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Real-time human mobility modeling is essential to various urban applications. To model such human mobil-
ity, numerous data-driven techniques have been proposed. However, existing techniques are mostly driven
by data from a single view, for example, a transportation view or a cellphone view, which leads to over-
fitting of these single-view models. To address this issue, we propose a human mobility modeling technique
based on a generic multi-view learning framework called coMobile. In coMobile, we first improve the perfor-
mance of single-view models based on tensor decomposition with correlated contexts, and then we integrate
these improved single-view models together for multi-view learning to iteratively obtain mutually reinforced
knowledge for real-time human mobility at urban scale. We implement coMobile based on an extremely large
dataset in the Chinese city Shenzhen, including data about taxi, bus, and subway passengers along with cell-
phone users, capturing more than 27 thousand vehicles and 10 million urban residents. The evaluation results
show that our approach outperforms a single-view model by 51% on average. More importantly, we design
a novel application where urban taxis are dispatched based on unaccounted mobility demand inferred by
coMobile.
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1 INTRODUCTION

Nowadays, we are in a rapid process of urbanization where more than half of the people in the
world has moved to urban areas (Zheng et al. 2014; Yuan et al. 2011a, 2012; Zhang et al. 2015a;
Zheng et al. 2011b). Such quick urbanization leads to a new interdisciplinary research area called
urban computing (Zheng et al. 2014), where various data generated from urban areas are used to
improve urban efficiency (Aslam et al. 2012; Balan et al. 2011; Cho et al. 2011; Liu et al. 2011; Shang
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et al. 2014; Wei et al. 2012; Wang et al. 2014; Zhang et al. 2012; Isaacman et al. 2012; Lathia and
Capra 2011; Rhee et al. 2008; Bhattacharya et al. 2013). In urban computing, how to capture human
mobility at urban scale is one of the fundamental challenges we need to address. Such human
mobility has many real-world urban applications, for example, urban planning, transportation,
social networking, and location based services (Zheng 2015). To capture generic human mobility
patterns, several theoretical models have been proposed, for example, the gravity model and the
radiation model (Simini et al. 2014). However, a key drawback of these theoretical models is that
they cannot capture human mobility at fine spatiotemporal granularity, for example, mobility at
small region levels in real time.

Recently, thanks to upgrades of urban infrastructures, many real-time location-tracking devices
have become available, for example, cellphones, onboard GPS devices, and smartcards. These de-
vices generate massive real-time location data, which hold the key potential to revolutionize real-
time human mobility modeling. Based on these real-time data, several data-driven models have
been proposed, for example, driven by data from cellphones (Jiang et al. 2013), smartcards (Sun
et al. 2012), taxis (Ganti et al. 2013), buses (Bhattacharya et al. 2013), or subways (Giannotti et al.
2011). However, a common feature of these models is that they capture mobility only from one
view, for example, a cellphone view or a transportation view. These single-view models are suffi-
cient if single-view data are complete, but in reality this is not the case. From the cellphone view,
the models driven by cellphone data cannot capture residents without cellphone data, for exam-
ple, residents who do not have cellphones and residents who have cellphones but do not use their
cellphones during our modeling time; similarly, from the transportation view, the models driven
by one kind of transportation data, for example, taxi, cannot capture the passengers who use other
transportation modes, for example, bus and subway, and further there is no urban infrastructure
that can capture private vehicles at urban scale. To our knowledge, no data-driven urban human
mobility models are based on a complete view so far. As a result, these single-view human mobility
models essentially use residents captured by these single views as a sample to study all residents,
which inevitably leads to a bias and thus over-fitting of their models, as shown in Section 2.

To address this issue, we aim to combine different views for multi-view modeling. Each view is
incomplete to capture mobility by itself, but one view is often complementary to others, for exam-
ple, the cellphone view can capture some private-vehicle passengers, whereas the transportation
view can capture some inactive cellphone users. But a view’s ability to capture human mobility
is unknown a priori and is highly dynamic based on spatiotemporal contexts. As a result, such
dynamic view completeness makes multi-view human mobility modeling extremely challenging.

In this work, we propose coMobile, a generic framework to capture human mobility with a
multiple-view learning technique. In coMobile, we first design a single-view learning technique
based on context-based tensor decomposition to improve completeness of single-view models.
Then, we integrate those improved single-view models together by formulating a convex opti-
mization to obtain the ground truth of urban mobility. Mostly importantly, we implement co-
Mobile based on extremely large datasets in the Chinese city Shenzhen with cellphone data and
transportation data including taxis, buses, and subways. In particular, the key contributions of the
article are as follows:

— We propose the first multi-view learning framework for human mobility to integrate incom-
plete yet complementary knowledge from individual views. To our knowledge, the proposed
model is the only human mobility model driven by more than one view, which aims to ad-
dress over-fitting of single view models. It is challenging to apply multi-view learning in
human mobility modeling, because data-driven views are mostly incomplete to urban-scale
mobility.
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—We design a single-view learning technique based on context-aware tensor decomposi-
tion with both real-time and historical data to improve completeness of single-view mod-
els. This technique addresses data sparsity challenges of particular views to improve their
completeness. In particular, we use a cellphone-view model as an example to show how we
extract three contexts, that is, cellphone user density, calling location patterns, and calling
time patterns, based on historical data for joint tensor decomposition.

—Based on improved single-view models, we formulate a multi-view modeling problem by
designing a joint optimization, which minimizes overall weighted deviation from observed
mobility to the ground truth. To solve this optimization, we propose an iterative learn-
ing process to alternatively update ground truth and view completeness until no further
improvement can be made for the objective function. We prove the convexity of the opti-
mization and the convergence of our iterative learning.

— We implement our multi-view human-mobility model based on two datasets in the Chinese
city Shenzhen, with 10 million cellphone users and 16 million smartcard users involved.
To our knowledge, this is one of the largest human mobility models driven by real-world
datasets. We evaluate our model by comparing it to single-view models driven by cellphone
and transportation data, and results show that we reduce error rates by 51% and 58% on
average.

—To validate the usefulness of our coMobile, we design, implement, and evaluate a novel ap-
plication where we dispatch taxi supply according to unaccounted mobility demand inferred
by coMobile. The result shows that coMobile-based dispatching outperforms a dispatching
based on a state-of-the-art model by 15% on average.

2 MOTIVATION

In this section, we first show the drawback of single-view models and the opportunity of multi-
view models for human mobility modeling at urban scale in real time.

2.1 Drawback of Single-View Models

We give two comparisons: (i) models driven by two cellphone views and (ii) models driven by a
cellphone view and a transportation view. As in Figure 1, we first compare models driven by two
1-day CDR (call detail records) data from two carriers in Shenzhen.

This kind of models driven by single-carrier data is mostly used for human mobility model-
ing (Isaacman et al. 2012). A point indicates a spatial unit covered by a cell tower, and an edge
linking two points together indicates the mobility between them. We only show the major mobil-
ity for the clarity of the figure. As shown by the circles, we found that each model can capture some
unique mobility that cannot be captured by the other Further, to provide quantitative comparison,
we calculate the user density difference of two cellular networks among 496 urban regions for the
morning and evening rush hours as shown by Figures 2 and 3.

We found that the difference of user densities captured two cellular networks could be as high
as 7,000 users in some regions, which indicates each carrier has different business concentration
in different regions, which lead to a statistical bias again some less concentrated regions.

We combine the CDR data from different carriers and obtain a model driven by combined CDR
data, that is, a model driven by the cellphone view. Similarly, we combine data from different
urban transportation, that is, taxi, bus, and subway, together, and then obtain a model driven by
the transportation data, that is, a model driven by the transportation view. Due to different spatial
granularity (for example, cellphone data give a location at cell tower levels and bus data give a
location at bus station levels), we use an urban-region-based model to show captured mobility in
the morning rush hour.
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Fig. 1. Models driven by two carrier’s CDR data.
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Fig. 2. Difference in morning. Fig. 3. Difference in evening.

As in Figure 4, every point indicates a region in the Shenzhen urban area; every edge linking two
regions together indicates the mobility volume between them. The size of a vertex indicates asso-
ciated mobility, and the different color indicates urban districts. As shown by the circles, we also
found that each model can capture some mobility that cannot be captured by the other. In short,
we conclude that the single-view human mobility models introduce a bias against the residents
who are not involved in particular views. In this article, a model is considered as a biased model
against the certain residents if no data about these residents are fed into this model as an input.

2.2 Opportunity of Multi-View Models

Due to the limitation of the single-view models, we are motivated to combine two separate views
together to design a multi-view model for human mobility.
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Fig. 4. Models driven by cellphone and transit data.

As shown by Figure 5, from the transportation view, we aim to combine four independent mod-
els (i.e., four triangles) driven by data from taxis, buses, subways, and private vehicles for human
mobility modeling. But currently there is no urban infrastructure that can capture private trans-
portation in real time at an urban scale. Some efforts have been made by the research community to
install GPS devices in the private vehicles to study human mobility (Zheng and Xie 2011), but only
limited private vehicles are involved, and using them introduces a bias that cannot be quantified.

Alternatively, we can design a model driven by cellphone CDR data as in Figure 5 from cellphone
users, assuming that every resident has a cellphone. But there are two challenges.

—Some cellphone users would not use their cellphones (i.e., being inactive) during the time
we perform modeling. To address this issue, we design a technique based on tensor decom-
position with correlated contexts to infer locations of inactive cellphone users in Section 4.

—Some urban residents who opt out of allowing their CDR data used for other purposes or
do not have cellphones at all.

Therefore, for these residents, we cannot capture their mobility. Some methods have been proposed
to infer the activity of non-cellphone users based on correlated cellphone users (Jiang et al. 2013),
but such a correlation cannot be obtained at an urban scale in real time.

As a result, neither the transportation view nor the cellphone view is complete by itself, but
one view is often complementary to another. For example, the model driven by cellphone data can
provide some mobility about residents using private transportation; whereas the model driven
by transportation data can provide some mobility about residents without cellphone CDR data.
It motivates us to design an effective modeling technique to combine these two views for better
mobility modeling.
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Fig. 5. Multi-view modeling.

3 PRELIMINARY

In this section, we first introduce the data we collected for multi-view modeling, and then we
present a concept called mobility graph to capture the real-time human mobility, and, finally, we
give the architecture of coMobile.

3.1 Multi-View Data

We have been working with several service providers and the Shenzhen Transport Committee
(hereafter STC) for data access of urban infrastructures. We consider two kinds of data, that is,
cellphone data and transportation data, as two individual views to model human mobility. A sum-
mary of these data is given by Figure 6. The heat map of their spatial granularity is given by
Figure 7 with an area of 14 x 5 km?.

Cellphone View: Cellphone CDR (call detail records) data are used to infer cellphone users’
locations at cell tower levels. We utilize CDR data through two major operators in Shenzhen with
more than 10 million users. The CDR data give 220 million locations per day.

Transportation View: Data from three kinds of transportation modes, that is, taxi, subway, and
bus, are used to detect transportation passengers’ locations. We study transportation data through
STC to which taxicab, bus, and smartcard companies upload their data in real time.

Taxi Data. They are used to infer taxi passengers’ origins and destinations based on status
(i-e., pickups and dropoffs) at GPS location levels. They account for 14 thousand taxis, each
of which generates 2 records/min.

Smartcard Data. They are used to infer origins and destinations of residents with smart-
cards used to pay bus and subway fares, which capture more than 10 million rides and
6 million passengers per day. In particular, there are two kinds of smartcard readers: (i) a
total of 14,270 onboard mobile readers in 13 thousand buses capturing 168 thousand bus
passengers per hour, and (ii) a total of 2,570 fixed readers in 127 subway stations capturing
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Cellphone Dataset Taxicab Dataset
Beginning 10/1/2013 Beginning 1/1/2012
# of Users 10,432,246 # of Taxis 14,453

Size 1 TB Size 1.7TB
# of Records 19 billion # of Records 22 billion
Format Format
SIM ID Date&Time Plate ID Date&Time
Cell Tower ID Activities Status GPS&Speed
Bus Dataset Smartcard Dataset
Beginning 1/1/2013 Beginning 7/1/2011
# of Buses 13,032 # of Cards 16,000,000
Size 720 GB Size 600 GB
# of Records 9 billion # of Records 6 billion
Format Format
Plate ID Date&Time Card ID Date&Time
Stop ID GPS&Speed Device ID Station ID

Fig. 6. Cellphone and transportation data.

Fig. 7. Data spatial granularity.

60 thousand subway passengers per hour. Smartcard data and subway map data are used
together to detect subway passengers’ origins and destinations at subway station levels.
Bus Data. They are used to infer bus passengers’ origins and destinations along with
smartcard data (showing that a passenger uses a smartcard at a bus station) at 4,849
bus station levels. They account for all 13 thousand buses, each of which generates
2 records/min.

Our endeavor of consolidating the above data enables extremely large-scale real-time urban phe-
nomenon rendering, for example, human mobility, which is unprecedented in terms of both quan-
tity and quality.

In this article, we use the concept view to model the mobility from a particular urban domain,
for example, a cellphone network can be used as a view for modeling because a cellphone network
provides potential complete coverage for all urban residents. But a transportation mode, for exam-
ple, a taxi, cannot be used as a view in the setting of this article because a taxi conceptually cannot
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Fig. 8. Mobility graph.

cover all residents mobility as many residents would use bus and subway systems. That is why we
add taxi, bus, and subway together as a single view for transportation instead of using each one
transportation model as a view.

3.2 Mobility Graph

In this work, we use Mobility Graph to capture human mobility in real time at urban scale, which is
a time-varying graph where a vertex indicates a spatial unit (e.g., a urban region or a street block)
and a weight of an edge linking two vertices indicates the mobility volume between them. Due
to its time-varying nature, a mobility graph G, is associated with a time period t (e.g., 4-5PM),
which shows the mobility during this particular time period. Figure 8 gives a simplified example
of a mobility graph with only three vertices. The number of people moving between different
spatial units, that is, weights of edges, should include people associated with a particular view,
for example, the cellphone view or the transportation view. In this work, our main objective is
to obtain mobility graphs based on single-view modeling and then to combine them together by
multi-view modeling for a comprehensive human mobility graph.

3.3 coMobile Framework

We introduce our coMobile Framework by Figure 9. From the bottom, we have urban data gen-
erated by urban infrastructures, for example, cellphone data and transportation data, which are
introduced in the previous subsection. Based these two kinds of data, we design two single-view
models capturing mobility patterns of cellphone users and urban transportation users by two mo-
bility graphs, which are introduced in Section 4. Then, we present our multi-view learning to
integrate single-view models for more complete human mobility modeling, which is introduced
in Section 5 and evaluated in Section 6. Finally, in Section 7, the obtained model is used in a real-
world application where we dispatch taxis to meet unaccounted human mobility demand inferred
by coMobile.

Note that we only consider two specific views in coMobile but it can be generalized to more
views if more data are available. In coMobile, we first generate single-view models and then com-
bine them together at model levels, instead of raw data levels (e.g., using multi-source raw data to
directly design a multi-view model). This is because in many applications due to privacy issues,
raw data are not available, and only high-level single models can be used as input. Our coMobile
is still applicable to this situation.

4 SINGLE-VIEW MOBILITY MODELING

We introduce how to model urban mobility based on two single views, that is, a cellphone view
and a transportation view.
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Fig. 9. coMobile framework.

4.1 Cellphone-View Modeling

As introduced earlier, the key challenge to model human mobility based on cellphone data is that
inactive cellphone users or residents without cellphones do not generate any CDR data. As a result,
we cannot model their mobility to obtain mobility graph. For residents without cellphones, the
solution is limited although the model based on transportation can capture some of them. In this
subsection, we focus on inactive cellphone users to infer their mobility by an observation that
inactive users who did not use their cellphones today may use their cellphones before during the
similar trips (Gonzalez et al. 2008). Thus, we formulate a tensor decomposition problem to infer
mobility of active and inactive users with real-time and historical data.

4.1.1 Tensor Construction. We infer locations of cellphone users for specific time slots by a
three dimensional tensor A € RN*KXM

— A cellphone user dimension indicates individual cellphone users differentiated by SIM IDs:

[ug,...,un].

— A time slot dimension indicates specific time windows (e.g., 1h window from 5PM to 6PM):
[t1,. .., tx].

— A spatial unit dimension indicates specific spatial units (e.g., a urban region): [s, ..., sa]-

—An entry A(n, k, m) indicates the number of CDR records a user n has in a spatial unit m
during a slot k.

With our cellphone data, we fill this tensor A, and then obtain all cellphone users’ locations with a
specific spatiotemporal partition. However, a key challenge is that the tensor A is sparse because
for inactive cellphone users, their corresponding entries are empty due to lacking CDR data.

A common approach to address this issue is to use tensor decomposition. As in Figure 10, we
have a tensor with three dimensions indicating cellphone users, spatial units, and time slots. An
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Fig. 10. Tensor decomposition.

entry denotes a tuple [user, location, time]. But this tensor is sparse due to inactive cellphone users.
Based on the classic Tucker decomposition model (Kolda and Bader 2009), we decompose A into
a core tensor I along with three matrices, U € RN*d S e RMXd® and T € RExd" U, S, and
7 infer correlations between different cellphone users, different spatial units, and different time
slots, respectively. d%, d°, and d' are the number of latent factors and very small.

The following objective function is used to optimize the decomposition.

1A = I xUXxSXTIP+ AULIP + 1UI +1ISIP + T 11%),

where the first term is to measure the error of decomposition and the second term is a regulariza-
tion function to avoid over-fitting. || - [|?> denotes the I; norm and A is the parameter to control the
contribution of the regularization function. By minimizing this objective function, we obtain the
optimized 7, U, S, and 7 by the sparse tensor A, which is given by cellphone data. As a result,
weuse I X U XS X T = A to approximate A where X is the tensor-matrix multiplication.

However, a key challenge for this decomposition is that A is over-sparse especially under fine
spatiotemporal partition, which leads to poor performance of decomposition. To address this is-
sue, in this work, we propose a technique to use historical cellphone data to establish correlated
contexts that improve the performance of the decomposition.

4.1.2 Context Extraction. To provide additional information for the decomposition, we use the
historical cellphone data to extract three contexts, that is, cellphone user density, calling loca-
tion pattern, and calling time pattern. We use three matrices to denote these three contexts as in
Figure 11.

—Cellphone User Densities are given by a matrix 8 where a row denotes a spatial unit; a
column denotes a time slot; an entry denotes the average CDR record count in this spatial
unit for this time slot over a period of historical time.

—Calling Location Patterns are given by a matrix C where a row denotes a spatial unit; a
column denotes a cellphone user; an entry denotes a cellphone user’s CDR record count in
this spatial unit given a period of historical time.

—Calling Time Patterns are given by a matrix 9 where a row denotes a time slot; a column
denotes a cellphone user; an entry denotes a cellphone user’s CDR record count in this time
slot given a period of historical time.

All the matrices B, C, and D can be obtained by a set of historical cellphone data.
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4.1.3 Context-based Tensor Decomposition. We present a joint tensor decomposition based on
the three extracted context matrices. In particular, we design the objective function as follows:

min L(Z,U,S,T)=||A-T xUXxSXT|?
I,U,87T

FUIB=SXTIP+LIIC-=SXUIP+ 1D -TT xU|? (1)
+A (N1 + U+ 1ISIP + 1T 117,

where the first term is to measure the error of decomposing A; the second, third, and fourth terms
are to measure the error of factorizing matrix 8, C, and D, respectively; the last term is to avoid
over-fitting. In our setting, d* = d° = d’. Ay, A, A3, and A4 are preset parameters to indicate term
weights. We normalized all values to [0, 1] for the decomposition.

In this objective function, A and B share S and 7 ; A and C share S and U; A and D share
U and 7T . Since B, C, and D are not sparse, they lead to accurate S, 7, and U, which increases
the performance of decomposing A. As a result, the historical cellphone user calling patterns are
transferred into the decomposition of A, which leads to an accurate tensor decomposition.

Because this objective function does not have a closed-form solution to find the global optimal 7,
U, S, and T, we use an element-wise optimization algorithm as a numeric method (Karatzoglou
et al. 2010) to obtain a local optimal solution. Finally, after we obtain 7, U, S, and 7, we use
T XxUxXSxT = A toobtain cellphone mobility graph G of all cellphone users.

4.2 Transportation-View Modeling

Based on our transportation data, we model human mobility by three transportation modes, that
is, taxi, bus, and subway. Given attributes of our transportation data, we directly obtain origins and
destinations of taxi, bus, and subway passengers at GPS, bus station, and subway station levels. In
this work, we use a space alignment technique where we assign taxi GPS locations, bus stations,
and subway stations into corresponding spatial units based on a specific spatial partition of urban
areas. Thus, for a pair of spatial units, for example, from an airport to a train station, we aggregate
all the above passengers who traveled between these two spatial units to obtain a mobility volume
during a particular time period, because these three kinds of transportation modes are independent
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of each other. Thus, from the transportation view, obtaining transportation mobility graph G is
straightforward.

Our context-aware tensor decomposition can also be used to improve completeness of the
transportation-view model since we have missing data issues (e.g., GPS records) as well. The pro-
cess is conceptually similar to the tensor decomposition for the cellphone-view model, which is
omitted due to the space limitation.

Further, we did not consider private vehicles in our transportation view due to lack of private
vehicle data. However, some urban residents using private transportation would be captured by
multi-view learning, which is introduced as follows.

5 MULTI-VIEW MOBILITY MODELING

In this section, based on single-view modeling, we introduce multi-view modeling in coMobile.
Even though our data can only form two views to obtain two mobility graphs, that is, the cellphone
mobility graph G¢ and the transportation mobility graph G”, we aim to tackle a more generic prob-
lem, that is, multi-view modeling, and thus double-view modeling is a concrete example of multi-
view modeling. We first formulate a joint optimization problem for multi-view human mobility
modeling, and then we develop an iterative learning processing to solve this problem, and, finally,
we theoretically analyze the performance of modeling in terms of convexity and convergence.

5.1 Joint Optimization

The key notations we used in this section based on graph G with different spatiotemporal effects,
for example, from a spatial unit a (e.g., an airport) to b (e.g., a train station) during a time period ¢
(e.g., 4-5PM). The main objective of our multi-view modeling is to obtain a comprehensive human
mobility graph G for a given time period based on several single-view mobility graphs, for ex-
ample, G¢ and G. Because we have the same spatial partition for different mobility graphs, they
have the same number of edges and vertices, and the key difference is edge weights. Since different
edges are independent in a human mobility graph, we use one edge ab in a human mobility graph
G™ as an example to show how we obtain the human mobility from one spatial unit a to another
spatial unit b by our multi-view technique and combine different edge weights together to obtain
a complete human mobility graph GH.

For a specific edge ab in G, the volume of passengers traveling from a spatial unit a (e.g.,
an airport) to b (e.g., a train station) during a time period ¢ (e.g., 4-5PM) is x7, , which is the
unknown ground truth we want to infer. Assuming we have V different views, this leads to V'
different mobility graphs that are incomplete by themselves yet complementary to each other. For
a specific view v € [1,V], we use x?, | to indicate the weight of the edge ab during ¢ in the mobility
graph G?; for a specific view v € [1,V], we use w?,  to indicate the completeness degree of this
view during a time period ¢ from this edge ab of G”. The completeness degree of a view quantifies
its capability to capture human mobility. The stronger the capability, the higher the degree. Under
different spatiotemporal contexts, the completeness degree of the same view is different. We use
avector Wyp.; = {w;b.t, W s w;/b.t} to indicate completeness degrees for all V views.

In coMobile, based on the above definitions, V and xfl’b_ , are given in advance by the datasets,
whereas x7, , and W), are unknown. Therefore, we present a joint optimization to obtain
optimal x”, ~and ‘W, together. The basic idea behind our multi-view learning is that a view
with a higher completeness degree provides more comprehensive information, so the ground
truth should be close to mobility observed by a view with a higher completeness degree. As a
result, we should minimize the deviation from mobility observed by a view v to the ground truth
x7,., (unknown), proportionally to its completeness degree w?, (also unknown). Therefore, we

t
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Step 1: Initialization about x;,., and W 4.,

Step 2: Fix xgp.; & Optimize W .

{ | . *
Wbt < arug/ min F(x,p.., Wap.e),st. RWgpe) =1
ab-t

Step 3: Fix W gp.¢ & Optimize x,.,

* ' *
Xgpt € arg*mln F(xop.6o Wab-t),
Xab-t

Until: Convergence

Fig. 12. lIterative multi-view learning.

develop the following objective function for multi-view learning:

M<

. *
N m(l‘?/ F(xab.p ab- If
Xap.t> Wab-t

v
ab t’ ab-t’xab-t)]’ (2)

]
Il
—_

S.t.,R( ab~t) =1.

is a distance function that describes the distance between x”, ~and x?, . There-

D(xgp. s Xgp.0) 1 ab-t

fore, the term szl[ Vo DX, . xY, )] indicates the overall weighted distance between the
observed mobility and the ground truth. We aim to find the optimal x7, = and W,;.; that mini-
mize this overall weighted distance under a constraint.

R(‘W,p.+) is a constraint function, which gives the distribution of view completeness. With-
out this constraint, the optimization problem is unbounded. For the sake of simplicity, we set
R(W,p.+) = 1. Other constraint functions can also be used since we can divide R("W,;.;) by a
constant.

The rationale behind this function is that for a more-complete view, we have a high penalty
if the mobility observed from this view has a longer distance to ground truth. In contrast, for a
less-complete view, we have a low penalty if the mobility observed from this view has a longer
distance to ground truth. Thus to minimize the objective function, ground truth relies on the more
complete views.

5.2 Iterative Learning

We develop an iterative learning technique based on the block coordinate descent (Bertsekas 1999)
to solve this optimization Since in our objective function we have two sets of variables, that is,
both the ground truth x7, , and the view completeness degree ‘W,;.;, we aim to iteratively yet
alternatively optimize these two sets of variables until the result converges. In particular, we opti-
mize the value of one set to minimize the objective function while keeping the value of the other
set fixed, and then we swap the fixed variable and the optimized variable to continue this process
until the result converges. Figure 12 gives the description of our iterative technique. In the above
algorithm, we have three key steps:
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—In Step 1, we first initialize x7, = and W), based on the average value of x, , because the
initialization does not affect the final results based on the property of the block coordinate
descent (Bertsekas 1999).

—In Step 2, we first fix the initialized x7, ,, and then find the optimal ‘W,;,.; that minimizes
the objective function.

—In Step 3, with this optimized ‘Wp;.;, we fix it and then find the optimal x”,  that minimizes
the objective function again

—Then, with this optimized x*
optimize Wpp.;.

" p.r» We go back to Step 2 to fix x7, , again, and then to further

This is an iterative process to alternatively optimize x”, = and Wg;., until the result converges.
Based on the property of the block coordinate descent (Bertsekas 1999), the convergence of the
above iterative process is based on the distance function and constraint function used. As follows,

we theoretically analyze the performance of our technique in terms of convexity and convergence.

5.3 Theoretical Analyses
We use Negative Log Function as our constraint function:

v
R(Wyp.s = {W;bw woy L ldots, wab N = Zexp(—wzb.t).

v=1

This negative log function maps a number between 0 and 1 to a number from 0 to oo, which
enlarges the difference between different view completeness degrees for better modeling.
Further, we use normalized squared loss function as our distance function given as

* v 2
(xab-t B xab~t)

D(x*, ,,x% )= .
Cap-t-Xar-) = grp L X% x) )
This normalized squared loss is an effective method to measure the distance between two variables
and consider the distribution of x,  at the same time.
As follows, we prove the convexity and convergence of our iterative learning with the above

two functions.

THEOREM. If the negative log function and the normalized squared loss function are used, then
convergence of our iterative process in Figure 12 is guaranteed.

Proor. Based on the convergence proposition on the block coordinate descent (Bertsekas 1999),
the iterative process converges to a stationary point, if the optimizations in Steps 2 and 3 are
convex. Thus, the rest of our proof has 2 steps: (i) in Step 2, if x7, , is fixed, then the optimization
for Wop.+ is convex; (ii) in Step 3, if ‘W, is fixed, then the optimization for x,  is convex.

To prove the convexity of Step 2, we use another variable y,, = exp(—w?). Therefore, the opti-
mization problem becomes a new function with only one variable of y,

%
min Flyr, .. sYps-.- yy) = Z —log(yo) - D(x};, > x5, )]s

Yts--Yovs - Yv
v=1

\4
s.t., Z Yo = 1.
v=1

With this new variable y,,, we have a linear constraint function and a linear objective function (i.e.,
a linear combination of negative logarithm functions). Therefore, both the constraint function and
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objective function are convex, which leads to the fact that any local optimal solution is also the
global optimal solution for Step 2.

To prove the convexity of Step 3, we treat the objective function as an unconstrained optimiza-
tion with only one variable. In Step 3, since the normalized squared loss function is convex, the
objective function is a linear combination of convex functions, which makes it convex. O

Note that other constraint and distance functions can also be used in our iterative process but
may not lead to the convexity of the optimization problem, and thus the convergence of the iter-
ative process cannot be guaranteed.

6 IMPLEMENTATION AND EVALUATION

In this section, we first introduce our implementation of coMobile based on data from the Chinese
city Shenzhen. Then, we present our evaluation by comparing coMobile and a single-view model
to the ground truth.

6.1 coMobile Implementation

We implement coMobile based on cellphone and transportation data in Shenzhen introduced in
Section 3. Since our article concentrates on modeling, we briefly introduce our data-related issues
during our implementation. We establish a secure and reliable transmission mechanism, which
feeds our server the data collected by STC and service providers with a wired connection. As shown
in Section 3, we have been storing a large amount of data, requiring significant efforts for the daily
management. We utilize a 34TB Hadoop Distributed File System (HDFS) on a cluster consisting
of 11 nodes, and each of them is equipped with 32 cores and 32GB RAM. For daily management,
we use the MapReduce based Pig and Hive. Right now, we are migrating to the Spark platform
due to its high performance compared to Hadoop. Because of the extremely large size of our data,
we have been finding several kinds of errant data, for example, duplicated data, missing data, and
data with logical errors. To address these issues, we conduct a detailed cleaning process to filter
out errant data. We implement our tensor decomposition technique by HaTen2 (Jeon et al. 2015), a
scalable distributed suite of tensor decomposition algorithms running on the MapReduce platform.
By carefully reordering the operations, and exploiting the sparsity of formulated tensors, we can
dramatically reduce the intermediate data and the number of jobs for real-world implementation.

For real-world implementation, we have to decide the spatiotemporal partition for the mobility
graph, which decides the spatiotemporal granularity of our model. For example, we have more than
110 thousand road segments, 496 urban regions, and 10 urban districts in Shenzhen, and we can
capture the mobility with one of those three spatial partitions for every 15min, 30min, 60min, or
even longer. Due to the spatial resolutions of our data (especially for bus, subway, and cellphones),
we use a urban-region partition proposed by Shenzhen government as our spatial partition, which
is given by Figure 13. Different colors indicate different population density. Based on this partition,
we implement our multi-view mobility modeling technique coMobile based on two views. A hu-
man mobility graph obtained by coMobile for major urban areas during the evening rush hour at
region levels is given by the left of Figure 14. We protect the privacy of residents by anonymizing
all data and presenting models in aggregation, and only processing information related to mobility.

6.2 coMobile Evaluation

In this subsection, we introduce our evaluation about coMobile in terms of methodology and
results.

6.2.1 Evaluation Methodology. Based on our implementation, we compare coMobile with
a single-view human mobility model called Work and Home Extracted REgions (WHERE).
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‘ coMobile Ground Truth

Fig. 14. Mobility graphs in Shenzhen.

WHERE (Isaacman et al. 2012) is a model driven by cellphone data, and it is based on spatial and
temporal probability distributions of human mobility and produces synthetic cellphone records as
the inferred mobility. We also implement a single-view model based on transportation data alone
called Transit where we only feed transportation data to our coMobile. To test our tensor decom-
position of single-view model improvement, we implement a model WHERE+ by inferring the
missing data in the WHERE model. We compare these four models with the inferred ground truth.
In this project, to infer the ground truth, we introduce another new cellphone related dataset for
the evaluation. Different from regular CDR data, this dataset logs locations of all cellphone users
at cell tower levels for every 15min even without activities. We use the mobility graph obtained
from this dataset as the ground truth, which is given in Figure 14 given a urban partition. In this
article, we use an urban region partition proposal by the Shenzhen government, and then map all
the data from cellphone network and transportation systems into regions defined by this partition
and finally obtain the aggregated mobility between regions based on our model to get the evalu-
ation results. By a visual comparison, we found that we underestimate the mobility at residential
areas and overestimate the mobility at downtown areas.

We utilize 3 months of data to evaluate these two models. We use Mean Average Percent Error

(MAPE) in a time slot as a metric to test those two models MAPE = 1% 37 | @,
496 X 496 = 246016 is the total number of region pairs, that is, the total number of edges in a
mobility graph; T; is the inferred mobility between a region pair i; T; is the ground truth of the
mobility between a region pair i. An accurate model yields a small MAPE and vice versa. We use
90 days of data, leading to 90 experiments. The average results were reported.

We investigate the impact of different contexts by adjusting three model parameters, that is,
A1, A2, and A3, which control contributions of different contexts in our tensor decomposition with

Equation (1). The default setting is A; = A, = A3 = A4 = }1, where we consider all contexts and the

where n =
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Fig. 15. MAPE under 1h slot for 24 hours of a day.

regularization term equally. Further, we investigate the impact of historical cellphone data on the
model performance in terms of extracting correlated contexts.

6.2.2  Evaluation Results. We compare three models’ inferring accuracy in terms of MAPE val-
ues by (i) a low-level comparison on five particular region pairs, (ii) a high-level comparison on all
246,016 region pairs, (iii) different lengths of slots, and (iv) different amount of historical data.

Figure 15 plots the MAPE under 1h slots with the two-way mobility between a residential re-
gion and five other regions. We did not implement Transit in this setting, because these are regions
limited public transportation, for example, lacking subway stations. We found that coMobile out-
performs WHERE and WHERE+ in general. This is because WHERE only uses the cellphone data
to model the human mobility from the cellphone view alone, whereas coMobile uses two views to
model the human mobility, which leads to better performance. We apply our technique to obtain
a updated model WHERE+ for WHERE, which improves the performance of WHERE by 25%. But
coMobile still performs the best among these two.

We also found that the performance gain between coMobile and WHERE is lower during rush
hour. One of the possible explanations is that the repeatable mobility patterns are higher during
rush hour, so all models have better performance. Comparing the five region pairs, we found that
for the commuting region pairs (e.g., between the residential region and the industrial, commercial
or downtown regions), all models have better performance than the region pairs on which the
residents go for travel (i.e., between the residential region to the airport or train station regions).
This is due to the fact that repeatable pattern for travel is limited.

Figure 16 gives the MAPE on all region pairs under one hour slots. We found that all three
models have higher MAPE than the MAPE we observed in Figure 15. This is because the urban
mobility is highly dynamic between various regions pairs, and many region pairs have very limited
mobility, which leads to high MAPE. But we also found that relative performance between these
three models is the same as in Figure 15. coMobile is better than WHERE and Transit, which shows
the advantage of using multi-view learning to model the human mobility. coMobile outperforms
WHERE and Transit by 51% and 58% in terms of MAPE, resulting from its multi-view learning
from both cellphone data and transportation data. But WHERE is better than Transit because of
large-scale coverage of cellphone users.

Figure 17 plots the MAPE of coMobile, Transit, and WHERE with different slot lengths from
15min to 12h. Basically, the MAPE of all three models reduces with the increase of the modeling
lengths. This is because the mobility in a longer time slot is much more stable. coMobile signifi-
cantly outperforms WHERE and Transit when the slot length is short. This is because the trans-
portation data can capture lots of mobility during a short time period. We notice that the slot
length becomes longer than 6h, both all three models have the similar performance, because in a
long time slot, the cellphone data alone are capable of inferring mobility.
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Figure 18 shows how much historical information is necessary for all three models. As expected,
the longer the time, the lower the MAPE for both models, the better the performance. But a too-
long history does not help much, especially for coMobile, whose MAPE became stable when the
historical data are longer than 4 weeks. It shows that coMobile does not reply on long-term his-
torical cellphone data, thanks to the transportation view. But WHERE and Transit need a longer
historical period of data, that is, 9 weeks, before its MAPE becomes stable.

Figure 19 shows the impact of two contexts, that is, cellphone user densities and calling
time&location patterns as introduced in Section 4.1.2. In particular, we set A, = A3 =0 and A; =
Ay = % to obtain a model called coMobile w/ User Density, which only considers the cellphone
user density as a context. Similarly, we set A; =0 and A, = A3 = A4 = % to obtain a model called
coMobile w/ Time&Location Patterns, which only considers time&location patterns as contexts.
We compare them with coMobile, which considers all contexts. In generally, coMobile outperforms
the other two models. We found that for the early morning, considering time&location patterns
is better than considering user density; while for the late night, considering user density is bet-
ter than considering time&location patterns. Also, during some slots in the afternoon or evening,
for example, 14:00, 15:00, and 18:00, it leads to better performance if we do not consider certain
contexts.

In short, we have the following observations. (i) As in Figure 15, the accuracy of human mobility
modeling is highly depended on both locations and time of day. Our tensor decomposition based
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Fig. 20. Mobility demand vs. taxi supply.

single-view improvement, that is, WHERE+, works well but still cannot outperform coMobile be-
cause of its complementary data sources. (ii) As in Figure 16, all models have better performance
in the morning rush hour in general due to the predicability of morning commutes, and coMobile
outperforms WHERE and Transit during all times. (iii) As in Figure 17, the length of slots has sig-
nificant impacts on performance of all models. (iv) As in Figure 18, how much historical data to
be used by coMobile does not significantly affect the performance of coMobile and Transit. (v) As
in Figure 19, the same contexts have different effects according to the time of day, but considering
them together leads to better average performance.

7 COMOBILE APPLICATION: TAXI DISPATCHING

Built on coMobile, we introduce an mobile application where we dispatch vacant taxis among
urban regions with high human mobility demand yet low transit supply in rea time for better
urban transportation services.

7.1 Application Overview

Our overall dispatching objective is to achieve an equilibrium between unaccounted mobility de-
mand and taxi supply at urban region level. The unaccounted mobility demand can be obtained by
general mobility inferred by coMobile minus urban public transit demand. Thus, the unaccounted
mobility demand (including demand for all other mode of transport except bus and subway) indi-
cates the potential demand for taxis. The taxi supply, that is, the number of vacant taxis at different
urban regions, can be obtained straightforwardly based on real-time taxi GPS data. Our taxi dis-
patching strategy aims to balance the relationship between unaccounted mobility demand and
taxi supply to potentially improve the mobility efficiency at urban region levels. As shown in by
Figure 20, we show a visualization of unaccounted mobility demand and taxi supply where the
warmer the color, the higher the mobility demand, the lower the taxi supply.

7.2 Dispatching Strategy

In our dispatching strategy, at the end of a slot ¢;, we first use coMobile to infer unaccounted
mobility demand ID)Z;1 for the next time slot ¢;,; in a predefined region r. In particular, we first use
coMobile to obtain general human mobility at urban region levels, then aggregate subway and bus
passenger demand to obtain public transit demand, and, finally, we use the general human mobility
minus public transit demand as unaccounted mobility demand ]D;fﬂ. Next, we employ real-time
taxi GPS data as introduced in Section 3 to aggregate vacant taxicabs to obtain “dispatchable”
vacant taxi supply in region ry for the next slot ¢;,1, indicated by S;j‘ﬂ. Similarly, we shall have all
DZ‘H and SZ‘H for all urban regions where 1 < x < 495. Finally, we use a straightforward scheme to
dispatch vacant taxicab supply X<y <495 SZ‘H among 495 regions. The final objective is to achieve
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an equilibrium where the taxicab supply S;’,‘H is proportional to inferred unaccounted mobility
demand DZ‘H in region ry for a further time slot #;,1.

7.3 Dispatching Evaluation
The evaluation is based on the ground truth of general mobility demand D;l’,:l of slot t;41, and the

dispatched vacant taxicab supply SZ‘H in each region at hourly slots. To evaluate effectiveness of
dispatching, we propose a metric, that is, normalized equilibrium value 0 < Q < 1, where

- -
ID}x - S
Q _ i+1 i+1
tiy — AV81<x<495— <. ~ oS
tiv1 tiv1

If the unaccounted mobility demand inferred by an inference method, for example, coMobile, is
similar to the ground truth, then the corresponding dispatch will lead to a smaller Q,,,, indicating
an higher equilibrium between unaccounted mobility demand and taxicab supply; otherwise, it
leads to a large Q,,,, that is, disequilibrium. We compared two dispatching strategies: coMobile-
based dispatching and WHERE-based dispatching. coMobile-based dispatching strategy uses co-
Mobile as the human mobility model to infer unaccounted mobility demand, whereas WHERE-
based dispatching strategy uses WHERE (Isaacman et al. 2012) as a human mobility model to infer
unaccounted mobility demand as introduced in Section 6. Note that dispatching taxicabs would
skew historical taxicabs’ GPS dataset. To eliminate dispatching effects, we only used dispatched
supply to calculate Q and did not manipulate taxis’ traces, and we start over at the end of the next
slot. Since we did not introduce additional effects on the taxi GPS datasets, dispatching at every
hour is similar to the first dispatching, which leads to accurate evaluations.

Figure 21 gives the equilibrium value Q for different times of a day under 1h time windows.
Although we found that there are some fluctuation for equilibrium values in both of dispatching
strategies, coMobile-based dispatching has a lower equilibrium value at every slot compared to
WHERE-based dispatching. Figure 22 gives the average equilibrium value Q under 2h slots. In
general, we found under 2h slots that the equilibrium values are lower than the equilibrium values
under 1h slots for both coMobile-based dispatching and WHERE-based dispatching. There results
verify our previous observation that inferring based on 2h slots is better than inferring based on 1h
slots in terms of accuracy. But the relative performance in terms of equilibrium values between two

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 3, Article 22. Publication date: December 2017.



Real-Time Human Mobility Modeling with Multi-View Learning 22:21

model-based dispatching strategies shown in Figure 22 is similar to the one in Figure 21. coMobile-
based dispatching outperforms WHERE-based dispatching by 15% on average, because of accurate
mobility inferring by coMobile.

8 RELATED WORK

Modeling the human mobility in urban scales is crucial for mobile applications, urban planning,
and social networks (Zheng et al. 2014). Recently, due to the ubiquity of GPS devices and urban
infrastructure upgrades, analyzing human mobility based on empirical mobility data has received
significant attention (Hess et al. 2015; Isaacman et al. 2012; Gonzalez et al. 2008; Song et al. 2010;
Girardin et al. 2008, 2009, 2007). Various data from urban systems can be used to infer human mo-
bility, for example, data from smartcards (Sun et al. 2012), check-ins (Cho et al. 2011), and transport
systems including subways (Lathia and Capra 2011) and taxicabs (Ge et al. 2010; Huang and Powell
2012; Yuan et al. 2011b; Zhang et al. 2011). However, almost all existing models are driven by sin-
gle views, for example, the cellphone view (Isaacman et al. 2012) or the transportation view (Ganti
et al. 2013). We made the first attempt to model human mobility with multi-source data (Zhang
et al. 2014), but our previous work was to use transportation data to adjust the modeling process
based on cellphone data and did not treat these two kinds of data equally as two views. As follows,
we summarize the related work by different views.

—Cellphone View: Modeling from the cellphone view based on call detail records (CDR) is
the most common method, for example, modeling how residents move around cities (Isaac-
man et al. 2012); estimating cellphone users’ travel range (Isaacman et al. 2011); predicting
where cellphone users will travel next (Dufkova et al. 2009); identifying cellphone users’
important locations, for example, work or home (Isaacman et al. 2010); and specific models
for different cities, for example, Los Angles or New York City (Girardin et al. 2009), or Rome
(Girardin et al. 2008). However, the models from cellphone views are mostly biased against
a certain group of residents, leading to inaccurate analyses. To our knowledge, we are the
first to combine data from more than one carrier to model human mobility and correlate
cellphone data with transit data to address the bias issue to increase analysis accuracy.

—Transportation View: Transportation data are another important data source for human
mobility, for example, bus data (Liu et al. 2017; Bhattacharya et al. 2013), subway data (Lathia
and Capra 2011), taxicab data (Zheng et al. 2011a; Ganti et al. 2013), and private vehicle
data (Giannotti et al. 2011). However, the models driven by data from one kind of transporta-
tion are mostly biased against the passengers using other transportation. To our knowledge,
there is no model driven by more than one transportation mode, and we are the first to com-
bine data from three kinds of transportation for mobility modeling. In contrast, our method
is based on data from the entire set of urban transit networks correlated with data from
cellular networks, instead of sampling residents using a specific transit mode.

—Other Views: Other data generated by urban residents have also been used to study human
mobility, for example, social networks or mobile ad hoc networks, that is, with check-in
data (Cho et al. 2011) and proximity data (Backstrom et al. 2010). However, the number
of residents captured by these views is often limited compared to the cellphone data and
transportation data, which leads to a bias that cannot be quantified.

In summary, almost all human mobility modeling is based on single views, which are often in-
complete in terms of capturing human mobility at an urban scale in real time. Such a shortcoming
motivates us to take a multi-view approach, which uses incomplete yet complementary views to
model human mobility. We implement this idea by our design coMobile, which combines both the
cellphone view and transportation view together to model the human mobility and outperforms
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a single-view model. Conceptually, our work related to multi-view learning (Xu et al. 2013). But
our key difference to traditional multi-view learning techniques, for example, co-training (Blum
and Mitchell 1998), is in our tensor decomposition-based single-view improvements and the it-
erative optimization technique for multiple view merging introduced in Section 4 and Section 5,
respectively.

Based on mobility modeling, many novel applications are proposed to improve urban mobility,
for example, assisting urban residents to make transit decisions, such as taking a taxicab or not (Wu
et al. 2012), inferring urban-scale maps based on vehicle GPS (Biagioni and Eriksson 2012), predict-
ing parking locations for urban residents (Nandugudi et al. 2014), inferring arrival times within bus
systems (Biagioni et al. 2011), inferring the potential passenger volume for taxi business (Ge et al.
2010), modeling urban transportation networks (Zheng et al. 2010), recommending optimal routes
to pick up potential passengers (Ge et al. 2011), inferring potential locations with higher profits for
taxi drivers (Powell et al. 2011), assisting new drivers with GPS data from expedited drivers (Yuan
et al. 2011a), detecting anomalies for taxi business (Sen and Balan 2013), and understanding region
functions in a particular city (Yuan et al. 2012). However, the above research has not focused on
taxi dispatching based on general unaccounted urban mobility and typically utilizes data from one
particular view instead of the multi-view as we did in coMobile.

9 DISCUSSION

We provide some discussions about coMobile as follows.

Privacy Protections. While the data for the human mobility study have the potential for great
social benefits, we have to protect the privacy of the residents involved for wider applications. We
took two active steps for privacy protection. (i) Anonymization: All data analyzed are anonymized
by the service providers, who were not involved in this project, and all identifiable IDs, such as
SIM card IDs, are replaced by a serial identifier during the analyses. (ii) Aggregation: the mobility
patterns obtained by coMobile are given at aggregated results with a mobility graph in a large
spatiotemporal partition. We do not focus on individual residents during the analyses.

Public Data Access. Accessing empirical datasets is vital to geographic information system
research, but such datasets are usually not available to fellow researchers due to the privacy issues.
As an initial step, the partial aggregated data used in this work have been made for public access in
the website of Transport Committee of Shenzhen Municipality (Transport Committee of Shenzhen
2014). Most importantly, we released the first big urban dataset (Zhang et al. 2014), which includes
the large-scale Shenzhen data including taxi, bus, subway, smartcard, and cellphone data. This is
the first time that such comprehensive urban data have been released for the benefit of the research
community:.

10  CONCLUSION

In this work, we design, implement, and evaluate a human mobile modeling technique called co-
Mobile based on context-aware tensor decomposition and iterative multi-view learning. It is the
first human mobility model based on both a cellphone view and a transportation view. Our en-
deavors offer a few valuable insights, which may help fellow researchers to model other urban
phenomena: (i) human mobility modeling based on single-view data introduces biases, which can
be partially addressed by using historical data; (ii) to model human mobility, every view itself
is incomplete but they are often complementary to each other, and thus it is essential to model
the completeness degree of a view before inferring the mobility; and (iii) multi-view learning for
human mobility requires an iterative optimization process to improve the accuracy of modeling
and thus how to select an objective function and constraint function to ensure the convergence is
essential for real-time applications.
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