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Abstract—Investigating passenger demand is essential for the taxicab business. Existing solutions are typically based on offline data

collected by manual investigations, which are often dated and inaccurate for real-time analysis. To address this issue, we propose

Dmodel, employing roving taxicabs as real-time mobile sensors to (i) infer passenger arriving moments by interactions of vacant

taxicabs, and then (ii) infer passenger demand by customized online training with both historical and real-time data. Dmodel utilizes a

novel parameter called pickup pattern based on an entropy of pickup events (accounts for various real-world logical information, e.g.,

bad weather) to reduce the size of big historical taxicab data to be processed. We evaluate Dmodel with a real-world 450 GB dataset of

14,000 taxicabs for a half year, and results show that compared to the ground truth, Dmodel achieves 83 percent accuracy and

outperforms a statistical model by 42 percent. We further present an application where Dmodel is used to dispatch vacant taxicabs to

achieve an equilibrium between passenger demand and taxicab supply across urban regions.

Index Terms—Taxicab system, demand modeling, big transportation data
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1 INTRODUCTION

UNDERSTANDING and predicting passenger demand are
essential for the taxicab business [1]. With accurate

knowledge of demand, taxicab companies can schedule
their fleet and dispatch individual taxicabs to minimize idle
driving time and maximize profits. Historically, such pas-
senger demand has been investigated by manual proce-
dures (e.g., creating surveys or sampling [2]). However,
these manual studies are often dated, incomplete and diffi-
cult to use in real time. In particular, though fairly stable
during long-time periods (e.g., one day), passenger demand
experiences significant irregular spatio-temporal dynamics
during short-time periods (e.g., one hour) due to various
real-world phenomena, e.g., bad weather, accidents or spe-
cial events. As a result, both long-term historical and short-
term real-time demand knowledge shall be utilized to cap-
ture such dynamics. However, we face a challenge to create
an accurate demand model by combining both historical
and real-time demand, because historical demand is

typically in a limited scale and real-time demand is difficult
to be obtained in real time [2].

In this work, we provide a two-part solution based on
recent infrastructure updates of taxicab networks. First, we
data mine a large dataset of historical information regarding
passenger demand and taxicabs’ trips. This results in the
basis of our method, from which we identify what aspects
should be used to infer specific real-time demand. In this
work, the historical GPS dataset used is from 14,000 taxicabs
for 6 months (450 GB) in a Chinese city, Shenzhen. While
this historical model is more accurate than surveys and
sampling, it cannot handle many real-time issues and thus
has major limitations if used alone.

Second, to address the short-term, real-time dynamics,
we consider thousands of roving taxicabs as real-time
mobile sensors and collect current information from them.
This is possible because taxicabs in dense urban areas are
equipped with GPS as location sensors and fare meters as
passenger sensors, and thus their locations and occupancy
status can be periodically uploaded to a dispatch center.
These frontend taxicabs and a backend dispatch center form
a real-time “roving sensor network.” The streaming data
used are from a data feed in Shenzhen taxicab network with
an average rate of 450 status records per second.

Admittedly, several systems have proposed to use taxi-
cab GPS traces to infer passenger demand [3], [4], [5], but
they typically have two simplifying assumptions: (i) they
assume that previous demand is given by picked-up pas-
sengers, but overlook waiting passengers who did not get
picked up; and (ii) they assume that current demand can be
inferred by long-term historical demand, but overlook the
fact that passenger demand is highly dynamic. For example,
after a major concert, due to the high demand, there are few
picked up passengers yet numerous waiting passengers,
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and the average historical demand cannot accurately indi-
cate the suddenly-increased demand due to the concert.

In this paper, to improve upon these two simplifying
assumptions, we propose Dmodel, which observes hidden
contexts to infer passenger demand based on both historical
and real-time taxicab data. The contributions of this paper
are as follows.

� We identify passenger demand with a combined off-
line data analysis and a real-time roving sensor net-
work, where taxicabs detect passenger counts and
arriving moments. It is important to note that pas-
senger arriving moments are, in general, unknown.
But a major contribution of Dmodel is how the rov-
ing sensor network infers them by utilizing taxicabs’
interactions.

� We present a novel parameter, called pickup pattern,
to quantify taxicab operating similarity among dif-
ferent daily data in a big taxicab dataset, e.g., 900 GB
per year in Shenzhen. Note that naively using more
data from such a big dataset results in not only
unnecessary big workload but also inaccurate infer-
ences. Thus, the key novelty of Dmodel is to utilize
the real-time pickup pattern to select customized yet com-
pact training data to increase inference accuracy. This
pickup pattern implicitly accounts for spatio-tempo-
ral dynamics caused by real-world phenomena, e.g.,
bad weather.

� We test Dmodel on a 450 GB dataset created by 6
months of status records from 14; 000 taxicabs in
Shenzhen. The evaluations show that compared to
the ground truth, Dmodel achieves 83 percent infer-
ence accuracy of demand in terms of the passenger
counts, and outperforms a statistical model by 42
percent. We will share such a valuable dataset for
benefits of the big data research community in the
preprint version.

� We show Dmodel’s practical value in a real world
application where demand inferred by Dmodel is
used to dispatch vacant taxicabs across city regions to
achieve a better equilibrium between passenger
demand and taxicab supply, which potentially leads
to shorter idle driving times and higher profits for
drivers aswell as shorterwaiting times for passengers.

The rest of the paper is organized as follows. Section 2
gives ourmotivations. Section 3 shows a framework ofmodel-
ing. Section 4 presents a roving sensor network. Section 5
describes our model. Section 6 evaluates our model by a real-
world 450GBdataset. Section 7 presents the application based
on our modeling, followed by the related work and the con-
clusion in Sections 8 and 9.

2 MOTIVATIONS

In this section, based on empirical data (introduced in
Section 4) from a real-world taxicab network with 14,000 taxi-
cabs in Shenzhen, we present our motivations to improve
upon two legacy assumptions for passenger demand analyses.

2.1 Assumption on Previous Demand

Legacy Assumption One. Given a previous time slot, the pas-
senger demand (i.e., the total count of all passengers

requiring taxicab services) equals to the number of picked
up passengers (i.e., pickup counts) [3], [4], [5].

In this work, we argue that though all passengers get
picked up eventually, for a previous slot the passenger
demand should include not only picked-up passengers but
also waiting passengers who had arrived but did not get
picked up. Fig. 1 gives the difference between pickup counts
and total passenger counts, i.e., a pickup passenger count
plus a waiting passenger count, for the entire Shenzhen
area in 5 minute slots (how to obtain these two counts are
given in Section 5.1).

We find that the pickup and total passenger counts are
usually different, especially in the slots of the rush hour.
Thus, this assumption overlooking waiting passengers leads
to an inaccurate analysis.

The key reason for this assumption is that arriving
moments for picked-up passengers cannot be obtained by
existing infrastructures. To address this issue, we present a
novel method based on the interactions of vacant taxicabs to
infer arriving moments, which are used to incorporate wait-
ing passengers for accurate passenger demand analyses.
The details are given in Section 4.4.2.

2.2 Assumption on Current Demand

Legacy Assumption Two. Given a current time slot, the pas-
senger demand can be inferred by the previous passenger
demand for the same slot [5].

For this assumption, we argue that for the same area and
slot, the passenger demand experiences irregular temporal
dynamics in different days due to various real-world factors,
and cannot be accurately inferred without considering more
contexts. Fig. 2 gives the passenger demand for the same
hourly slot in three different weekdays, which is shown by
total passenger counts in different administrative regions of
Shenzhen. Suppose we want infer the passenger demand of
Region A and B in Day 3 given in the middle figure, and the
historical demand for the same regions and the same slot in
Day 1 and Day 2 is given by the left and right figures. If we

infer Region A’s demand in Day 3 based on the previous

RegionA’s demand in Day 1, we only have 279�j147�279j
279 � 53%

accuracy; similarly, if we infer Region B’s demand in Day 3
based on the Region B’s demand in Day 2, we only have
608�j462�608j

608 � 76% accuracy. Thus, the assumption two leads
to an inaccurate inference.

The key reason for this assumption is lacking an effective
parameter to select related historical data as training data for
the inference. Thus, in this paper, to improve this assump-
tion, we propose a novel parameter called pickup pattern to
select a customized training dataset for a particular demand

Fig. 1. Pickup and total counts.
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inference. For example, based on the pickup pattern, if we
find that Region A’s demand in Day 2 is more related to
Region A’s demand in Day 3, then we infer Region A’s
demand in Day 3 based on Region A’s demand in Day 2. As
a result, we improve the accuracy for RegionA in Day 3 from
279�j147�279j

279 � 53% to 279�j285�279j
279 � 98%. Thus, finding highly

related data for the inference increases accuracy, and also
reduces the workload to process big taxicab data. The details
are given in Section 5.2.1.

2.3 Summary

The above two assumptions are the key reasons for inac-
curacy of existing modeling methods for taxicab passen-
ger demand. In particular, an accurate inference on
previous demand is the key foundation for an accurate
inference on current demand. To improve upon these
two assumptions, we present a modeling method with a
framework as follows.

3 FRAMEWORK

In this section, we present an overview of our modeling
with three components, i.e., Roving Sensor Network, Model
Generation, Model Utilization as in Fig. 3. These three com-
ponents span the whole taxicab-data-processing chain.

Roving Sensor Network. Recently, taxicab infrastructures
in large cities are upgraded with onboard GPS and commu-
nication devices as well as dispatch centers [6]. From a
broad perspective, we consider frontend taxicabs and a
backend dispatch center as a roving sensor network to infer
passenger demand. We utilize both historical and real-time
data from such a network to detect two kinds of events, i.e.,
pickup events and cruising events, to infer passenger

arriving moments for our later model generation compo-
nent. The details are given in Section 4.

Model Generation. Based on the massive historical and
real-time data, we generate a passenger demand model
called Dmodel. Dmodel utilizes a hidden Markov chain to
model passenger counts based on real-time passenger
arrival and pickups. During the modeling process, we pro-
pose a system parameter called pickup pattern to obtain
highly related historical data for customized online training
to indicate a relationship between pickup passenger counts
and total passenger counts. Finally, Dmodel outputs total
passenger counts at road-segment levels during a fine-
grained time interval. The details of designs and evaluations
for Dmodel are given in Sections 5 and 6, respectively.

Model Utilization. According to passenger demand pre-
dicted by Dmodel, we propose a real-world application, i.e.,
a dispatching system to redistribute taxicabs among differ-
ent urban regions to achieve an equilibrium between passen-
ger demand and transit supply at region levels, which finally
provides feedback to the frontend taxicab system and closes
the control loop. Such an application has the potential to
reduce passenger waiting times and driver cruising miles,
which is introduced and evaluated in Section 7.

With a highlight on passenger demand inferences, our
modeling builds an architectural bridge between generic
taxicab infrastructures and real-world knowledge output
tailored by a specific application.

4 ROVING SENSOR NETWORK

Recently, taxicab infrastructures in large cities have been
updated with onboard GPS and communication devices as
well as a dispatch center to receive GPS data from taxicabs
in real time to monitor status of taxicab networks. Built on
such an infrastructure, a roving sensor network consists of (i)
numerous roving taxicabs in the frontend as mobile sensors
to detect passengers, and (ii) a dispatch center in the backend
to receive sensing data (i.e., taxicab status) from taxicab sen-
sors to analyze demand. In this work, we utilize a taxicab
network in Shenzhen with 14,453 taxicabs and a ridership
of more than 200 million per year as an example to study
such a roving sensor network. In a roving sensor network,
taxicabs record their physical status, e.g., current location
and speed, with GPS devices; taxicabs also record their logi-
cal status, i.e., with passengers or not, with fare meters; both
their physical and logical status is periodically (30 seconds
on average) uploaded to dispatch centers with onboard
communication devices, in terms of sensing records. A sens-
ing record mainly consists of the following parameters:
Plate Number; Date and Time; GPS Coordinates; Status Bit
(1 or 0: indicating with passengers or not when this record
is uploaded).Fig. 3. Framework of Dmodel.

Fig. 2. Demand dynamics for the same hourly slot in three different days.
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Fig. 4 gives a dataset about such sensing records from
Shenzhen in China [7] (17,150 people per square KM). This
half-year dataset contains almost 4 billion sensing records
with a size more than 450 GB.

4.1 Data Management

We briefly introduce our management issues about big data
in the roving sensor network.

4.1.1 Data Storage

We establish a secure and reliable transmission mechanism,
which feeds our server taxicab GPS data collected by
Shenzhen Transport Committee by a wired connection with-
out impacting the original data source. Such a big amount of
sensing data requires significant efforts for efficient storage
and management. In this project, we store the data by utiliz-
ing a 34 TB Hadoop Distributed File System (HDFS) on a
cluster consisting of 11 nodes, each of which is equipped
with 32 cores and 32 GB RAM. For daily management, we
typically use theMapReduce-based tools, e.g., Pig andHive.

4.1.2 Data Cleaning

Due to the extremely-large size of our data, we find three
main kinds of errant data. (i) Missing Data: e.g., a taxicab’s
sensing records were not uploaded within a given time
period. Such missing data are detected by monitoring tem-
poral consistence of incoming data for every taxicab. (ii)
Duplicated Data: e.g., the sensing dataset shows two identi-
cal records for the same taxicab. Such duplicated data are
detected by comparing timestamps of every record belong-
ing to the same taxicab. (iii) Data with Logical Errors: e.g.,
GPS coordinates show that a taxicab is off the road. Such
data with logical errors are detected later when we analyze
the data. In particular, we utilize a digital map of Shenzhen
to verify if a GPS location is plausible or not. This is per-
formed by checking the previous locations and durations
between timestamps of two records. The above errors may
result from various reasons, e.g., hardware malfunctions,
software issues, and communication. To address the above
errors, for all incoming data, we first filter out duplicated
records and records with missing or errant attributes. Then
we correct obvious numerical errors by various known con-
texts. We next store the data by dates and categories. Finally
we compare temporal consistence of the data to detect miss-
ing records. Admittedly, the missing or filtered-out data
(which accounted for 12 percent of the total data) may
impact the performance of our later modeling, but we
believe we are still able to provide insightful analyses given
the long time period of the data we have collected.

4.2 Constrained Sensing Capability

Though our roving sensors produce an extremely-large
sensing dataset, they have severely-constrained sensing
capabilities. In regular sensor networks, the primary objec-
tive of sensors is to detect events, and thus sensors typically
have a full sensing capability, i.e., sensors can be temporally
and spatially controlled to detect events. However, a roving
sensor network consists of taxicabs whose primary objective
is to deliver passengers, instead of to detect passengers,
resulting in a constrained sensing capability. Such capabili-
ties are shown by a sensing cycle of a taxicab in Fig. 5 where
a taxicab sensor functions in two alternating phases.

� Phase I: Starting from dropping off a passenger
(changing its status from occupied to vacant), a taxi-
cab aims to find a new passenger and is capable of
detecting a passenger by roving on streets until it
picks up one.

� Phase II: Starting from picking up a passenger
(changing its status from vacant to occupied), a taxi-
cab aims to deliver this passenger and is incapable of
detecting new passengers until it drops off this
passenger.

According to the above two phases, we face three challenges
to design an inferring model based on roving sensor net-
works: (i) taxicab sensors can only detect passengers in their
sensing cycles’ Phase I where they cruise streets to look for
passengers (Phase I accounts for roughly 40 percent of a
taxicab daily operating time on average [8]), and after they
pick up passengers and enter Phase II, they cannot detect
other passengers waiting on streets (left-behind passen-
gers); (ii) taxicab sensors can only indicate the passenger
pickup moments, not arriving moments that have to be con-
sidered in demand modeling; (iii) taxicab sensors can only
provide simple “on” or “off” status, which is difficult to be
utilized to mine real world logical information that should
be considered in an inferring model, e.g., many waiting pas-
sengers in extreme weather.

Even though with constrained sensing capabilities, rov-
ing taxicabs still provide substantial information about pas-
sengers to address these challenges. Such information is
given by both events detected by taxicabs and phenomena
inferred from detected events, as shown by the following
two sections.

4.3 Detected Events

We observe two kinds of events related to passenger
demand by tracking taxicabs’ sensing records.

4.3.1 Pickup Event

If a taxicab’s status turns from “unoccupied” to “occupied”
in two consecutive records, then it indicates that this taxicab
just picks up a passenger in the location indicated by corre-
sponding GPS coordinates, which is associated to a pickup
event; similarly, a dropoff event is indicated.

Fig. 4. Dataset summary.

Fig. 5. Roving taxicab sensing cycle.
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Fig. 6 gives a daily pickup event distribution among 495
Shenzhen city regions. A warmer color indicates a higher
number of pickup events.

Fig. 7 gives a graph representing the corresponding pickup
and dropoff events in 245 major urban regions in Shenzhen
(including an airport, train stations, residential areas, etc)
from 7 to 9 AM of a Monday. The size of vertex indicates the
number of events in the corresponding region; the color of
vertex indicates one of six urbandistricts. A link indicates pas-
senger mobility patterns between two regions, which are
obtained by aggregating all trips between these two regions.
We remove the links with trips fewer than 30 for clarity.

4.3.2 Cruising Event

A cruising event begins with a dropoff event and finally
ends with a pickup event. Fig. 8 gives a cruising event
where a taxicab first drops off a passenger between l1 and
l2, and then cruises from l2 to l3, and finally picks up a new
passenger between l3 and l4. By this cruising event, we infer
an absence of passengers on the segment from l2 to l3 during
the time when this taxicab cruises it.

4.4 Inferred Phenomena

Based on the above two events, we study two inferred phe-
nomena as follows.

4.4.1 Passengers on a Spatio-Temporal Area

Phenomenon 1 in Fig. 9 gives a pickup event pi where a
vacant taxicab Ti cruised a segment sj and picked up one
passenger Pi. Based on this observation, we infer that there
is only one passenger (i.e., Pi) in the dashed temporal and
spatial area. This is because if there is another passenger Pj,
Ti would pick Pj up, which contradicts to the fact that Ti

picked up Pi in the pickup event pi. Phenomenon 2 in Fig. 9
shows a cruising event where a vacant taxicab Tj cruised a
segment sj and did not pick up any passenger. Based on
this observation, we infer that there is no passenger in the
dashed temporal and spatial area. This is because if there is
a passenger Pj, Tj would pick Pj up, which contradicts the
fact that Tj did not pick up passengers when it cruises sj.
Note that there may be a passenger outside the dashed area
yet inside the rectangle, since a passenger can arrive at a
location on segment sj, after vacant taxicabs passed this
location. This newly arriving passenger cannot be detected
until he/she is picked up by another vacant taxicab.

4.4.2 Arriving Moments of Picked Up Passengers

An arriving moment indicates the time when a passenger
starts to wait for a taxicab, which is used to obtain the ground
truth of a total passenger count for a segment during a slot.
Accurately obtaining such arrivingmoments is almost impos-
sible under current infrastructures. But we present a method
to obtain the upper bound of an arriving moment tupper, i.e.,
the earliest possible moment of a passenger starting to wait
for a taxicab. As in Phenomenon 3 of Fig. 9, supposing passen-
gers do not move significantly when waiting for taxicabs,
given a pickup event pi in terms of pickup moment ti and
location li, we find the latest cruising event where another
vacant taxicab Tj passed the same location li (shown as the
star). Thus, the moment tupper when Tj passed li is the upper
bound of the arriving moment of the passenger Pi in the
pickup event pi. This is because if the moment that Pi starts to
wait for a taxicab is earlier than this bound tupper, then Pi

would be picked up by Tj at tupper, which contradicts the fact
that Pi was picked up by Ti at ti. We use this upper bound as
the arriving moment (e.g., pushing more arriving passengers
to earlier slots), which leads to a lower bound of the arrival
count for the latest slot, enabling a cautious inference. Note
that waiting passengers’ arrivingmoments cannot be inferred
until they are picked up.

Inferred by a roving sensor network, the above phenomena
provide abundant information with high resolutions, and are
used byDmodel to infer passenger demand as follows.

Fig. 6. Pickup event distribution in urban region.

Fig. 7. Corresponding pickup and dropoff events.

Fig. 8. Cruising events.

Fig. 9. Inferred phenomena.
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5 MODEL GENERATION

Dmodel is a dynamic inference model for generic passenger
demand at road-segment levels on a fine-grained temporal
basis (e.g., one hour). Conceptually, for a segment sj, at the
end of a slot ti, Dmodel takes both real-time data uploaded
in ti and historical data uploaded before ti as input, and
produces inferred demand in terms of a total passenger
count for the next slot tiþ1, by summing up two kinds of
passengers as follows.

Previous left-behind passengers who had arrived at seg-
ment sj before the end of ti, and yet were not picked up
in ti. To obtain their count, Dmodel first aggregates real-
time pickup events to obtain the pickup count for picked
up passengers in ti. Next, Dmodel employs a novel
parameter called pickup pattern to obtain customized
training data to infer the total passenger count (either
picked up or not) in ti by corresponding pickup counts.
Finally, Dmodel obtains the left-behind passenger count
by subtracting the pickup count of ti from the total pas-
senger count of ti.

Future arriving passengers who have not arrived yet but
will arrive during tiþ1 at segment sj, i.e., the future arrival.
Dmodel infers the future arrival by maintaining a probabil-
ity distribution of a passenger arrival rate for every road
segment. At the end of a slot ti, based on the pickup count
in ti, Dmodel first infers the corresponding passenger
arrival in ti, and then updates the distribution of arrival
rates accordingly, and finally infers the future arrival by
this updated distribution.

As follows, we present passenger demand modeling, and
then elaborate how to obtain these two kinds of passengers.

5.1 Passenger Demand Modeling

The notations used in this paper are given in Table 1. Four
key notations for a slot ti and a segment sj are given as
follows.

� P
sj
ti : Pickup Count: The total number of picked up pas-

sengers during ti at sj.
� L

sj
ti : Left-Behind Count: The total number of waiting

yet not picked up passengers during ti at sj.

� A
sj
ti : Arrival Count: The total number of arriving pas-

sengers during ti at sj.
� T

sj
ti : Total Passenger Count: The total number of pas-

sengers who wait for taxicabs during ti at sj.
As follows, we omit all same superscripts for a concise

notation. Fig. 10 shows examples of the notations. The
x-axis is the time, and the y-axis is the space, i.e., segment
sj. A total of three passengers is picked up, indicated by
three pickup events p1, p2 and p3. Further, three arriving
events that they start to wait for taxicabs are given by a1, a2
and a3. As a result, for the time slot t0, At0 ¼ 1, Pt0 ¼ 0,
Lt0 ¼ 1, Tt0 ¼ 1; for the time slot t1, At1 ¼ 2, Pt1 ¼ 2,
Lt1 ¼ 1, Tt1 ¼ 3; for the time slot t2, At2 ¼ 0, Pt2 ¼ 1,
Lt2 ¼ 0, Tt2 ¼ 1. Given pickup points, arriving points, and
waiting periods as shown by dots, stars, and dashed lines
between stars and dots in Fig. 10, Pti , Ati , or Tti for a time
slot ti are obtained by as simply as counting dots, stars, or
dashed lines, respectively. Note that although some passen-
gers are double-counted at different slots, all passengers are
counted once at the same slot.

5.1.1 Demand Modeling by a Hidden Markov Chain

In Fig. 11, we analyze passenger demand as an unobserv-
able state in a Hidden Markov Chain.

1) At the end of a slot ti, the key system state that
needs to be inferred is the total passenger count
Ttiþ1 of the next slot tiþ1, which takes the left-
behind count Lti of ti and the arrival count Atiþ1 of
tiþ1 as two inputs (shown by the arrows with solid
lines). Thus we have

Ttiþ1 ¼ Lti þAtiþ1 :

2) As one input for Ttiþ1 , the left-behind count Lti of ti
is also one of two outputs (shown by the arrows
with dashed lines) of the previous system state, i.e.,
the total passenger count Tti of ti. The other output
of Tti is the observable pickup count Pti of ti. Thus
we have

Lti ¼ Tti � Pti :

TABLE 1
Main Notations

Notation Description

pi Pickup Event i
Pi Passenger i
Ti Taxi i
ti Pickup Time in Pickup Event i
li Pickup Location in Pickup Event i
ai Passenger Arriving Event for Pickup Event i
ti Modeling Time Slot i
dx Day x
sj Road Segment j

P
sj
ti Pickup Count during ti at sj

L
sj
ti Left-behind Count during ti at sj

A
sj
ti Arrival Count during ti at sj

T
sj
ti Total Passenger Count during ti at sj

r
sj
ti Pickup Pattern ti at sj

Fig. 10. Notation example.

Fig. 11. Passenger demand in a hidden Markov chain.
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3) As the other input for Ttiþ1 , the arrival count Atiþ1 of
tiþ1 is inferred by a stochastic process, supposing
passengers arrive according to a generic Poisson
process.

4) Thus, combining two equations together, we have
our key inferring equation as follows.

Ttiþ1 ¼ ðTti � PtiÞ þ Atiþ1 : (1)

5.1.2 Inference Overview

As in Fig. 12, at the end of every slot, e.g., current time tiþ1,
Dmodel infers Ttiþ1 for a segment sj by Eq. (1) with four
steps as follows.

1) It infers pickup count Pti by aggregating pickup
events in the latest slot ti from real-time data;

2) It infers total passenger count Tti based on the corre-
sponding pickup count Pti and a customized correc-
tivemodel trained by both historical and real-time data.

3) It infers arrival count Atiþ1 for the next time slot tiþ1
by a probability distribution D of passenger arrival
rate � at segment sj, which is periodically main-
tained through a Bayesian updating based on pickup
count Pti .

4) It infers total passenger count Ttiþ1 for the next slot
tiþ1 with Eq. (1), by Pti , Tti and Atiþ1 .

In the above steps, steps 1) and 4) are straightforward, so we
elaborate steps 2) and 3) in Sections 5.2 and 5.3.

5.2 Inferring Total Passenger Count Tti

We first introduce our key novelty about using pickup pat-
terns, and then propose how to infer Tti .

5.2.1 Pickup Pattern

In this work, we infer the total passenger count by four fac-
tors, which include (i) time in terms of a time slot of a day
(e.g., slot ti), (ii) location in terms of a road segment (e.g., seg-
ment sj), (iii) pickup count in terms of how many passengers
have been picked on a segment during a slot, and (iv) pickup
pattern in terms of how fast passengers were picked up,
which may infer hidden contexts, e.g., extreme weather or
major events. The existingwork has been considering the first
three factors, but the pickup pattern has not been considered
by others before. In this work, we argue that the pickup count
is inherently limited by taxicab supply, and cannot provide
enough inferring information. But our pickup patterns pro-
vide extra hidden contexts to increase inference accuracy.

Fig. 13 presents the same slot ti at two different days
with the same pickup count yet with different pickup

patterns. The key difference of the same slot ti for day dx
and dy is how long it takes for vacant taxicabs to pick up
passengers during ti, which is associated to the pickup pat-
tern, i.e., the taxicabs in dx pick up two passengers very
quickly; whereas the taxicabs in dy cruise for a long time
before picking up two passengers. The pickup pattern gives
us extra hidden online contexts, and cannot be replaced by
other contexts already used by the existing work, i.e., slot ti,
segment sj, and pickup count Pti2dz of a particular day dz,
since in Fig. 13, all other contexts are the same, but two slots
ti in dx and dy have different pickup patterns. For example,
the hidden online contexts in the pickup pattern during
ti 2 dx may indicate suddenly increased demand due to
extreme weather, train arrival or other events, since all taxi-
cabs pick up passengers very quickly. Whereas the pickup
pattern for ti 2 dy may indicate a normal scenario without
increased demand. Intuitively, though dx and dy have same
pickup count Pti2dx ¼ Pti2dy ¼ 2 (may result from limited
taxicab supply), ti 2 dx shall have a larger total count Tti2dx
than ti 2 dy.

To quantify the pickup pattern as a formal parameter, as
in Fig. 13, we first use a random variable rpi to indicate the
area ratio between the dashed triangle spatio-temporal area
introduced by a pickup event pi and the entire rectangle spa-
tio-temporal area. For example in Fig. 13, suppose the
dashed spatio-temporal triangle area j 4p1 j associated with
p1 during slot ti on Day dx is equal to 1, and the entire spatio-

temporal rectangle area jsjj � jtij is equal to 16. Thus, rp1 is

equal to
j4p1 j
jsjj�jti j ¼ 1

16. By introducing this ratio, we integrate

both the pickup location and time for a pickup event p1 by a
random variable, because different pickup locations and
times in the same spatio-temporal context lead to different
areas of dashed triangles, and thus lead to different area
ratios. Further, we integrate all pickup events fp1; p2; . . . ; png
associated with a given spatio-temporal context (i.e., during
a given slot ti on a given road segment) by an integration of
associated random variables frp1 ; rp2 ; . . . rpng. In particular,
our integration is based on the entropy r of these random
variables to indicate the pickup pattern under this spatio-
temporal combination

rti ¼ �
Xn

i¼1
rpi log rpi ;

where n is the total number of pickup events during slot ti
in this road segment. A low entropy shows a low random-
ness of area ratios associated with these pickups, which
indicates pickups always happened at similar locations of a

Fig. 12. Inference overview.
Fig. 13. Pickup patterns.
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given segment sj during similar times of a slot ti, and thus
leads to similar area ratios. As in evaluations, r accounts for
many real-world scenarios that cannot be captured with
pickup counts due to limited taxi supply.

5.2.2 Customized Online Training

Based on the new online factor, pickup pattern, and other
three factors, we discuss how to infer the total passenger
count as follows.

Given a segment sj and a slot ti, the pickup count Pti and
the total passenger count Tti have a logical relationship: Pti

is the lower bound of Tti , since all picked up passengers are
included in the total passenger count. Thus, we quantita-
tively investigate their relationship as follows. Given the
historical dataset, for particular slots and segments, we
obtain the ground truth of Pti by aggregated pickup events,
and infer the ground truth of Tti based on the method of
inferring arriving moments (introduced in Section 4.4.2),
e.g., in Fig. 10, after inferring arriving moments (shown by
stars), Tti are obtained by counting dashed lines linking
dots and stars in a slot (e.g., Tt1 ¼ 3). Note that in this
paper, the future time slots are required when computing
the total passenger count of given time slots. As a result,
this method can only be used to obtain the ground truth
with historical data, and cannot be used to infer the ground
truth with real-time data. As a result, Fig. 14 gives the rela-
tionship between P and T for 10 randomly selected road
segments in five t8 slots from 8 to 9 AM in five weekdays. It
indicates an approximate linear relationship for Pt8 and Tt8

for the same segment sj.
Based on the above observation, we propose a custom-

ized online training model based on the linear regression as
follows. Supposing that (i) we have a historical dataset con-
sisting of taxicab GPS data about K � 1 different days, i.e.,
day d1 to day dK�1, and (ii) the current time is the end of
slot ti in day dK , Dmodel infers the total passenger count
Tti2dK with four steps as follows.

1) It calculates both pickup count Pti2dK and the corre-
sponding pickup pattern rti2dK , based on real-time
data about the latest slot ti 2 dK .

2) It selects the data of days whose ti have similar
pickup pattern �r to rti2dK as a customized training
dataset with M pairs of ðPti2dm;Tti2dmÞ where
1 � m �M (one pair for every day).

3) It trains the following model by the M pairs of
ðPti2dm;Tti2dmÞ to learn customized ati2dK and bti2dK .

Tti2dm ¼ ati2dK þ bti2dK � Pti2dm: (2)

4) It utilizesati2dK , bti2dK and pickup count Pti2dK to
obtain total passenger count Tti2dK with Eq. (2).

A similar pickup pattern �r to rti2dK is defined by �r 2 ½rti2dK �ð1� DrÞ; rti2dK � ð1þ DrÞ� where Dr is a given parameter
and carefully evaluated in Section 6.

5.3 Inferring Arrival Count Atiþ1
Dmodel infers passenger arrival with a stochastic process
where an arrival rate � of a Poisson Process varies in Brow-
nianmotion, which is widely used tomodel passenger arrival
or network package arrival [9]. Thus, Atiþ1 ¼ �tiþ1 � jtiþ1j.
Note that we did not use a customized training to infer the
arrival count Atiþ1 based on given pickup count Pti as in the
last section, since there is no potentially logical relationship
between Pti andAtiþ1 .

5.3.1 Passenger Arrival Rate Modeling

Dmodel maintains a probability distribution D of � for a
segment sj by discretizing the space of passible �, and
assumes that (i) � is one of discrete values from 0 to the
maximum � (obtained by the dataset) and (ii) the initial
probability for all possible � is uniformly distributed.
Therefore, at the end of the slot ti, Dmodel updates D with
three steps.

1) It evolves D to the current time by applying Brownian
motion to every possible rate by assuming that � is
undergoing a continuous-time stochastic process.

2) It infers the arrival count Ati in ti based on observed
Pti , and calculates probabilities that this arrival count
Ati is associated to every one of arrival rates as
follows.

F ðxÞ  Doldð�ti ¼ xÞ � e�x�jtij
ðx � jtijÞAti

Ati !
:

3) It normalizes these probabilities, so they sum to unity.

Dnewð�ti ¼ xÞ  F ðxÞP
k F ðkÞ

:

These three steps constitute Bayesian updating for D. Given
D, we try to infer �tiþ1 with a cautious estimate to bound a
risk of overinferring. So, we employ the vth percentile ofD to
calculate the inferred �tiþ1 , e.g., 40th percentile. In Dmodel, v
is a given parameter, and is evaluated in Section 6.

A key unresolved question is how to infer the arrival
count Ati by the pickup count Pti , which is introduced as
follows.

5.3.2 Inferring Previous Arrival Count Ati

We introduce how to infer Ati in Fig. 15 where we classify
all passengers associated to the total passenger count Tti of

Fig. 14. T versus P in 10 segments.

Fig. 15. Inferring previous arrival count Ati .
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a slot ti into four parts, based on when they arrived and
whether they got picked up at the end of slot ti. Thus, the
sum of passengers in Parts 1 and 2 is the arrival count Ati

we try to infer. The sum of passengers in Parts 2 and 3 is the
pickup count Pti ; the sum of passengers in all four parts is
the total passenger count Tti ; we have already obtained
both of them in the previous section.

We add the following two kinds of passengers to inferAti .

1) Passengers in Part 1: Since we have already inferred
the total passenger count Tti based on Pti in Section
5.2, we have the total number of passengers in Parts
1 and 4 together, i.e., Tti � Pti . Further, since an
inferring slot (e.g., one hour) is typically longer than
a passenger waiting period, the number of passen-
gers in Part 4 is 0. Thus we have the number of pas-
sengers in Part 1 alone.

2) Passengers in Part 2: We differentiate the passengers
in Parts 2 and 3 by inferring arriving moments of
these picked up passengers in Pti , based the method
in Section 4.4.2, and we obtain the number of passen-
gers in Part 2 alone.

6 DMODEL EVALUATION

We evaluate Dmodel based on a 450 GB dataset introduced
in Section 4. We divide the entire 182-day dataset into two
subsets. Testing Dataset: it contains the data about a partic-
ular day, e.g., day d1, serving as the real-time streaming
data in the evaluation. Training Dataset: it contains the data
about the rest of days, serving as the historical training
data. For this particular day d1, if we use one-hour slots, at
the end of the first slot, i.e., time 01:00, we use Dmodel to
infer the total passenger count for the next slot from 01:00
to 02:00, based on both the “real-time” data from 00:00 to
01:00 in the testing dataset, and all data in the historical
training data. We let the testing dataset rotate among all
182 days of data, leading to 182 sets of experiments. The
average results were reported.

We compare Dmodel with two models: SDD and Basic.
SDD model is one of the state-of-the-art taxicab demand
and supply models, which maintains a distribution for pas-
senger demand based on the previous average demand [4].
SDD model serves as a statistical model and is suitable for
the real world scenario where the real-time data collection
is not possible, and we can only use the historical data to
infer passenger demand. Basic model first uses the generic
offline training to train the entire dataset to obtain parame-
ters (a and b) offline without considering real-time pickup
patterns. Basic serves as a baseline for Dmodel to show the
effects of the ignorance of logical contexts shown by pickup
patterns (e.g., extreme weather or events) on the model

performance. Dmodel performs similarly with Basic except
that it uses logical contexts (pickup and cruising events) in
the testing dataset to calculate a pickup pattern for a partic-
ular slot, and selects the data of slots with similar pickup
patterns as a customized training dataset to perform an
online training as introduced in Section 5.2.2.

By processing the entire dataset with a method of inferring
passenger arrival moments (introduced in Section 4.4.2), we
infer the ground truth of total passenger counts used to test

models with a key metric, called Accuracy. The accuracy is

defined as a ratio ¼ �T�j�T�Tj
�T

where T is the inferred total pas-
senger count of a particularmodel and �T is the total passenger
count obtained from the inferred ground truth.

With a map matching algorithm [10], we first test models
on 4 and 1,000 road segments about accuracy with different
slot lengths. Then, we investigate the sensitivity of Dmodel
to two key parameters: Dr and v used in Sections 5.2.2
and 5.3.1, and obtain their optimal default values. Finally,
we study impacts of lengths of historical data on model
accuracy and model running times.

6.1 Inference Accuracy

In this section, we show low-level comparisons on 4 particu-
lar road segments, and high-level comparisons on 1,000
road segments. All road segments are randomly selected in
the downtown area of Shenzhen.

6.1.1 Low-Level Comparisons

Fig. 16 plots accuracy of three models on 4 road segments
under one-hour slots. Dmodel has a better performance than
Basic and SDD, especially at the non-rush hour, e.g., 18:00 to
06:00. Basic outperforms SDD in the early morning, e.g., 00:00
to 06:00, and the late night, e.g., 18:00 to 00:00. SDD has good
accuracy during the morning rush hour, e.g., 08:00 to 12:00,
and we believe this is because during the rush hour, passen-
ger demand is relative stable compared to other time periods.
We notice that performances of different models are also
dependent on locations, e.g., in road segment 1, Basic outper-
forms SDD during almost all the morning, but in road seg-
ment 3, SDD has a better performance roughly from 10:00 to
23:00. Further, we also observe that even though Dmodel has
a better performance in general, but during some hours and
in some locations, Basic indeed has a better performance,
such as at road segment 3 from 18:00 to 19:00. This may be
because for this road segment and time period, Dmodel did
not obtain a good parameter from the training data selected
according to pickup patterns.

Fig. 17 shows comparisons in segments 1 and 2 under
two-hour slots. With a longer slot, the accuracy generally
increases for all three models. This is because (i) passenger

Fig. 16. Accuracy under one hour slot for 24 hours in four road segments.
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demand is more stable in a longer slot, and thus SDD model
becomes more effective; (ii) a longer slot increases accuracy
of passenger arrival predictions in Dmodel and Basic, which
leads to increased inference accuracy. We also notice that in
a longer slot, the performance gain between Dmodel and
others increases, and this may be because the advanced
online training used by Dmodel is more effective for a lon-
ger slot.

6.1.2 High Level Comparisons

Fig. 18 gives the average accuracy on 1,000 road segments
under one-hour slots at different hours of a day. The aver-
age accuracy of all three models on 1,000 road segments is
lower than the accuracy we observed on 4 particular road
segments. It is because passenger demand may change dra-
matically between different segments. But the relative per-
formance between three models is similar to Fig. 16. Basic
outperforms SDD at the most of the time by 18 percent on
average, except at the evening rush hour where SDD out-
performs Basic by 5 percent. Dmodel has a better perfor-
mance than SDD and Basic by 42 and 13 percent on average,
which results from its customized online training. In addi-
tion, we find that SDD model has a poor performance dur-
ing the non-rush hour when passenger demand is not
stable. But Dmodel overcomes this issue by its effective
inferring. Dmodel has 83 percent accuracy at the 9 AM slot,
which is the default slot for the following experiments.

6.2 Sensitivity of Dmodel

We study the sensitivity of Dmodel to slot lengths and two
parameters Dr and v on 1,000 segments.

6.2.1 Slot Length versus Accuracy

Fig. 19 gives the average accuracy on 1,000 segments with
different slot lengths. The average accuracy of all models
increases with the lengths of slots. The increasing on accu-
racy slows down when slots are longer than 2 hours. This is
because passenger demand in a longer slot becomes more
stable at different days. But when a slot is short, e.g., 15 or

30 mins, the average passenger demand is variable at differ-
ent days. When the slot becomes longer, Dmodel and Basic
have the similar performance, because pickup patterns for
long slots are mostly similar, and cannot be used by Dmodel
to differentiate related slots.

6.2.2 Dr versus Accuracy

Dr is used to decide similarity between pickup patterns as
in Section 5.2.2. Fig. 20 gives effects of Dr on Dmodel. With
the increase of Dr, the accuracy of Dmodel increases first,
and then decreases. This is because when Dr increases,
Dmodel finds more slots with similar pickup patterns to
effectively train a customized corrective model online. But
when Dr becomes too large, Dmodel has to consider more
slots with different pickup patterns, leading to a poor per-
formance. Further, when Dr becomes larger than 0.5, Dmo-
del has to consider many slots, similar to Basic model. The
accuracy peaks when Dr ¼ 0:2, which is set as the default
value of Dr. If the used Dr leads to an empty training data-
set, Dr increases until the training dataset is not empty.

6.2.3 v versus Accuracy

v is used to decide the percentile to predict the future pas-
senger arrival as in Section 5.3.1. Fig. 21 plots effects of v on
Dmodel. A small v indicates that Dmodel conservatively
predicts arrival rates; whereas a large v indicates Dmodel
aggressively predicts arrival rates. We find that both a small
and large v lead to a poor performance, since a small or
large predicted passenger arrival rate reduces the accuracy
of Dmodel. The accuracy peaks when v ¼ 0:4, which is set
as the default value of v.

Fig. 17. Accuracy under two hour slot for 24 hours.

Fig. 18. Average accuracy.

Fig. 19. Effects of slot lengths.

Fig. 20. Dr versus accuracy.

Fig. 21. v versus accuracy.
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6.2.4 Impact of Impact of Historical Data

In this section, we study the impact of historical data h in
terms of weeks on model accuracy and running times by
comparing Dmodel to Basic with a default value of 26 weeks.
Normally, the more the historical data, the more accurate the
models. However, naively using more data actually reduces
model accuracy. Fig. 22 plots the accuracy of Basic and Dmo-
del with different lengths of historical data in terms of weeks.
We find that Dmodel always has a better performance than
Basic after the length of historical data is longer than one
week. This is because the pickup pattern Dmodel used
selects highly related data to infer demand, which has higher
accuracy than Basic using all data for training.

Fig. 23 plots running times of Basic and Dmodel with dif-
ferent lengths of historical data in terms of weeks. We find
that Dmodel always has shorter running times after the
length of historical data is longer than 3 weeks. This is
because calculations for pickup patterns (e.g., calculating
entropy) in Dmodel take a higher portion of running times
when the length of historical data is short. But when the
length of historical data becomes longer, these calculations
only account for a small portion of running times. Basic
requires longer running times because it uses all historical
data for training. In contrast, Dmodel uses the proposed
new metric, i.e., pickup pattern, to significantly reduce size
of historical data to be processed in order to reduce the run-
ning time for a wide range of real-time applications. Note
that as shown in the figure when the length of historical
data changes from 3 to 6 weeks, the running time of Basic
becomes higher than the running time of Dmodel. It also
suggested that after the historical data longer than 6 months
do not matter much to the proposed metric, i.e., pickup pat-
tern, since the change of Dmodel running time is very small.

7 DMODEL APPLICATION

We propose a Dmodel application where a dispatch center
employs demand inferred by Dmodel to achieve an equilib-
rium between passenger demand and taxicab supply, given
245 major urban regions in Shenzhen as shown in Fig. 7.

In our application, at the end of a “real-time” slot ti, we
first use Dmodel to infer passenger demand Trx

tiþ1 for the

next slot tiþ1 in region rx by aggregating inferred demand
of all road segments in region rx. Next, we employ real-time
data to aggregate vacant taxicabs in region rx to obtain
“dispatchable” vacant taxicab supply in region rx for the

next slot tiþ1, indicated by Srxtiþ1 . Similarly, we shall have all

Trx
tiþ1 and Srxtiþ1 where 1 � x � 245. Finally, since our paper is

focused on modeling, we use a straightforward scheme to

dispatch vacant taxicab supply
P

1�x�245 S
rx
tiþ1 among 245

regions so that the dispatched taxicab supply Ŝrxtiþ1 is pro-

portional to inferred passenger demand Trx
tiþ1 in region rx.

The evaluation is based on the ground truth of passenger

demand �Trx
tiþ1 of slot tiþ1, and the dispatched vacant taxicab

supply Ŝrxtiþ1 in each region at hourly slots. We propose a

normalized equilibrium value 0 � k � 1 to evaluate effec-

tiveness of dispatching: ktiþ1 ¼ avg1�x�245
j�Trx

tiþ1�Ŝ
rx
tiþ1 j

�Trx
tiþ1þŜ

rx
tiþ1

. If the

demand inferred by an inference method, e.g., Dmodel, is
similar to the ground truth, the corresponding dispatch
leads to a small ktiþ1 , indicating an equilibrium between
passenger demand and taxicab supply; otherwise, it leads
to a large ktiþ1 , i.e., disequilibrium. Note that dispatching
taxicabs would skew historical taxicabs’ GPS dataset. To
eliminate dispatching effects, we only used dispatched sup-
ply to calculate k, and did not manipulate taxis’ traces, and
we start over at the end of the next slot.

Fig. 24 plots the equilibrium value k at different hours of
a day under one-hour slots. We observe that the equilib-
rium values fluctuate in all dispatching. But Dmodel-
based dispatching has a lower equilibrium value almost at
every slot. Basic-based dispatching outperforms SDD-
based dispatching at the most of the time. Fig. 25 gives the
average equilibrium value k under two-hour slots. We find
the equilibrium values under two-hour slots are lower
than the equilibrium values under one-hour slots for all
dispatching, which verifies our previous observation that
two-hour-slot based inferring is better than one-hour-slot
based one in terms of accuracy. But the relative perfor-
mance between three model-based dispatching shown in

Fig. 22. h versus accuracy.

Fig. 23. h versus running time.

Fig. 24. k in one-hour slots.

Fig. 25. k in two-hour slots.
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Fig. 25 is similar to the one in Fig. 24. Basic outperforms
SDD at the most of the time, except at the morning rush
hour where SDD outperforms Basic by 5 percent on aver-
age. Dmodel-based dispatching outperforms Basic-based
and SDD-based dispatching by 11 percent on average,
because of accurate inferring by Dmodel.

8 RELATED WORK

The method to infer passenger demand with history is not
new, but it is normally performed by using survey [2], [8]
and static sensor data [1], [11]. In these models, both times
and locations for inference are preset, and the data used for
inference is often incomplete and out-of-date. Recently, sev-
eral novel systems have been proposed using taxicab traces.

Some systems are proposed to assist taxicab operators
for better taxicab services, e.g., inferring mobility patterns
for taxicab passengers [12], exploring carpooling opportu-
nities [13], dispatching taxicabs based on inferred passen-
ger demand [3], [4], [5], [14], [15], [16], detecting
anomalous taxicab trips to discover driver fraud [17], and
discovering temporal and spatial causal interactions to
provide timely and efficient services in certain areas with
disequilibrium [18].

In addition to taxicab operators, several systems are pro-
posed for the benefit of passengers or drivers, e.g., allowing
taxicab passengers to query the expected duration and fare
of a planed trip based on previous trips [19], computing
faster routes by taking into account driving patterns of taxi-
cabs obtained from historical GPS trajectories [20], estimat-
ing city traffic volumes for drivers [21], and recommending
a taxicab driver with a sequence of pick-up points to maxi-
mize profits [3].

Yet the most of existing research on taxicab systems is
mainly focused on taxicab scheduling, instead of passenger
modeling, assuming that passenger demand is given by his-
torical average pickup events, and overlooking the fact that
real-time demand is different from pickup events for the
same time period [22]. As a result, our model is different
from the existing research by its novel inference method
based on both real-time and historical data from roving sen-
sor networks. Technically, we focus on inferring passenger
demand with the compact yet customized online training
with real-time pickup patterns and hidden contexts (e.g.,
arriving moments) inferred by roving taxicab sensors,
which have not been investigated before.

9 CONCLUSION

In this work, we motivate, design and evaluate a taxicab
passenger model Dmodel and one of its applications based
on a 450 GB dataset collected by a taxi system as a roving
sensor network. Our effort provides a few valuable insights
for applying modeling techniques in Dmodel to other trans-
portation systems. Specifically, (i) mobile taxicabs can be
used as roving sensors to infer passenger demand with high
accuracy; (ii) the inferring accuracy is highly dependent on
locations, times, and other logical information, e.g., weather
and events; (iii) a statistic model can be enhanced by a
generic offline training considering pickup events, but it
can be further enhanced by a customized online training for
real-time situations.
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