categories c3

a and c3
b, which are not directly

associated to any label in Y. Continuing with the previous
real-world application where we try to characterize xt1·s1 ,
i.e., the traffic speed for a road segment s1 during a time pe-

riod t1. M1 is the speed model MT based on taxicab data,
M2 is the speed model MB based on bus data, and M3 is the
urban density model MC based on cellphone data. Based on
M1, we assign a label y1 = 10 km/h to xt1·s1 ; but based on
M2, we assign a label y2 = 20 km/h to xt1·s1 . Further, the in-
direct model M3 can only tell us that xt1·s1 may be similar to
xt1·s2 , because according to M3, the urban densities for road
segments s1 and s2 are similar during a time period t1.

Based on categorizing, given xt1·s1 , we have a unified for-
mula for either a direct or indirect model Mk as follows.

P(y|Mk,xt·s) =
|Mk|

∑
l=1

P(y|ck
l ,M

k,xt·s) ·P(ck
l |Mk,xt·s),

where ck
l is the l-th category of Mk; P(ck

l |Mk,xt·s)= 1 if xt·s ∈
ck

l ; P(ck
l |Mk,xt·s) = 0 if otherwise. Thus, given xt·s ∈ ck

l ,

P(y|Mk,xt·s) = P(y|ck
l ,M

k,xt·s) = P(y|ck
l ,xt·s). (2)

Therefore, we transfer the problem from the model level
P(y|Mk,xt·s) to the category level P(y|ck

l ,xt·s), because the
comparison between categories is earlier to quantify.

Given xt·s ∈ cp
l where cp

l belongs to a direct model Mp,

P(y = yi|cp
l ,xt·s) =

{
1 if l = i
0 if l 6= i

. (3)

Note that for simplicity we assume that there are no errors
during categorizing, i.e., given xt·s ∈ cp

l , it is always as-
signed to yl . But if P(y = yi|cp

l ,xt·s) follows an empirical
distribution instead of as in Eq.(3), our method still works
with a straightforward probabilistic method.

Given xt·s ∈ cq
l where cq

l belongs to an indirect model
Mq, however, P(y = yi|cq

l ,xt·s) is unknown. Thus, the key
question we have now is how to infer P(y|cq

l ,xt·s) for a cate-
gory cq

l belonging an indirect model Mq. As follows, we
solve this issue by exploring similarity between categories
from direct and indirect models.
4.3.2 Similarity Measurement

Basically, the rationale behind the similarity measurement
is that given a category cp

i from a direct model Mp and a
category cq

l from an indirect model Mq, the closer cq
l is to cp

i ,
the more likely that the members in cq

l have the same label
with the members in cp

i . Essentially, we transfer the expertise
from direct models to indirect models by comparing their
similarities on category levels.

Formally, for P(y|cq
l ,xt·s) where the category cq

l belonging
an indirect model Mq, we have

P(y = yi|cq
l ,xt·s) =

∑
d
j=1 S(cq

l ,c
j
i )

∑
|Y|
i=1 ∑

d
j=1 S(cq

l ,c
j
i )
, (4)

where S(cq
l ,c

j
i ) is the similarity between two categories cq

l
and c j

i . Therefore, the numerator is the sum of similarity
between a category cq

l and all categories with a particular
label yi from all direct models (i.e., from M1 to Md); the
denominator is the sum of similarity between a category cq

l
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and all categories with all labels (i.e., from y1 to y|Y|) from
all direct models (i.e., from M1 to Md).

To quantify similarity between two categories, we use a
similarity vector ck

l to represent the membership of elements
in X for a category ck

l . For example, as in Table 2, we have
c1

1 = {1,1,0,0} indicating the first and second elements in
X, i.e., xt1·s1 and xt1·s2 , belong to c1

1. With similarity vectors,
we calculate S(cq

l ,c
j
i ) by Jaccard index.

S(cq
l ,c

j
i ) =

|cq
l ∩ c j

i |
|cq

l ∪ c j
i |
.

For example, in Table 2, S(c1
1,c

1
2) =

0
3 , and S(c1

1,c
2
1) =

1
3 . By

changing yi from y1 to y|Y| in Eq.(4), we have the distribution
of P(y|cq

l ,xt·s).
4.3.3 Summary

In short, based on P(y|cp
l ,xt·s) in Eq.(3) for a category cp

l
from a direct model Mp where p ∈ [1,d] and P(y|cq

l ,xt·s) in
Eq.(4) for a category cq

l from an indirect model Mq where
q ∈ [d + 1,K], we have P(y|ck

l ,xt·s) for any category from
both either a direct model Mp or an indirect model Mq. As a
result, we have P(y|Mk,xt·s) for all models where k ∈ [1,K]
in Eq.(2), which addressed the challenge of integrating
heterogeneous direct models and indirect models.
4.4 Models based on Sparse Data

In this subsection, we address the issue related to models
based on sparse data, according to the proposed similarity
measurement. For example, in Table 2, we consider an ex-
treme example where all direct models, both M1 and M2,
cannot infer the phenomenon xt1·s2 due to the sparse data is-
sue in the temporal context t1 and the spatial context s2, i.e.,
M1(xt1·s2) = /0, and M2(xt1·s2) = /0. But based on the indirect
model M3, we found that xt1·s2 may be similar to xt1·s1 , be-
cause in M3, xt1·s2 and xt1·s1 are in the same category. Note
this categorizing result is based on knowledge of M3 itself,
and is not affected by the sparse data issue in M1 and M2.
Because xt1·s2 is similar to xt1·s1 , (i) xt1·s2 may belong to c1

1 in
M1 with label y1 because xt1·s1 belongs to c1

1 in M1; (ii) xt1·s2

may also belong to c2
2 in M2 with label y2 because xt1·s1 be-

longs to c2
2 in M2. Intuitively, we use knowledge of indirect

models to address the sparse data issue of direct models.
Formally, for a model Mk where Mk(xt·s) = /0, we have

P(y = yi|Mk,xt·s) =
∑

K
j=1, j 6=k S(Mk,M j) ·D(c j

i ,xt·s)

∑
|Y|
i=1 ∑

K
j=1, j 6=i S(Mk,M j) ·D(c j

i ,xt·s)
,

(5)
where D(c j

i ,xt·s) = 1 if xt·s ∈ c j
i ; D(c j

i ,xt·s) = 0 if otherwise.
As a result, the numerator is the weighted number of the
categories where xt·s is labeled with yi; and the denominator
is the weighted number of the categories where xt·s is la-
beled from y1 to y|Y|. Essentially, we assign a label yi to xt·s
in a model Mk where Mk(xt·s) = /0, by checking the labels
assigned to xt·s in other models and the similarity between
these models and Mk. Instead of a simple majority voting,
we use the similarity S(Mk,M j) between two models Mk

and M j as a weight to improve the accuracy.

S(Mk,M j) =
∑
|Mk|
u=1 ∑

|M j |
v=1 S(ck

u,c
j
v)

|Mk| · |M j|
,

where we use the similarity at category levels to indicate the
similarity at model levels. Therefore, based on Eq.(5), we
solved the issue about models based on sparse data.

Note that this method addresses data sparsity for direct
models by assuming the data are complete for at least one
indirect model. If we have missing data for all models, we
have to use traditional methods, e.g., weighted averaging, to
infer missing data based on historical data.
4.5 Weighting Models without Ground Truth

In this subsection, we address the issues of assigning a
weight to a model for the integration without ground truth.
Normally, the closer a model Mk is to the majority of all
models, the higher weight it should be assigned with.
Therefore, based on the similarity we proposed in the previ-
ous subsection, we assign the weight of a model Mk for a
particular combination of a temporal context t and a spatial
context s as follows.

P(Mk|xt·s) = wk
t·s =

∑
K
j=1, j 6=k S(Mk,M j)

∑
K
i=1 ∑

K
j=1, j 6=i S(Mi,M j)

,

where the numerator is the sum of similarity between Mk and
all models; the denominator is the sum of similarity among
all models.

Note that existing work usually weights each model
globally, but our method assigns weights to each model ac-
cording to a unique phenomenon x under a unique
temporal-spatial combination t · s, which is used to identify
variations in the model performance for different real-world
contexts. There usually do not exist one weighting scheme
that is globally optimal for any phenomenon under all
temporal-spatial contexts. Usually, the urban phenomenon
under different temporal and spatial contexts may favor dif-
ferent models. Thus, the weighting scheme based on
temporal-spatial contexts is better than the global weighting
scheme in terms of prediction accuracy.
4.6 Summary

Based on the problem formulation in the first subsection,
we obtain the optimal solution for model weights, which
minimizes the distance between the true conditional distri-
bution and the output of our integration. Then in the
following three subsections, we relax the three key assump-
tions in the optimal solution one by one towards a practical
model integration. Essentially, the key idea we have been
using is to compare internal similarity of effects of different
models on a set of given urban phenomena. Then, we trans-
fer predictive powers of indirect models with complete data
to direct models with sparse data. The rationale is that the
more similar two models, the more likely they would make
the same prediction about an urban phenomenon. Finally,
the similarity is used as an indication of a model’s weight,
by assuming the majority of the models are correct, and thus
the closer a model is to other models, the higher weight it
carries.
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5 Application: Speedometer
In this section, we present an application called

Speedometer to test the performance of our model
integration based on the data we collected in Shenzhen.

5.1 Application Background
The real-time traffic speed in urban regions is an impor-

tant phenomenon for both residents and transportation
authority. An accurate inference about traffic speeds on road
segment levels under fine-grained time slots improves many
urban applications, e.g., more efficient automobile naviga-
tion. A direct yet trivial solution is to install speed
detectors, such as loop detectors, in every road segment.
However, this solution would involve tremendous costs, so
these detectors are only installed in major segments for
most cities. To achieve a speed inference for all segments,
vehicle GPS data from commercial vehicles, such as taxi-
cab, are utilized to produce several models to infer traffic
speeds [2]. Also, several systems also infer traffic speeds
based on participatory sensing [18]. But these models typi-
cally are based on single-source homogenous data and are
ineffective when data are sparse in fine-grained contexts.

To address this issue, we propose Speedometer, which
infers real-time traffic speeds on segment levels based on an
integration of five models, i.e., MT , MB, MF , MC and MS, as
proposed in Section 3.2. MT , MB and MF are speed models
based on Taxicab, Bus and Freight truck data; whereas MC

and MS are density models based on cellphone and smart-
card data. Thus, MT , MB and MF individually map a traffic
speed xt·s on a segment s during a period t into a label space
Y to indicate a traffic speed. MC and MS individually infer
an urban density into another label space to indicate a densi-
ty under the same contexts. Based on domain knowledge,
MT , MB and MF are direct models to speeds, and MC and
MS are indirect models. Thus, Speedometer effectively inte-
grates them to produce accurate speed inferences based on
our integration. For different applications, Speedometer in-
fers traffic speeds on both segment and region levels by
aggregating segments with the minimum time slot of 5 min-
s. Figure 6 gives a visualization on average speeds inferred
by Speedometer from 6PM to 7PM in 496 Shenzhen regions
where a warmer color indicates a slower speed.

Downtwon 

Airport 

Fig 6. Traffic Speeds across Urban Regions

5.2 Application Evaluation
We compare Speedometer with one real-world system

and one state-of-the-art model. The SZ-Taxi System: Shen-
zhen government has a pilot program called TravelIndex to

infer congestion levels on road segments for the conve-
nience of its residents, which shows inferred traffic speeds
in real time based on GPS data from all taxicabs in Shen-
zhen [14]. SZ-Taxi serves as a single-source model suitable
for the situation where the multi-source data are not avail-
able. The TSE Model: TSE uses real-time and historical
vehicle GPS data and contexts (e.g., physical features of
roads) to infer traffic speed with a collaborative filter-
ing [13]. For a fair comparison, we aggregate GPS data
from taxicabs, buses, and trucks to feed TSE. TSE serves as
a naive multi-source approach for the situation where multi-
ple heterogeneous data sources are available, but the
integration is at data levels. Differently, Speedometer uses
five models, i.e., MT , MB, MF , MC and MS for an integra-
tion at model levels. We reset MC and MS to the same
spatial granularity with MT , MB and MF . In particular, MC

and MS give the urban density at cell towers and transit sta-
tion levels, which can be redistributed to road segment
levels based on coverage areas of particular cell towers or
transit stations. We assign numbers of residents inferred by
MC and MS within a coverage area to all segments in this
area. The number of residents assigned to a segments is pro-
portional to the segment length. Further, we use DBSCAN
to obtain categories for the similarity measurement.

We utilize 91 days of datasets from all infrastructures in
Figure 3. We use a cross-validation approach to divide the
data into two subsets: the testing set as streaming data, in-
cluding the data for one particular day; and the historical set
as historical data, including the data for the remaining of 90
days. For a particular day, if we use 10-min slots, at the end
of the first slot, i.e., 12:10AM, we use models to infer the
speed for the slot from 12:00AM to 12:10AM, based on
both the “real-time” data from 12:00AM to 12:10AM in the
testing set and all historical data in the historical set. We
move the data in the testing set forward for 90 days, leading
to 91 experiments. The average results were reported.

We test the models with Mean Average Percent Error
(MAPE) as MAPE = 100

n ∑
n
i=1
|T̄i−Ti|

T̄i
, where n is the total

number of temporal-spatial combinations we tested. We test
all models on 18 road segments under 10 min slots, which
leads to 24× 60

10 ×18 = 2592 combinations for a one-day e-
valuation. Ti is the traffic speed inferred by a model under a
temporal-spatial combination i; T̄i is the ground truth of the
traffic speed under a temporal-spatial combination i. An ac-
curate model yields a small MAPE, and vise versa. We test
models on these specific road segments because we have ac-
cess to the ground truth of traffic speeds on these road
segments. This ground truth is obtained by loop detectors in
Shenzhen road networks, which are inductive loops in-
stalled in selected major road segments, and can detect
metal and thus accurately detect vehicle speeds.

We first compare all models to show results on four par-
ticular road segments and the average result on all road
segments. Then, we study impacts of inference slot lengths.
Further, we investigate the impact of historical data sizes on
the running time and the accuracy of Speedometer to show
its feasibility and robustness for the real-time inferences.
Finally, we present an evaluation summary.
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Fig 7. Nantou MAPE

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 21 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 

 S Z - T a x i  
 T S E   
 S p e e d o m e t e r

MA
PE

 (E
rro

r %
)

2 4  H o u r s  o f  a  D a y

 

Fig 8. Tongle MAPE
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Fig 9. Fulong MAPE
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Fig 10. Shennan MAPE

5.2.1 Accuracy on Road Segments
Figures 7, 8, 9 and 10 plot the MAPE under 10-min slots

for four major road segments (i.e., Nantou, Tongle, Fulong
and Shennan) in Shenzhen urban area. The first three road
segments are in uptown, and the last road segment is in
downtown. In general, Speedometer outperforms TSE,
which outperforms SZ-Taxi. This is because SZ-Taxi only
considers taxicabs to infer the speeds, which leads to high
MAPE, e.g., the early morning in Nantou as in Figure 7.
Though TSE uses all data from commercial vehicles, it does
not consider other indirect density models. Thus, when the
GPS data are not available during certain temporal-spatial
combinations, its MAPE is high, e.g., the early morning in
Tongle as in Figure 8. For road segments where vehicles are
abundant, these three models have the similar MAPE, e.g.,
the early morning in Fulong as in Figure 9. In general, the
performance gain between Speedometer and others is lower
during the daytime and the road segments in downtown,
e.g., Shennan in Figure 10. This is because taxicabs and
other commercial vehicles are abundant and thus quite rep-
resentative in the downtown during the daytime, so all
models have better performance.

Figure 11 gives the average MAPE for all road segments
under 10-min slots during 24 hours. The MAPE of all three
models are typically higher than the MAPE we found in
Figures 7, 8, 9 and 10. This is because the traffic speed may
change dramatically between road segments, and some re-
mote road segments with few vehicles uploading GPS data
lead to higher MAPE. But the relative performance between
the three models is similar. Speedometer outperforms TSE
by 13% on average, and the performance gains are more ob-
vious in the regular daytime, which may result from the
consideration of density models. Speedometer outperforms
SZ-Taxi by 21%, resulting from its integration of the
multiple models.

5.2.2 Impact of Slot Lengths
Figure 12 plots the MAPE of all models with different s-

lot lengths with a default value of 10 mins. The MAPE of
all models reduces with an increase in the lengths of the
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Fig 11. Hourly MAPE 5 1 0 2 0 3 0 6 0 1 2 0 2 4 0

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 S Z - T a x i  
 T S E   
 S p e e d o m e t e r

 
5        1 0       2 0       3 0       6 0       1 2 0     2 4 0    4 8 0

MA
PE

 (E
rro

r %
)

S l o t  L e n g t h  ( m i n s )

 

Fig 12. Effects of Lengths

time slots, because in a longer slot we accumulate more data
about vehicles, and the traffic speed becomes more stable.
Speedometer outperforms TSE and SZ-Taxi significantly if
the slot is shorter than 30 mins, which results from the con-
sideration of density models. But when the slot becomes
longer than one hour, all models have similar performance,
because in such a long slot, all models have enough data for
an accurate inference about relatively stable speeds.

5.2.3 Impact of Historical Data
In this subsection, we study the impact of historical data

on model accuracies and running times by comparing
Speedometer to TSE with a default value of 13 weeks. Nor-
mally, the more the historical data, the more accurate the
models, the lower the MAPE error and the longer the run-
ning time. Figures 13 and 14 plot running times and MAPE
on different lengths of historical data in terms of weeks.
Speedometer has a 17% longer running time, which in turn
leads to an 11% lower MAPE. This is because Speedometer
has to perform its integration involving heterogeneous
models, which takes time to calculate the model similarity.
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Fig 13. Data vs. Time
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Fig 14. Data vs. MAPE

5.2.4 Evaluation Summary
We have the following observations: (i) The inference

accuracy is highly dependent on both locations and times as
shown by Figures from 7 and 11. On average, all models
have better performance in more dense area during the day-
time, due to the abundance of the data to feed models. (ii)
The length of slots has a significant impact on the perfor-
mance of all models as in Figure 12. It is intuitive that a
longer slot has lower error rates, yet it also reduces the prac-
ticality for real-time applications. (iii) As in Figures 13
and 14, the model integration takes a longer running time e-
specially when the historical dataset is big, but it increases
the accuracy. A good tradeoff between accuracy and run-
ning times has to be designed based on domain knowledge
and user preferences. (iv) Looking across different factors,
we found that slot lengths have the largest impact, and then
locations and times, and finally historical data sizes.



10

6 Related Work
Two types of work are related to our UrbanCPS: (i) mod-

els based on single-source urban infrastructure data and (ii)
theoretical ensemble of multiple models.
6.1 Models based on Single-Source Data

Numerous novel models and systems have been pro-
posed based on various urban infrastructure data to improve
urban efficiency. We focus on the work closely related to
models based on vehicular GPS, cellphone and transit data.
Based on GPS data, many models and systems are proposed
to benefit various urban residents: estimating traffic vol-
umes or speeds for regular drivers [2]; assisting regular
drivers to improve their driving performance [16]; detecting
anomalous taxicab trips to discover driver fraud for taxicab
operators [17]. Further, many methods have been proposed
for the study of human density and mobility based on
cellphone CDR data, e.g., identifying cellphone users’ im-
portant locations [9]; modeling how cellphone users
move [10]; predicting where cellphone users will travel nex-
t [5]. Finally, transit GPS data are another important source
for research in human density and mobility, e.g., identifying
passenger locations based on data from taxicabs [6],
buses [3], and subways [11].

To our knowledge, we are the first to store such a large
multi-source dataset, and then build models based on
single-source sparse data, and finally systemically integrate
these models from a complimentary standpoint. Obviously,
the key difference of our work is that our model integration
is built upon these models based on single-source data, and
then effectively integrates them for better performance.
6.2 Theoretical Ensemble of Multiple Models

Our integration approach is inspired by several studies in
the data mining community proposed to theoretically
combine different models to improve their perfor-
mance [12] [15] [8] [7]. However, these studies are mostly
under perfect conditions, e.g., the models are based on the
complete data and directly-relevant data [15]. Differently,
our work is focused on models based on the imperfect data,
e.g., sparse and indirectly-relevant data. Further,
semi-supervised learning also address issues related to im-
perfect data, e.g., the unlabeled data, but the models in these
work are mostly based on same domain knowledge, e.g.,
similar weather data from different websites [12] or similar
email data from different users [8]. In contrast, our ap-
proach is to combine much more diverse models, i.e., speed
models and density models, based on various urban infras-
tructure data. In addition, most studies on model integration
in the data mining community are based on small-scale da-
ta, so their computation is often complex for better
performance [15], e.g., computing inverse matrices and con-
ducting non-linear programming, which is undesirable for
real-time applications based on large-scale urban infrastruc-
ture data. Differently, the similarity measurement in our
model integration is optimized for computation efficiency,
which makes our work suitable for real-time applications.
7 Conclusion

In this work, we design and implement UrbanCPS to ef-
fectively integrate heterogeneous models based on

multi-source infrastructure data. Our endeavors offer a few
valuable insights which we hope will allow fellow
researchers to utilize our system for not only model integra-
tion but also real-world applications: (i) heterogeneous
models based on different urban infrastructure data provide
different yet complimentary view for the same urban phe-
nomenon, and thus an effective integration among them
would boost the model performance; (ii) for many urban
phenomena, indirectly-relevant models are often powerful
to address the issue of directly-relevant models, e.g., sparse
data, but we need an effective method to integrate them with
direct-relevant models; (iii) though difficult to be obtained,
the ground truth data about urban phenomena are vital for
both model designs and evaluations. (iv) while it is chal-
lenging to integrate heterogeneous models, it is more
challenging to negotiate with service providers for
large-scale infrastructure data to feed models.
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