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ABSTRACT
With the rapid development of sharing economy, massive sharing

systems such as Uber, Airbnb, and bikeshare have percolated into

people’s daily life. The sharing economy, at its core, is to achieve

efficient use of resources. The actual usage of shared resources,

however, is unclear to us. Little measurement or analysis, if any,

has been conducted to investigate the resource usage status with the

large-scale data collected from these sharing systems. In this paper,

we analyze the bike usage status in three typical bikeshare systems

based on 140-month multi-event data. Our analysis shows that the

most used 20% of bikes account for 45% of usage, while the least

used 20% of bikes account for less than 1% of usage. To efficiently

utilize shared bikes, we propose a usage balancing design called

eShare which has three components: (i) a statistical model based

on archived data to infer historical usage; (ii) an entropy-based

prediction model based on both real-time and archived data to infer

future usage; (iii) a model-driven optimal calibration engine for bike

selection to dynamically balance usage. We develop an ID swapping

based evaluation methodology and measure the efficiency of eShare

with data from three systems including theworld’s largest bikeshare

system with 84,000 bikes and 3,300 stations. Our results show that

eShare not only fully utilizes shared bikes but also improves service

quality.
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1 INTRODUCTION
Bike sharing is widely adopted in major cities around the world as a

new way of travel [7]. In a bikeshare system, people pick up a bike

from one station and drop off it at another station, providing great

convenience to people’s daily commute. As of June 2014, bikeshare

systems have been launched in 712 cities, operating approximately

806,200 bicycles at 37,500 stations [22].

As a sharing platform, one of the key concerns is to efficiently

utilize the shared bike resources. However, our data analysis on

three representative bikeshare systems shows that inefficient bike

usage is a common phenomenon in existing bikeshare systems. For

example, the statistic results on NiceRide bikeshare system show

that the most used 20% of bikes account for 45% of the total rentals,

while the least used 20% of bikes account for less than 1% of the

total rentals. This is because bikes in current systems are arbitrarily

assigned to users, ignoring both cumulative service time of bikes

and potential rental duration of users.

The current bike sharing mechanism has several drawbacks.

First, a large amount of bikes in the system are rarely utilized but

continually introducing maintenance costs while the unsatisfied

status of the frequently used bikes leads to complaints on service

quality. Second, the irregular or excessive bike usage contributes to

bike depreciation, leading to a huge amount of damaged bikes. Per

the statistics of Capital bikeshare system, 9,284 bikes are damaged

because of heavy riding from Nov 2014 to Oct 2015, which costs

about 3 million US dollars in inspecting/repairing those bikes [5]. In

addition, massive damaged bikes appear in busy seasons (e.g., from

May to August in Capital bikeshare) and operators are too busy to

inspect/repair them, which further reduce the service quality.

To overcome these drawbacks, a straightforward strategy is to

manage bikes to be balanced used. This strategy helps existing

bikeshare systems make full use of all bikes. In addition, while

bikes are balanced used, we should avoid the situation that all bikes

wear out at the same time which overwhelms system operators. We

thus propose batch balancing which gracefully degrades bikes in

batches so that (i) shared bikes are fully utilized and (ii) the usage
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Figure 1: Demand Dist.

Figure 2: Demand Map
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Figure 3: Service Dist.

Figure 4: Service Map

status meets operators’ demands (e.g., to fit the bike usage status

with bike repair/upgrade schedule).

Managing shared bikes to be efficiently used seems straightfor-

ward because we can intuitively assign bikes to users based on

lengths of their trips when they rent bikes. However, the key chal-

lenge is that we can only know their trip lengths when they return
bikes, not when they rent bikes. As a result, naively assigning a

newer bike to a passenger may increase usage unbalance because

other older bikes may have to be assigned to later passengers with

longer trips, and vice versa. Furthermore, it is more challenging to

achieve batch balancing which has to meet operators’ demands.

Although controlling the usage status is crucial in sharing plat-

forms, most existing work is focused on demand/supply model-

ing at station levels [1, 4, 9, 15] and bike redistribution among

stations [16, 17, 25]. To the best of our knowledge, little work, if

any, has been conducted to investigate the usage issue at individual
bike levels. In this paper, we present the first data-driven usage

balancing mechanism called eShare to analyze, quantify and (batch)

balance the shared usage status at individual bike levels based on

large scale data from three bikeshare systems. Specifically, the key

contributions of this paper are as follows:

•We conduct the first data analysis on usage balancing for bike-

share systems. To our knowledge, our analysis on bikeshare systems

is based on the most comprehensive long-term multi-site data until

now, i.e., 140-month multi-event data related to bikes (i.e., rental

records, station status, rebalancing and repairs records) for 3 major

cities with different system scales and population (i.e., 3.3 million,

6.1 million, and 9.1 million) in both developed and developing coun-

tries.

• Built upon the identified features, we design a data-driven usage

balancing mechanism, called eShare, which consists of three tech-

nical components: (i) a statistical model based on archived data to

infer historical usage; (ii) an entropy-based prediction model based

on both real-time and archived data to infer future bike usage; (iii) a

usage calibration engine based on these two models to select bikes

for users to optimize bike usage at individual levels. The calibration

engine is the core of achieving efficient usage balancing.

•We develop an ID swapping based measurement methodology

and evaluate the performance of eShare through extensive data-

driven experiments based on the data from three bikeshare systems

including the largest bikeshare system in the world, with 84,000

bikes and 3,300 stations in Hangzhou, as well as the second largest

bikeshare system in the US. with 3,700 bikes and 429 stations in

Washington D.C. The evaluation results show that the standard

deviation of global bike usage is reduced by 90% with our eShare

design when the number of batch equals to one.

2 ANALYSIS OF SHARED USAGE
In this section, we first analyze the current usage status of shared

bikes in existing systems. Then, we introduce the benefit of usage

balancing in efficient sharing.

2.1 Current Bike Sharing Status
By analyzing the usage status in existing bikeshare systems, this

subsection shows the need for bike usage balancing. The analysis

results from three bikeshare systems in three cities show that ineffi-

cient usage is common phenomenon. The basic information about

these three systems is shown in Table 1. Details of the data are in

Section 3.

Unbalanced Demand:We first introduce the unbalanced demand

phenomenon in existing bikeshare systems. Figure 1 plots each

station’s total number of rentals in two weeks in NiceRide bikeshare

system. We find that (i) about 17.6% of the stations (marked as “blue

” in Figure 2) are extremely busy which have more than 150 rentals

in two weeks; (ii) about 40% of the stations (marked as “red” in
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Table 1: Statistic of Three Bikeshare Systems

Capital Hangzhou NiceRide

Launched Time 2010.9 2008.5 2010.6

Num of Stations 429 3.4 × 103 190

Num of Bikes 3,700 8.4 × 104 1,700

Ridership/Day 5.8 × 103 2.3 × 105 1.9 × 103

the demand map in Figure 2) have a low user demand, i.e., fewer

than 50 rentals in two weeks. Statistically, 17.6% of the busiest

stations satisfy 44.5% of the user demand. In addition, we find that

the user demand at some stations varies dramatically on weekdays

and weekends, e.g., the user demand at the stations near campus

increases on weekdays and drops on weekends.

Unbalanced Service: To meet user demand, the operators in bike-

share systems redistribute bikes among stations. Figure 3 shows the

number of bikes loaded to each station in two weeks in NiceRide

bikeshare system. We find that the service level at different stations

is quite different as in Figure 4: (i) some stations have a high service

level with more than 30 loaded bikes (marked as “blue circle” );

(ii) however, some stations have a service level with fewer than 15

loaded bikes (marked as “red circle”); (iii) most of the stations with

high service levels locate in the downtown and the campus areas.
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Figure 5: The CDFs of accumulated rental duration

Unbalanced Usage: We investigate the bike usage in Capital,

Hangzhou, and NiceRide bikeshare systems. We find that ineffi-

cient bike usage is a common phenomenon in existing bikeshare

systems. Figure 5 plots the CDF of bikes’ rental durations in two

weeks in the three bikeshare systems. We find that the bike usage

is inefficient in all three systems. For example, in Capital bikeshare

system, about 20% of bikes are used more than 1500 minutes while

20% of bikes are used less than 120 minutes in two weeks. As shown

in Figure 5, similar results are found in Hangzhou and NiceRide

bikeshare systems as well.

2.2 The Benefit of Bike Usage Balancing
From the above discussion, we learn that inefficient bike usage is a

common phenomenon in existing bikeshare systems. Bike usage

balancing helps existing bikeshare systems improve sharing effi-

ciency. Specifically, with the help of usage balancing, users are able

to use those rarely-used new bikes which improves service quality.

Inefficient bike usage also causes heavy riding on a portion of bikes

which leads to massive damaged bikes. In addition, compared with

traditional bikes, shared bikes are designed for sharing purpose

and most of them are equipped with special sensors or communi-

cation devices. These shared bikes are much more expensive than

traditional bikes and need to be batch customized. Bike usage bal-

ancing has great potential to help operators achieve efficient system

maintenance by letting the system-wide bike usage meet operators’

repair/upgrade schedule.

Furthermore, investigating bike usage helps system operators

obtain information including but not limited to (i) the current status

of a bike, (ii) the residual service time of a bike, (iii) whether a bike

needs to be repaired, and (iv) whether bikes are efficiently used.

This information can help operators manage bikes and improve the

quality of sharing service.

3 ESHARE OVERVIEW
Leveraging upon the share usage analysis results, we aim to develop

a novel usage balancing mechanism for efficient sharing. In the

following, we first introduce the infrastructure of bikeshare systems

and the collected data. Then, we propose design objectives, followed

by design overview.

RFID 

Reader

Smart Lock

Motherboard

SIM 

Card

Solar 

Panel

User Interface

Figure 6: The infrastructure of bikeshare systems

3.1 Bikeshare Infrastructure
Leveraging experiences we gained in our project, we provide our

expertise and are part of a team to design, deploy and maintain

NiceRide bikeshare system as shown in Figure 6.

From the figure, we can see that passive RFID reader along with

smart dock is installed in each dock in a station. When a user

comes to borrow a bike, she/he needs to use her/his access key (i.e.,

RFID tags) to unlock a bike. Once passive RFID reads the tag, the

user’s information along with current timestamp is sent to central

server through the communication device installed in the kiosk (as

shown in Figure 6). In our bikeshare system, T-Mobile is adopted

to transmit these data. Once user’s information is verified by the

central server, authorization message is sent back to the station.

The smart lock will unlock the bike and the user thus can take the

bike.

There is also a RFID tag in the head tube of each bike. When a

user finishes her/his trip and returns the bike to a dock, the RFID tag
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will be close enough to the passive RFID reader which will recognize

the return. The real-time return information is then transmitted

to the central server which will compute rental fees based on the

rental duration.

3.2 Data Sets
Our infrastructure collects multi-event data as follows.

• User Trip Data: Each record includes user ID, borrowed bike ID,

trip duration, start/end date and time, and start/end station. These

data are used to infer user’s habit (e.g., origin/destination and rental

time) and bike’s usage status.

• Station Status Data: Each record includes time, station ID/name,

station GPS with available bikes or docks. These data help us obtain

real-time station status and decide which bike should be selected

for a user.

• Operators’ Rebalancing Data: A rebalancing record includes

operators’ ID, bike ID, loading/unloading, station ID, time. Com-

bined with the user trip data, these data help us obtain bikes’ IDs in

a station, and are also used to infer repaired bikes after operators

return them.

• Bike Repair Data:Different from the above data sets, bike repair

data cannot be extracted from the sensing data directly, but they

are essential to our design. We build a new data set by manually

recording each repaired bike’s ID and its corresponding date from

08/03/15 to 10/05/16 in NiceRide bikeshare system. We use this

data set as the ground truth for evaluation purposes. Based on the

repaired bike data, we can infer (i) the current status of a bike, (ii)

the residual service time of a bike, and (iii) whether a bike needs to

be repaired.

The above data are typically collected by most of existing bike-

share systems in order to monitor and improve service quality. As

a result, our eShare design is helpful to other bikeshare systems to

improve the usage efficiency.

3.3 Design Objectives
Leveraging the multi-event data, we aim to design a data-driven

usage balancing mechanism to help operators efficiently maintain

the shared bikes. Specifically, eShare is designed to achieve the

following two objectives:

• Better Service Quality: eShare should avoid excessive wearing

on a small portion of bikes and fully exploit those rarely-used bikes

to improve the overall service quality. In addition, some bikeshare

systems impose a mandatory decommission day for operational

and maintenance concerns. For example, the mandatory decommis-

sion deadline for sharing bikes is three years in China. In the US,

although there is no mandatory decommission deadline, most of

bikeshare systems upgrade bikes every two to four years. In these

cases, eShare aims at controlling the bike usage, so that all bikes

are evenly used before the decommissioning/upgrade day. Such an

even usage improves overall service quality for riders.

• Efficient Maintenance: While bike usage is controlled to be

evenly-used, eShare should avoid the situation that all bikes wear

out at the same timewhichmay overwhelm repair staff. The concept

of batch balancing can gracefully degrade bikes in batches so that

the workload of repairs is aligned with the staff capacity. To achieve

this batch balancing objective, eShare needs to have the capability to

statistically control the number of repairing bikes to meet operators’

repair capability. Furthermore, it would be desirable to control the

interval between routine repairs, so that bike parts can be purchased

in batch and labors can be scheduled efficiently.

3.4 Design Overview
Keeping these design objectives in mind, we establish eShare – a

usage balancing mechanism which consists of three modules. Al-

though the description of these modules is specific to the bikeshare

system, our approach is generically applicable to other sharing

systems (e.g., rideshare).

• A historical usage model: It is a statistical model responsible for

quantifying the bike historical usage with archived data.

• A future usage model: It is a predictive model responsible for

inferring bike usage associated with future rentals from potential

passengers.

• A usage calibration engine: It is based on the historical usage as

well as the potential usage of the incoming rental, and chooses a bike

for coming users to minimize the system-wide usage variance. The

usage calibration engine is the core of achieving batch balancing.

eShare is designed to achieve batch balancing control, e.g., con-

trolling the usage of bikes in the same batch to reach the usage

threshold for routine repair. In the following, we introduce these

three modules as well as how to achieve batch balancing with these

modules in detail.

For the sake of clarity, in Section 4, we first introduce our basic

design where we use rental duration to quantify bike usage. Thus,

our historical usage model is simply to add all cumulated historical

rental durations for the same bike together as its historical usage.

We directly introduce the other two modules, i.e., the predictive

future usage model and the system-wide usage calibration model

in Section 4 to show our key idea. Then, in Section 5, we propose

an advanced design to quantify bike usage by incorporating more

factors (e.g., origin and destination, terrain features, etc.) in addition

to rental duration.

4 BASIC DESIGN
This section introduces future usage prediction model, followed by

the system-wide usage calibration model. Then, we introduce how

to achieve usage balancing with these models.

4.1 Future Usage Prediction
This section describes the predictive future usage model which

estimates coming users’ rental duration, thus to obtain potential

bike usage. Given both historical and real-time user trip data, we

propose a fine-grained Bayesian model to estimate users’ rental

duration. In existing bikeshare systems, when users swipe their

cards to rent a bike, the bikeshare system obtains users’ ID, start

station, and start time. Based on users’ historical rental records, we

use this real-time information as a condition to predict users’ rental

duration.

In the following, we first demonstrate that a user’s rental dura-

tion between a pair of origin (i.e., start station) and destination (i.e.,

end station) is stable. Then we show that the entropy of a user’s

destination is low, especially when the start station and start time

are given.
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• Property 1: Stable Rental Duration. For a useru renting a bike

at start station Su and returning the bike at destination Du , the

rental duration Ru is stable. Moreover, if the hour of the start time

tu is given, the standard deviation of the rental duration, denoted

by σ (Ru ), will be further reduced.
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Figure 7: The CDFs of the standard deviation of rental dura-
tion with the same origin and destination given start time
and user information.

Figure 7 shows the CDFs of (i) σ (R), i.e., the standard deviation

of rental duration with the same origin and destination, (ii) σ (R |t ),
i.e., the standard deviation of all users’ rental duration with the

same origin and destination given the hour of the rental start time

t , and (iii) σ (Ru |tu ), i.e., the standard deviation of user u’s rental
duration with the same origin and destination pair given user u’s
start time tu . The statistical result is based on 58,330 users’ 483,239

rental records from 04/01/2015 to 11/01/2015 in NiceRide bikeshare

system. From the figure, we can clearly see that the rental duration

becomes more stable when the hour of the rental start time and the

user information is given. With the start time information, 90% of

σ (R |t ) are lower than three minutes. With both the start time and

user information, 90% of σ (Ru |tu ) are lower than one minute.

• Property 2: Low Entropy Destination The entropy of user u’s
destination H (Du ) is low. The conditional entropy H (Du |Su , tu ) is
much lower when the start station Su and start time tu are given.

Figure 8 plots useru’s CDFs ofH (Du ),H (Du |Su ), andH (Du |Su , tu )
based on all her/his trip records during eight months, which are

computed as follows,

H (Du ) = −
∑

Du ∈Ψ
p (Du ) logp (Du ),

H (Du |Su ) =
∑

Du ,Su ∈Ψ
p (Su ,Du ) log

p (Su )
p (Su ,Du )

,

H (Du |Su , tu ) =
∑

Du ,Su ∈Ψ,
tu ∈χ

p (Su ,Du , tu ) log
p (Su ,tu )

p (Su ,Du ,tu )
,

where Ψ is the set of bikeshare stations, and χ = {[00:00:00, 01:00:00),

[01:00:00, 02:00:00), · · · , [23:00:00, 24:00:00)} is the set of hours in a

day.

Figure 8 plots the CDFs of (i) H (Du ), i.e., the entropy of user u’s
destination, (ii) H (Du |Su ), i.e., the conditional entropy of user u’s
destination when the start station Su is given, and (iii)H (Du |Su , tu ),
i.e., the conditional entropy of user u’s destination when both start

station Su and start time tu are given. The statistical result is based

on 43,316 users’ rental data who have at least two rental records.
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Figure 8: The CDFs of entropy & conditional entropy of des-
tination given start station and time.

15,014 users’ rental data are removed in this statistics since these

users have only one rental record and thus the entropy of their

destination is always zero. As shown in Figure 8, with user’s start

station and start time information, the values of conditional entropy

H (Du |Su ) and H (Du |Su , tu ) are greatly reduced. H (Du |Su , tu ) is
almost zero, which means user u’s destination is almost fixed when

his/her start station Su and start time tu are given. From the result

in Figure 8, we find the destination distribution of a user’s coming

rental can be accurately predicted given historical user trip records

and real-time start station and time.

With the stable duration and low-entropy destination distribu-

tion, user u’s expected duration E (Ru ) is predicted by

E (Ru ) =
∑
Di
u ∈Ψ

p (Di
u )Ru (D

i
u ), (1)

whereDi
u ∈ Ψ is useru’s possible end station given the start station

Su and start time tu . p (D
i
u ) is the probability that user u will go to

end station Di
u , and Ru (D

i
u ) is the rental duration between start

station Su and end station Di
u .

We use station-wide average rental duration to predict a user’s

rental duration when the user information is unknown. The pre-

dicted rental duration E (R) is given by

E (R) = 1

|U S
t |

∑
uj ∈Ut E (Ruj ), (2)

where E (Ruj ) is computed using Eq.(1), andU S
t is the set of users

who rent bikes in start station S at start time t .

4.2 Usage Calibration Engine
After obtaining the historical bike usage and the usage for the com-

ing rental, this section introduces the system-wide usage calibra-

tion engine which is designed to select bikes for users to minimize

system-wide usage variance. Although the usage calibration design

itself only balances the system-wide usage, it can be used as an en-

gine to achieve batch balancing by introducing weight to historical

usage, which will be introduced in Section 4.3. In the following, we

first propose the rationale behind our design. Then, we introduce

the calibration algorithm.

4.2.1 Design Rationale. When a user u comes to a station to rent a

bike, let the available bikes in this station be {b1,b2, ...,bm }. We cal-

culate the historical usage of these bikes {Hb1 ,Hb2 , ...,Hbm } using

the usage statistic model (i.e., the rental duration in the basic version

of eShare). We then apply future usage prediction model to infer

user u’s future usage E (Ru ). For an arbitrary bike bi in the station,
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if it is selected for user u, then this bike’s usage is updated to the

sum of its historical usage and future usage, i.e., Rbi = Hbi +E (Ru ).
When minimizing the system-wide usage variance, it will be

helpful if the usage calibration engine obtains station-wide usage
statistics. We use an example to illustrate this idea. There are two

bikes {b1,b2} in the station. Bike b1’s historical usage is three hours
while bike b2’s historical usage is two hours. When a user u1 comes

to a station to rent a bike, the bikeshare system obtains the user’s

real-time and historical usage after the user swiped his/her card.

The system applies the usage prediction algorithm and obtains u1’s
potential usage is one hour. On the other hand, the station-wide

average usage is two hour.

Without considering the station-wide statistics, the calibration

engine will select bike with minimum usage, i.e., bike b2, and assign
it to user u1 to minimize system-wide usage variance. Bike b2’s
usage is thus updated to Rb2 = Hb2 + ERu1 = 2 + 1 = 3. Since the

station-wide average usage is two hour, in statistics, bike b1’s usage
is given by Rb1 > 3+ 2 = 5. The usage variance is thus greater than

(3 − 3+5
2
)2 + (5 − 3+5

2
)2 = 2.

However, if station-wide average usage is considered, the cali-

bration engine will select the bike b1 for user u1. The bike usage
is updated to Rb1 = 3 + 1 = 4 and Rb2 > 2 + 2 = 4, and the usage

variance is greater than zero. Comparing these two cases, we find

that it is better to consider station-wide usage statistics in bike

selection since it helps to achieve smaller usage variance.

4.2.2 Calibration Algorithm. We now introduce how to utilize

station-wide usage statistics to let the calibration engine decide

the most suitable bike for a user u to minimize the system-wide

usage variance. We assume that there arem bikes in the station

when user u1 comes to rent a bike. In the usage calibration design,

without losing generality, we consider k potential users, i.e., u1, u2,
. . . , uk , where 1 ≤ k ≤ m and [u2, . . . ,uk ] are users coming after

u1. Note that the problem formulation with a generic k is helpful

for practical settings especially when coming users’ reservation in-

formation is provided. Let each user ui ’s expected usage be E (Rui ),
where E (Ru1 ) is calculated based on Eq.(1). E (Rui ), where 2 ≤ i ≤ k ,
is estimated based on Eq.(2) when coming users’ information is

vacant.

Since the variety of bike selection at a station does not change

the usage variance of bikes at other stations, the goal of minimizing

the system-wide variance is equivalent to

min

k∑
i=1

m∑
j=1
∥ (Hbj + E (Rui ))xi j − R∥

2, (3)

s.t.

k∑
i=1

xi j ≤ 1 j = 1, . . . ,m,

m∑
j=1

xi j = 1 i = 1, . . . ,k,

k∑
i=1

m∑
j=1

xi j = k, xi j = 0 or 1,

(4)

where xi j = 1 if bike bj for user ui is selected, 0 if not. In the opti-

mization target, Hbj represents bike bj ’s historical usage, E (Rui )

represents the expected usage when bike bj for user ui is selected,
and Hbj + E (Rui ) represents the total usage when bike bj is se-

lected for user ui . R is the system-wide average bike usage and

R = 1

n (
∑n
k=1 Hbk +

∑k
i=1 ERi ). Then the optimization target repre-

sents choosing bikes at station S for coming users to minimize the

usage variance. The first set of constraints ensures that no more

than one user is assigned to any bike. The second set of constraints

ensures that one bike is selected for every user. The third constraint

ensures that k of the bikes for all the k users are selected.

We find that it is difficult to solve the nonlinear usage calibration

problem with the four constraints directly. In the following, we

transform the above nonlinear usage calibration problem to a linear

programming problem.

Lemma 4.1. (Problem Transformation) The nonlinear usage
calibration problem in formula (3)-(4) is equivalent to the linear pro-
gramming problemwith the optimization targetmin

∑k
i=1
∑m
j=1 ∥Hbj+

E (Rui ) − R∥
2xi j and the same constraints in formula (4).

We find that this transformed problem is a variation of the classic

assignment problem, named k-cardinality assignment problem, in

which there are k rows andm columns, but only k rows are assigned

to k columns to minimize the sum of corresponding costs. The

k-cardinality assignment problem has optimal solutions that can

be achieved by the rectangular assignment algorithm with time

complexity O (k2 logk ).
In the usage calibration process, on the one hand, the system-

wide usage variance can be further reduced when we have exact

reservation information of more coming users (i.e., a larger k). The
estimation of the expected usage of coming users contains predic-

tion errors, which may lead to an inefficient calibration to increase

the usage variance.When the estimated user information is adopted,

we run the usage calibration algorithm with all possible k , where
k is an integer and k ∈ [1,m], to choose the k which achieves

the minimal system-wide variance. By solving the usage calibra-

tion problem in formula (3)-(4) with the optimal k , the calibration
algorithm chooses the bike which is assigned to u1.
• Special Case: Note that the above usage calibration algorithm

includes the special case that the algorithm has no knowledge

about the coming users, i.e., k = 1 in the usage calibration problem

formulation.

Lemma 4.2. (Lower Bound)When the algorithm has no knowl-
edge about the coming users, the usage calibration algorithm chooses
the bike with minimum usage in the station and reaches the lower
bound.

From this lemma, the performance of the usage calibration al-

gorithm will not be worse than the performance of the algorithm

which always selects the bike with minimum usage in a station.

4.3 Batch Balancing
The above usage calibration engine minimizes the system-wide bike

usage variance. This engine provides us the capability to achieve

batch balancing (e.g., balancing the usage of bikes in the same

batch to reach the threshold calling for repair or other maintenance
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activities at the same time). With the help of the usage calibration

engine, we are able to manage the number of wear-out bikes to meet

the maintenance capability by simply adjusting bikes’ historical

usage to either accelerate or postpone bike usage.

Let the batch of controlled bikes be {cb1, cb2, . . . , cbi , . . .}. We

update these bikes’ usage with α ×R (cbi ), where R (cbi ) is bike cbi ’s
real usage. We then apply αR (cbi ) as bike cbi ’s usage in the usage

calibration algorithm. Recall that the calibration model minimizes

the system-wide bike usage variance. When other bikes’ average

usage is R, the batch of controlled bikes’s real usage is
R
α . When

0 < α < 1, the usage of the batch of controlled bikes are accelerated.

These bikes’ usage are postponed when α > 1. In real-world control

applications in bikeshare systems, when the expected usage after

control {C (cb1),C (cb2), . . . ,C (cbi ), . . .} is provided, then the value

of α for bike cbi is given by α (cbi ) =
∑n
i=1C (cbi )
n ·C (cbi )

.

5 ADVANCED DESIGN
In the basic version of eShare, we quantify bike usage using rental

duration which accounts for riding time. In this section, we provide

an advanced design to quantify the bike usage by exploiting the

depreciation caused by each rental trip (accounting for terrain

features) from user trip data and bike repair data.
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Figure 9: Accumulated Duration of Damaged Bikes

In the basic version of eShare, we use “rental duration” to quan-

tify the bike usage. It works well under the situation that the de-

preciation caused by rental trips with same rental time are similar

or the same. But in some scenarios, even with the same rental time,

some rental trips may cause more bike depreciation than others,

which leads to a higher repair cost. For example, in Bay Area bike-

share system in San Francisco, the rental trips locate in steep slopes

cause more depreciation than those trips locate in flat roads. Under

such a scenario, simply using “rental duration” may not accurately

decide the status of a bike and the repair frequency. To provide

some empirical insights, we use a repair event as an indicator of

high usage for a bike. Then, we can explore the rental time distribu-

tion of repaired bikes to investigate if accumulated rental duration

can be effectively used to indicate usage or not. Figure 9 shows the

rental duration of the repaired bikes in NiceRide bikeshare system

from 08/03/2015 to 11/01/2015. From this figure, we find that a bike

that is repaired due to high usage can have a rental duration as

short as 50 hours and as long as 95 hours . Thus, the rental duration

alone is not enough to quantify usage.

In the following, we propose an enhanced usage quantification

method by leveraging the depreciation caused by each rental trip

from the large repaired bike data set. Let the differentiated source-

destination pairs in the user trip records be SD = {sd1, sd2, . . . , sdl }.
For each source-destination pair sdj ∈ SD, we introduce depreci-
ation rate w j , where w j > 0. Let the bikes in the repair records

be [rb1, rb2, . . . , rbN ]. For each repaired bike rbi , we extract all its
rental records from the user trip data within the repair-cycle. For

bike rbi ’s each differentiated source-destination pair sdrbij , we sum

up the rental duration under this source-destination pair and obtain

Arbij , which is accumulated rental duration under trip sdj . Then, for

each repaired bike rbi , we obtain its adjusted total service duration∑l
j=1w jA

rbi
j .

Since we have a large repaired bike data set, we obtain a large

observation of variables about the repaired bikes’ total service

duration, i.e., X = [x1 x2 . . . xi . . .]
T
, where xi =

∑l
j=1w jA

rbi
j .

We assume that the total bike service duration subjects to normal

(Gaussian) distribution, i.e., X ∼ N (µ,σ 2), where µ is the expected

average bike service duration. To reduce the variance of repaired

bikes’ total service duration, we aim to

min

N∑
i=1

(
l∑
j=1

w jA
rbi
j − X ′[i])2, (5)

where X ′ = [x ′
1
x ′
2
. . . x ′i . . .]

T
, X ′ ∼ N (µ,σ ′2) and σ ′ → 0.

Lemma 5.1. The minimum variance of repaired bikes’ total service
duration will be achieved when

ŵ = (ATA)−1ATX′. (6)

Eq.(6) provides an optimal solution to the problem in Eq.(5) when

the total bike service duration follows normal distribution. From

Lemma 5.1, we obtain the depreciation rate w j for each differen-

tiated trip sdj . The depreciation rate w j quantifies each source-

destination pair’s rental cost and fills the gap among repaired bikes’

rental duration. The enhanced usage statistics model thus builds

a connection between the usage and rental costs by inferring re-

paired bikes from the accumulated rental duration. Besides, this

depreciation rate provides the operators the basis of a new charging

scheme about rental fees with fine-grained depreciation rate.

6 EVALUATION: ID SWAPPING
This section evaluates the performance of eShare with real world

data sets from three bikeshare systems. The basic information of

these data sets are shown in Table 2. The format of these data sets

is introduced in Section 3.2.

6.1 Evaluation Methodology
This section introduces the ID swapping based evaluation method-

ology which utilizes long-term multi-event data, including user

trip, operator rebalancing and bike repair data, to evaluate the

performance of eShare. The existing systems’ bike usage informa-

tion, including user ID, bike ID, time and station, can be found

directly from the user trip data. Recall that eShare selects a bike

from the available bikes in the station for each rent to minimize the

system-wide usage variance. We first recover the available bikes

(IDs) in a station at anytime. We observe that station status changes

if and only if a user borrows/returns a bike or a system operator un-

loads/loads a bike. In other words, a bike is always in a station in the
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Table 2: Basic Information of Collected Data from Three Bikeshare Systems.

Data Set Name Accessed Periods Data Size Number of Records Recording Frequency

Capital_User_Trip 10/01/10 - 12/31/15 1.4GB 11.8 × 106 Event Driven

Capital_Station_Status 08/04/14 - 12/31/15 1.9GB 269 × 106 Every 1min

Capital_Repair_Bike 01/01/11 - 09/30/15 297KB 3.14 × 103 Event Driven

HangZhou_User_Trip 01/01/13 - 12/31/13 4.2GB 103 × 106 Event Driven

HangZhou_Station_Status 01/01/13 - 12/31/13 1.2GB 248 × 103 Every 30min

HangZhou_Rebalancing 01/01/13 - 12/31/13 109MB 8.5 × 106 Event Driven

NiceRide_User_Trip 06/10/10 - 11/01/15 189MB 1.8 × 106 Event Driven

NiceRide_Rebalancing 04/01/12 - 11/01/15 31.9MB 465 × 103 Event Driven

NiceRide_Repair_Bike 08/03/15 - 10/05/16 272KB 3, 724 Event Driven

duration after it is returned/loaded by the previous user/operator

and before the next borrow/unload activity comes.

Based on this observation, eShare exploits the available bikes

(IDs) for the bike selection of each rent. By utilizing both historical

usage and real time card swiping information, eShare selects a bike

for each rent in the user trip data. If the selected bike ID is different

from the bike ID in the rent record in user trip data, we swap these

two bikes’ IDs and create a new user trip data with the bike (ID)

selected by eShare. In other words, the selected bike by eShare will

replace the original bike in the rent record. Note that such a swap
will not change the station status and thus will not change either user
demand or service level. Based on the newly-built user trip data, we

are able to do statistics on eShare’s system-wide bike usage.

•Compared Algorithms: To show the effectiveness of usage bal-

ancing in sharing platforms, we compare eShare with (i) the ground

truth, which is the bike selection strategy extracted from the user

trip data set and (ii) the algorithm which always selects the bike

with minimum usage in a station, indicated as “Minimum Usage”

in the figures.

•PerformanceMetric:We evaluate the bike usage efficiency from

both single-bike and system-wide perspectives:

(i) Service Timespan: from single-bike perspective, we investigate

each bike’s service timespan which is defined as the time duration

between the first use of a bike and the last use before a repair.

(ii)Usage Variance: from system-wide perspective, we investigate

usage variance which is given by
1

n
∑n
i=1 (Ri − R)

2
, where n is the

total number of bikes in the system, Ri is each bike’s usage and R
is the average bike usage.

The bike usage is defined as the total rental duration in service

timespan multiplying by the depreciation rate. In the basic version

of eShare, the depreciation rate is set to one.

6.2 Main Performance
In this subsection, we evaluate the performance of eShare by in-

vestigating bikes’ service timespan and usage variance. Figure 10

shows the each bike’s usage in two weeks in Capital bikeshare sys-

tem with different bike selection strategies. In the figures, the bike

usage of ground truth varies dramatically. The bike usage in Capital

bikeshare system varies from 0 to 2000 minutes. As a comparison,

Figure 10 also shows each bike’s usage with eShare and “minimum

usage” algorithm. From the figures, we can see that all the bikes in

the systems are relatively fully utilized and the usage variance with
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Figure 11: Bike usage Deviation

eShare is significantly reduced. In addition, eShare always achieves

better performance than the “minimum usage” algorithm which is

a special case of the eShare design. Figure 11 shows the standard

deviation of usage with different algorithms in the three bikeshare

systems. On average, the standard deviation of usage is reduced by

90% after eShare is applied to existing systems.
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When bike usage is balanced, each bike’s service timespan is

changed accordingly. Figure 12 plots 1658 bikes’ service timespan

before (Figure 12(a)) and after (Figure 12(b)) eShare is applied in

NiceRide bikeshare system. In the figures, when the color turns

to black, it means that the bike’s accumulated usage reaches the

threshold for routine repair. From Figure 12(b), we find that the

end of the service timespan is close when the bikes in the system

are balanced used. It is helpful when the end of service time sits

in a period when the bikeshare system is idle or in mandatory-

decommission/bike-upgrade day.
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Figure 13: Capability of Batch Balancing:(a) CDFs of Usage
and (b) Service Time.

•Capability of Batch Balancing: With eShare, we are able to

achieve batch balancing. In this experiment, we accelerate the usage

of half of the bikes by setting these bikes’ usage to half of the real

one in bike selection algorithm. Figure 13(a) shows the CDF of two-

week bike usage with “Ground Truth”, “Minimum Usage”, “eShare

(#Batch = 1)”, and “eShare (#Batch = 2)” in NiceRide bikeshare

system. From the figure, we can see that “eShare (#Batch = 2)” put

the 18% barely used bikes into use.

On the other hand, there is a usage gap between two portions

of bikes. Figure 13(b) shows the corresponding service timespan

under the bike usage with “eShare (#Batch = 2)”. From the figure,

we can see that “eShare (#Batch = 2)” makes portion of bikes’ end-

of-service-time sit in the idle period (e.g., November) of NiceRide

bikeshare system. Figure 13 only shows eShare’s capability on batch

balancing while a specific control model is required to control the

number of repairing bikes to fit with operators’ repair capability.

6.3 Design Insight Analysis
In this subsection, we reveal design insights to illustrate why we

achieve the above performance.

6.3.1 Performance of Usage Prediction. We perform the evaluation

of our method with one-year user trip data from NiceRide bikeshare

system which has 483,239 rental records. In this evaluation, we

compare the method in eShare with the historical average (HA)

method and the “HA” method with start time (“HA w/ ST”). In

the “HA” method, we use the average rental duration of a source

destination pair’s all records to predict a new coming user’s rental

duration. In the “HA w/ ST” method, we use the average rental

duration of a source-destination pair’s records with the same hour

of the start time.

The metric we adopt to measure the result is error rare which is

given by
1

N
∑N
i=1

|R̂i−Ri |
Ri , where N is the total number of checked

rental records, Ri is the ground truth of the rental duration in the

ith rental record and R̂i is the corresponding prediction value.
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Figure 14 plots the CDFs of the prediction error rate of the “HA”,

“HA w/ ST”, and eShare. As we can see, 80% of the predictions with

our method have an error rate less than 5.5%. Compared with “HA”

and “HA w/ ST”, our prediction method significantly reduces the

prediction error rate. The rationality behind this improvement is

that our method fully exploits fine-grained user rental information

from both historical and real-time user trip data in the prediction.

6.3.2 Performance of Usage Statistics. This section evaluates the

performance of the enhanced usage model. In NiceRide bikeshare

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

14288

0

Figure 15: The four-year system-wide trip distribution with
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system, there are 190 stations and there are 190
2
possible origin-

destination pairs. Figure 15 shows four-year system-wide trip distri-

bution with all origin-destination pairs. There are 1,469,882 rental

trips in total while the busiest origin-destination has 14,288 trips.

In Figure 15, a origin-destination pair has more trips when its color

is closer to red. From the figure, we can clearly see that there are

many partial red dots in the diagonal. It means that there are a large

number of trips which have the same origin and destination. That’s

the major reason why we do not adopt “mileage” as the measure of

usage in this paper. Since the bikes in current bikeshare systems are

not equipped with GPS, simply utilizing station distance to measure

bike usage will introduce great errors in usage statistics because of

the zero distance of the trips with same origin-destination.

We find that a large portion of areas are marked “blue” which

means that these origin-destination pairs have almost no traffic.

According to our statistics, 3,291 origin-destination pairs have more

than one trip in two weeks. That’s because that people normally

take bike as a short-distance transport tool and only ride bikes to

nearby stations.

In the following, we compute the depreciation rate ŵ for these

3,291 origin-destination pairs which requires at least 3,291 bike

repair records. We manually record 3,724 bike repair logs with

bike id and repair date from 08/03/15 to 10/05/16. Since the usage

statistics model will be more accurate when we have more bike

repair records, we use the collect repair logs as ground truth and

build a model to infer repaired bikes from operator rebalancing

data automatically.

For each bike unloading behavior (by operators), we compute

this bike’s accumulated usage from the user trip data as well as the

timespan the bike left the system to classify this unloading behavior

is for bike redistribution or for repair. Figure 16 plots the timespan

of a bike left the system and the bike’s accumulated rental duration

when this bike is unload from the system. From the figure, we can

see that the bike unloading for repair has long departure timespan

and accumulated rental duration.

Table 3: Performance of Classification

Algorithm TP Rate FP Rate Precision Recall

KNN 0.987 0.137 0.987 0.987

Naive Bayes 0.977 0.346 0.975 0.977

Decision Trees 0.990 0.046 0.991 0.990

RandomForest 0.989 0.065 0.990 0.989

AdaBoost 0.991 0.022 0.992 0.991
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We apply classification algorithms to the data set. Table 3 reports

the true positive (TP) rate, false positive (FP) rate, precision, and

recall with KNN, Naive Bayes, RandomForest and AdaBoost by

10-fold cross-validation. From the experiment results, we can see

that the repaired bike can be accurately predicted from user trip

and operator rebalancing data. AdaBoost achieves the best perfor-

mance since the data set has few outliers which can be found from

Figure 16. We apply AdaBoost to four-year user trip and operator

rebalancing data where we recover 12,662 bike repair records. Based

on these bike repair records, we apply our usage statistics model.

Its performance is shown in Figure 17 where we find that the gap of

repair bikes’ accumulated usage is narrowed. This is because that

the usage statistics model leverages the depreciation (caused by

terrain features) which reduces the variance of bikes’ accumulated

usage time.

7 RELATEDWORK
The sharing platforms, e.g., Uber [13, 23], Airbnb [12, 20] and Bike-

share, have been on an exponential growth curve over recent years.

In sharing platforms, it is crucial to investigate the usage of shared

resources to provide an efficient sharing service. To the best of

knowledge, most of existing research focuses on participation anal-

ysis [13, 23], incentive mechanism and benefits analysis [8, 12, 20]

in the sharing economy. Little research, if any, has been conducted

to study the fine-grained usage status among shared resources with

large-scale data collected from these platforms.

Existing works on bike sharing systems focus on (i) demand anal-

ysis [1, 2, 9–11, 14, 15, 24–27], (ii) service analysis [3, 18, 19, 21], and

(iii) redistribution scheduling [6, 16, 17]. Compared with previous

studies on demand analysis, service analysis, and redistribution

scheduling in bikeshare systems, this paper studies a completely

new class of problem, i.e., usage balancing for efficient sharing.

8 CONCLUSION
In this paper, we design eShare to achieve usage efficient shar-

ing. We provide a usage statistics model which quantifies (i) each

bike’s usage status and residual service time and (ii) each rental

trip’s depreciation rate. These information provides system opera-

tor valuable insights on managing bike resources and improving

the quality of sharing service. We also propose a fine-grained usage

predictionmodel for a specified user by leveraging his/her historical

and real-time bike usage information collected by existing bike-

share systems. In addition, an optimal usage calibration algorithm

is proposed to choose the most suitable bike to optimize the system-

wide bike usage. The performance of eShare is evaluated through

the data sets collected from three representative bikeshare systems.

The evaluation results show that our eShare design helps existing

bikeshare systems fully utilize shared bikes, improve service quality

and reduce maintenance cost.
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