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Exploring cellphone network data has been proved to be a very e�ective way to understand urban populations because of the
high penetration rate of cellphones. However, the state-of-the-art population models driven by cellphone data are typically
built upon single cellphone networks, assuming the users in a particular cellphone network used are representative of all
residents in the studied city with multiple cellphone networks. This assumption usually does not hold in the real world
due to strategic spatial coverages and business concentrations of cellphone companies, which lead to data biases, and thus
over�tting of resultant population models. To address this issue, we design a model called MultiCell to model real-time urban
populations from multiple cellphone networks with two novel techniques: (i) a network realignment technique to integrate
individual cell-tower spatial distributions from multiple cellphone networks for �ner granular population modeling; (ii) a
data fusion technique based on cross-network training to design a population model based on multiple network data. We
implement MultiCell in the Chinese city Shenzhen based on three cellphone networks with 10 million active users and their
daily data records at 11 thousand cell towers. We evaluate MultiCell by comparing it to the state-of-the-art models driven by
single cellphone networks, and the evaluation results show that MultiCell outperforms them by 27% in terms of accuracy.
Finally, we cross-validate MultiCell with three transportation systems with more than 8 million passengers to investigate its
performances.
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1 INTRODUCTION
Real-time urban population modeling is essential to many applications, e.g., mobile computing [6], urban
planning [20], and location-based services [37]. Traditionally, urban populations have been modeled by surveys,
e.g., census data [19], which are comprehensive but typically out-of-date and cannot be used for real-time
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population modeling. Recently, the real-time population study gains great attention because of high penetration
rates of location tracking devices and advanced urban infrastructure systems, e.g., cellphone [23], taxi [16],
buses [5], subway [25], and smart cards [29]. Based on these systems, we can infer real-time locations of system
users, and then model aggregated urban populations.
Among all these systems, although transportation systems o�er record data at unprecedented temporal

scale [16], cellphone network system has been considered as an e�ective way to model urban population because
of its high penetration rates, low-cost data collection and alleviated privacy concerns [12] [23]. In particular, (i) it
has been shown that 96% of world population have cellphones and use them regularly [1], which helps us model
real-time urban populations [12] that are challenging to be modeled by other data sources; (ii) the cellphone data
are already automatically collected by the cellphone companies for billing purposes [22], which leads to low
marginal costs; (iii) the cellphone data are collected at the cell tower level and do not need GPS, which alleviates
the energy and privacy issues [4].
To date, many population models have been proposed based on data from cellphone networks [31] [11] [24].

However, we found almost all these models are implemented by data from single cellphone networks while
most cities around the world have multiple networks [23]. The assumption behind these models is that the users
in single cellphone networks are representative of all residents using multiple networks in the same city [24].
However, as we validated by our data, di�erent networks have di�erent spatial concentrations due to their
strategic plans and market shares (e.g., in Figure 8, 9, 10). As a result, the data from one network are typically
biased against the users of other cellphone networks in the same city, which leads to over�tting of the models
driven by single networks. ‘

In this paper, to address this issue, we design a population model called MultiCell based on data from multiple
cellphone networks. Inspired by the previous work based on single cellphone networks [31], MultiCell models
urban populations but provides new insights from multiple network perspectives. It seems straightforward
to simply merge data from di�erent networks together and then feed them to existing population models by
considering multiple networks as a large virtual network, which is suggested by [13] with synthetic data. However,
we argue that naive data merging leads to biased population models because in practice, di�erent cellphone
companies have di�erent spatial distributions of cell towers, and resultant data are biased towards their underlying
spatial distributions as discussed in our motivation. To address this challenge, we utilize two novel techniques,
i.e., network realignment and cross-network data fusion, to estimate urban population in �ner spatial-temporal
granularities with multiple networks.

Speci�cally, our contributions are as follows:

• To our knowledge, we conduct the �rst study on urban populations based on multiple real-world cellphone
networks. Conceptually, we advance existing models based on cellphone networks from two dimensions (i.e.,
spatiotemporal) to three dimensions (i.e., spatiotemporal and network). Our study is based on real-world
data capturing more than 10-million users. We provide empirical evidence for two facts: (i) cellphone data
from individual networks have a spatial bias against users in other networks; (ii) integrating multiple
networks enables �ner-grained population modeling while keeping original spatial structures.

• With these data-driven insights, we design a population model MultiCell based on multiple cellphone
networks. We address a core challenge for multi-granularity data fusion from di�erent networks with two
techniques: (i) we design a network realignment technique to integrate individual spatial partitions of
multiple cellphone networks for �ne-granular population modeling; (ii) we design a data fusion technique
based on cross-network training for a population model based on multiple networks.

• We implement MultiCell with three cellphone networks in the Chinese city Shenzhen based on three
months of cellphone data. These networks have 3.8 million, 2.5 million, and 3.9 million daily active users
with 3595, 2977, and 5174 cell towers, respectively. The total daily data records for these three networks are
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more than 500 million. It covers all cellphone users and achieves 96% population penetration rate. To our
knowledge, MultiCell is one of the largest urban phenomenon models in terms of user numbers, and more
importantly, the �rst population model driven by multiple real-world cellphone networks.

• We evaluate MultiCell by comparing it to state-of-the-art models driven by single cellphone networks,
and the results show that MultiCell outperforms them by 27% in terms of accuracy. We further evaluate
MultiCell with various transportation data to investigate the correlation between our population model
and transportation ridership. We found that our population model has a high correlation with taxi, bus
and subway systems with more than 6 million daily passengers. This is the �rst work investigates urban
population from such a comprehensive multi-system perspective.

As follows, Section 2 shows our motivation. Section 3 describes datasets. Section 4 elaborates the model instantia-
tion on multiple cellphone networks. Sections 5 and 6 are the implementation and evaluation, followed by related
work in Section 7. Section 8 concludes the paper.

2 MOTIVATIONS
Spatial Biases: The previous research on cellphone data-driven population modeling relies on data generated
from a single network. However, cellphone network companies typically have di�erent business priorities in
terms of geographic locations, which leads to signi�cantly di�erent cell tower distributions and thus di�erent
user numbers. In fact, the cell tower spatial distribution of a cellphone network is dependent on various factors
including the technologies they are using, the region-speci�c geographic and demographic information [1]. As a
result, di�erent networks in the same city may have very di�erent tower distributions, which lead to a bias for
population modeling if only data from a single network are utilized. To provide empirical evidence, we utilize
data from three networks (details are in Section 3) to calculate cellphone user population for 496 administrative
regions in Chinese city Shenzhen. To calculate the population in regions, we �rst calculate the intersected areas
of Voronoi partition and administrative regions as shown in Fig. 1.

(a). Voronoi Partition

(b). Administrative Regions (C). Intersection-based Partition

Fig. 1. Map Users to Administrative Regions

Second, we map the number of users in Voronoi partition to administrative regions proportionally based on
intersected areas by the function in equation 1.

U(Rx , t , i) =
n’
l=0

|Rx \C
i
l |

|Ci
l |

⇥ U(Ci
l , t , i), (1)
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where U(Rx , t , i) is the user population in a region Rx based on data from a network i in a time slot t ; U(Ci
l , t , i) is

the user population in cell Ci
l ; |Rx \C

i
l | is the area of Rx \C

i
l ; n is the number of cells intersected with Rx . The

average area of the 496 regions is 3.973782 km2 and the standard deviation is 6.075980 km2.

Fig. 2. User Di�erence

Network A

Network B

Network C

Fig. 3. Users Di�erence at Urban Region Level

Fig. 2 gives the di�erence on cellphone users in these 496 regions between cellphone network with most
users and cellphone network with least users in a region. We ranked these regions based on the di�erence
in user numbers. We found that network A has more users in 249 regions; network B has more users in 67
regions; network C has more users in 180 regions. To explore if there are any spatial patterns by any network, we
further visualize these regions to show user populations of three networks in Fig. 3. Fig. 3 gives all 496 regions in
Shenzhen. The blank regions have more users in the network A; whereas the dark regions have more users in the
network B and the red regions have more users in the network C. Compared with the population distribution
in Fig. 4, we found that there are no clear spatial patterns about the regions dominated by any of networks.
It indicates that if only data from one network are used for modeling, the resultant models may experience
over�tting in the regions dominated by this network, and vice versa. Further, a straightforward method to combine
data from multiple networks for modeling cannot work because di�erent networks have di�erent concentrations
in di�erent regions as in Figure 3. In this paper, we aim to explore the possibility of combining multiple networks
to model real-time population with a new technique based on co-training to iteratively utilize multiple networks
to optimize population models.

Population Distribution in Regions

177,9850 population

Fig. 4. Population Distribution in Region Level
Fig. 5. Cell Coverage

Spatial Granularity: The coarse spatial granularity is the key disadvantage for models driven by cellphone
data [23] because we can only infer user locations on the tower level. For example, in Shenzhen with a total
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area of 1,991 km2, the three networks we studied have 3,585, 2,977 and 5,174 towers. Each of towers leads to an
irregular cell with an average area of 530 thousand m2, 640 thousand m2 and 385 thousand m2 respectively in
three networks. However, the desired spatial granularity for population study is 100m ⇥ 100m = 10 thousand m2

for dense areas [14]. For example, in Figure 5, we show the number of cells in the Shenzhen downtown from
three networks. We found that in the Shenzhen downtown (i.e., roughly 20% of Shenzhen), there are 2578, 2057
and 3605 cells for three networks respectively, which leads to the average cell areas of 140 thousand m2, 180
thousand m2 and 100 thousand m2. But they are still one order of magnitude larger than the desired granularity.
Moreover, the penetration rate of single networks is low. The user distribution on the spatial dimension is biased
in single networks. In our implementation, our model cover 100% cellphone users and 96% of the total population
in Shenzhen. It eliminates the spatial bias caused by the user distribution and reduces the spatial granularity to
�ner-grained regions, which is described in later sections.

Temporal Dynamics: Due to the limitation of access to real-time dynamic population data, traditional
regression techniques estimate human population in a city by static models. For instance, Worldpop [14] dataset
provides population distribution in 2010 and 2015. Single network estimation models can be only updated in 2010
and 2015 and remain static in any time between these two years due to the lack of ground truth for model training.
Since the temporal dynamics exists in human mobility, e.g., inter-cities or intra-city, the static model introduces
the bias in the temporal dimension. In this paper, relying on the strengths of multiple cellphone networks, we
designed a highly dynamic model for the population estimation.

Summary: By comparing single and multiple network scenarios, we found (i) the data from single networks
have spatial biases at di�erent urban regions, which motivates us to fuse data from multiple networks to
address biases; (ii) the single network has a coarse spatial granularity for modeling, which motivates us to study
intersections of cells from multiple networks to explore a �ner spatial granularity; Almost all existing work aims
to train a model based on cellphone data from two dimensions (e.g., temporal or spatial), e.g., �nding data for the
similar time slots, or �nding data for the similar locations. Conceptually, MultiCell advances existing models
based on cellphone networks from two dimensions (i.e., spatial and temporal) to three dimensions (i.e., spatial,
temporal and networks).

3 DATASETS
3.1 Cellphone Networks
We have been collaborating with three major cellphone networks in Shenzhen for data access to model urban pop-
ulation. In this version of MultiCell implementation, we consider three cellphone networks from complementary
perspectives. For privacy issues, we use Network A, B and C in the rest of the paper.

• Network A includes 3.8 million active users and di�erent types of cellphone usages, e.g., phone call, message,
data connection, around the whole Shenzhen city. On average, the daily data in Network A contain 210
million records across 3595 towers.

• Network B includes 2.5 million active users from 2977 towers in Shenzhen city. On average, the daily data
in Network B contain 200 million records across 2977 towers in the whole Shenzhen city.

• Network C includes 3.9 million active users and the only type of usage of the record is call . It contains 93
million daily records in 5174 towers.

We perform a data-driven modeling based on 3 months of data. Based on these networks, we perform various
statistical analyses to understand their spatiotemporal features.

Temporal Distribution: We show the number of data records and the number of active users in the three
networks of CDR data at the di�erent hour of one day in Figure 6 and Figure 7. We found that these three
networks have similar overall patterns. We found a key di�erence, i.e., Network A has more records from 20:00 to
5:00 after a short decrease from 19:00, whereas other networks do not have such a phenomenon. After we con�rm
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with the operator, this may be because they have a discount plan from 21:00 to 7:00, which leads to a temporal
bias for this time period. When comparing the record distribution and active user distribution, we found though
the general trends of the three networks are similar, the relative relations are not the same. Network A has the
most active users at 10:00 while the least active records during the same time period. This indicates di�erent
user behaviors in the three networks, e.g., the frequency of calls per user in Network A is lower than that in
Network B and Network C at 10:00. Such a temporal bias leads to imbalanced data when we model populations
in a �ne-grained temporal partition, e.g., 5 mins.
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Fig. 6. Record Temporal Distribution
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Fig. 7. User Temporal Distribution

Network A 3.8 M Users
210 M Records
3,595 Towers

Industrial
Commercial

Fig. 8. Spatial-Network A

Network B 2.5 M Users
200 M Records
2,977 Towers

Commercial

Industrial

Fig. 9. Spatial-Network B
Network C 3.9 M Users

93 M Records
5,174 Towers

Industrial

Commercial

Fig. 10. Spatial-Network C

A

B C

Fig. 11. PoI Distribution
Spatial Distribution: Based on the tower locations of the three networks, we obtain their heatmap-based

Voronoi diagrams, which is a partitioning of a plane (e.g., a city) into regions (e.g., cells) based on distances
between points (i.e., cell towers) in this plane [28]. In Figure 8, 9 and Figure 10, we found that in general, they
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have similar patterns. They have more towers in the downtown compared to the suburbs. But we found a few key
di�erences between commercial areas and industrial areas, which re�ects business concentrations of di�erent
networks. Previous work has shown the commercial and industrial area partition in Shenzhen based on the land
use of urban planning [35]. Further, as we mentioned in the motivation section, the current spatial granularity
is too coarse for ideal modeling [14]. The di�erences in the spatial distribution and coarse spatial granularity
provide new challenges to fuse multiple network data to model populations.

In short, the data from these networks provide valuable insights into our real-time urban population modeling.
More importantly, due to their di�erent business models and concentrations, they are spatiotemporally comple-
mentary to each other. By taking advantage of data from these networks, MultiCell is signi�cantly di�erent from
the state-of-the-art population models based on cellphone data from single networks [31] [11] [24].

3.2 Point of Interests
We utilize point of interests (PoI) in Shenzhen for our modeling. The PoI dataset includes 17 categories and
568,566 locations. The details of PoI categories are given in table 1. Fig 11 visualizes PoIs on the spatial dimension
in Voronoi partition of Network A.

Table 1. PoI Distribution in the city

Category Tra�c Facilities Education Fitness Auto Services Culture and Media Finance
# of PoIs 19260 4018 3275 11254 2357 12053
Category Business Life Services Food Tourist Attractions Government Organizations Beauty & Spas
# of PoIs 127722 11254 68084 3167 9823 18663
Category Shopping Hotels Recreation Medical Services Real Estates
# of PoIs 153657 12860 14007 13060 57601

20152010

(b). Transportation Regions

(c). Regions Population Difference 

(a). Population Distribution

Downtown CBD

Fig. 12. Population Dynamics
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3.3 Worldpop as Ground Truth
We utilize Worldpop datasets, which obtain populations by exploring multiple data sources including remote
sensing, census, and cellphone data [14]. It is the most accurate population data so far with a 100m ⇥ 100m
spatial resolution. However, as we mentioned, Worldpop is a static dataset due to the cost of such data collections.
Fig 12(a) shows the population distribution in 2010 and 2015. The circled areas are CBD areas. We investigated
population distribution in the same administrative region partition. Fig 12(b) presents the population di�erence
between these two years. The red color means a region with a higher population in 2015 while the blue color
means a region with a higher population in 2010. Fig 12(c) gives the precise population di�erences in this regions.
We found the population increases in the downtown CBD areas due to the urbanization process in Shenzhen.

4 MODEL: MULTICELL DESIGN
4.1 Core Idea
We introduce how our core philosophy of multiple networks advances the state-of-the-art population modeling
based on single networks in Figure 13.
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Fig. 13. Core Idea

We have our desired output: a dynamic general population model on the right to show urban-scale real-time
populations where we have a temporal dimension (e.g., a slot), a spatial dimension (e.g., a cell) and an entry which
is a general population in this cell during this slot. To obtain this output, the state-of-the-art models (e.g., [31])
utilize (i) user population from single networks (i.e., the �rst 2D matrix) and (ii) static general population data
without temporal dynamics (i.e., a ground truth vector such as census data collected every 10 years). Since static
general population data used as ground truths only have spatial dynamics but no temporal dynamics, existing
models typically use spatial training by selecting spatial data (e.g., di�erent rows in the �rst matrix), which leads
to limitations. In contrast, our work utilizes multiple networks to form a tensor (i.e., a 3D input as in Figure 13)
and then combines static general population data to obtain the desired output. As a result, our work provides a
new dimension (e.g., di�erent layers of the tensor), which provides valuable diversity.

We show the framework of our MultiCell model according to the data �ow in Fig. 14. MultiCell has three key
components: (i) Tower-Based Partition where we generate tower-based cell regions for individual cellphone
network; (ii) Spatial Alignment where we utilize heterogeneous tower distributions from multiple networks to
obtain a �ne partition for population modeling; (iii) Population Estimation where we �rst apply a Gaussian
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Fig. 14. Model Framework

�lter to map cellphone data to the new partition and then design a co-training technique to fuse population
estimations obtained by individual networks.

4.2 Tower-based Partition
In the tower-based partition, we divide a city into di�erent cells based on cell towers belonging to the same
network. Given a particular network with a �xed number of towers, we apply the Voronoi diagram to generate a
partition based on locations of these towers, similar to the previous work [28]. This partition divides a city into
di�erent cells where every point in a cell is closest to its massive centroid, i.e., a tower in our case. Note that
this kind of partitions is based on the case that cellphones are connected to the geographical closest tower. Even
though there are cases where cellphones are connected to a farther tower because of speci�c communication
technologies (e.g., congestion control [34]) used by di�erent networks, we cannot obtain such detailed information
based on cellphone data, and so almost all existing models driven by cellphone data are under this assumption [31].
Based on these resultant tower-based partitions, we introduce how to align them as follows.

4.3 Spatial Alignment
For the state-of-the-art models based on single networks [31] [11] [24], their spatial partition is straightforward
because all cell towers belong to a single network, which leads to a non-overlapping Voronoi partition, e.g., as
shown in Fig. 8, 9, 10. But as shown in our motivation, such a partition typically has large cells due to limited
cell towers. In contrast, MultiCell has cell towers from di�erent networks. A straightforward yet trivial solution
is to combine all cell towers and data from di�erent networks to form a large virtual network and then apply
an existing population modeling technique, e.g., [31]. But such a solution leads to inaccurate modeling where
all users belonging to a large cell have to be assigned to much smaller subcells. In this work, to address this
issue, we �rst perform tower-based partitions for each network separately, and then spatially align all these
partitions together at the cell level. This cell-level spatial alignment ensures that users in di�erent networks are
still distributed within original cells. As follows, we introduce these two components, respectively.

Based on multiple tower-based partitions, we integrate them for a cell-level alignment where the cells from one
network intersect the cells from other networks. Thus, we utilize these intersections to form a new partition, i.e.,
an intersection-based partition. Such an intersection-based partition has a �ner granularity than all tower-based
partitions because a cell in an original tower-based partition can be intersected by many cells from other networks.
We de�ne these intersections as subcells, which are our spatial unit for modeling. The user population in subcells
is dependent on all original cells from all networks.
Figure 15 gives an example of our cell-level alignment with two networks. Based on two tower-level partitions
for two networks, we have the intersection-based partition with 15 subcells in MultiCell, among which 7 subcells
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Fig. 15. Cell-Level Alignment

are shown. These subcells typically (i) have much smaller areas than the original cells from single networks, and
(ii) still have original spatial cell structures (e.g., coverage boundaries) compared to a uniform grid partition [14].
Based on these subcells, we model in a �ner granularity compared to the existing work focusing on cell-level
modeling. As follows, we formalize this cell-level alignment based on tower-based partitions. GivenN tower-based
partitions P1, P2, · · · PN for N networks, we have following constraints for a partition P

i with cells based on a
network i: (i) P i = {Ci

1, · · · ,Ci
|P i | } where |P

i | is the total number of cells in P
i ; (ii) [ |P i |

m=1C
i
m = U where U is the

whole city area, i.e., any partition covers the whole city; (iii) Ci
m \C

i
n = ; wherem , n, i.e., there is no overlap

between cells from the same partition; (iv) Sx = Ci
m \C

j
n where i , j , i.e., a set of subcells S = {S1, .., Sx , ..., S |S | }

based on the intersection-based partition where any cell Ci
m intersects any other cell C j

n not from the same
tower-based partition.

Based on this intersection-based partition S with subcells, we estimate population in these subcells as follows.

4.4 Population Estimation
In this subsection, we formalize our population estimation problem and presents our two-phase model for
population estimation.

4.4.1 Terminologies and Problem Definition: We summarize the notations used in the population estimation in
Table 2. Our goal in the population estimation is to estimate the general population Ĝ(Sx , t) in subcell Sx at time
t given user population Ci

l for 8l where i = 1, 2, · · · ,N , N is the number of cellphone networks.
We design a two-phase fusion model to estimate the general population: (i) Phase-1: a user population

estimation for single networks to estimate U (Sx , t , i) from U(Ci
l , t , i),8l , i = {1, 2, · · · ,N }, and (ii) Phase-2: a

general population estimation based on user-population estimation from multiple networks to estimate Ĝ(Sx , t)
from U(Sx , t , i), i = {1, 2, · · · ,N }.
4.4.2 Phase-1: User-Population Estimation. There are many models [31] [11] [24] working on cell-level estimation
for single networks. Existing models obtain population for each cell individually and do not consider spatial
correlation. Therefore, they cannot be applied to our model directly. Our key objective is to align estimated
cell-level population to subcell-level population, i.e., a mapping from a population distribution in a tower-based
partition to population distribution in an intersection-based partition.
A straightforward method to directly assign an estimated cell-level user population to subcell-level can be

based on the overlapping areas as follows.

U(Sx , t , i) =
|P i |’
l=1

|Ci
l \ Sx |
|Ci

l |
⇥ U(Ci

l , t , i), (2)

where U(Sx , t , i) is the user population in a subcell Sx during time t based on data from a network i; U(Ci
l , t , i) is

the user population in a cell Ci
l , which is obtained by the existing work [31]; |Ci

l \ Sx | is the area of Ci
l \ Sx ; |Ci

l |
is the area of Ci

l ; |P
i | is the total number of cells in the tower-based partition P

i of a network i . The rationale
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Table 2. Terminology and Notations
Terminology Notation Meaning

Time t tth time slot, e.g., 120 means 10AM with 5 minutes time slot
Network i ith network

Voronoi Partition P
i Voronoi partition based on towers in network i

Cell C
i
l ith Voronoi cell with lth tower in network i

Subcell Sx
xth subcell, subcell is the intersection
of Voronoi cells from all networks

User Population U number of users (user population)

General Population G, Ĝ, Ḡ population, estimated population from cellphone user,
Worldpop population (ground truth)

User Population in Subcell/Cell U(Sx/Ci
l , t , i) number of users (user population) in subcell Sx or cell Ci

l
General Population in Subcell/Cell G(Sx/Ci

l , t , i) human population (general population) in subcell Sx or cell Ci
l

behind this straightforward population alignment is based on the assumption that users are uniformly distributed
inside a cell. However, this assumption is not practical in the real world because the detailed infrastructures (e.g.,
roads and buildings) inside a cell mainly decide the population distribution. It has been shown that residents are
more likely staying nearby points of interests (PoI), instead of uniformly distributed across a region [23].
To address this issue, in this work, we utilize the distribution of PoIs to align cell-level population to subcell-

level population. For example, Figure 11 gives the distribution of 586 thousand PoIs among cells based on a
tower-based partition. The details of PoI distribution is given in table 1. As shown by three zoom-in areas, i.e., A,
B, and C, we found that most of PoIs are not uniformly distributed inside a cell. In the suburb cell B, their PoIs
are mostly distributed along the roads, instead of uniformly distributed across the cell. Thus, since cellphone
users are likely to stay nearby PoIs [23], they are not likely to uniformly distributed across the cell. Fig. 16 shows
one example of the in�uence of PoI on population distribution. There are 6 subcells in 3 Voronoi cells as shown
in Fig. 16 (a). One PoI (i.e., a shopping mall) is located at the bottom right corner of the left cell (i.e., Cell 1). Cell 1
has 25 records from 25 users in 10 minutes. Cell 2 has 10 records from 10 users, and Cell 3 has 5 records from 5
users. The ground truth of the population distribution is as shown in Fig. 16 (c), in which the subcells closer to the
shopping mall as a PoI have much more people than other subcells. However, if we apply a uniform assignment
that assigns all users to subcells based on the subcell area size (i.e., does not consider the shopping mall as a PoI
at all), we will have a user distribution in the subcells as shown in Fig. 16 (b), which lead to a bias of the user
assignment.

Shopping mall

S6 12

13 5

3

5

2

323862

520

72

42
65

(a). PoI in Subcell (b). Uniform Assignment (c). Population in Subcell

S�

S�S�

S�

S�

Fig. 16. Population in Subcells
As shown in Fig. 11, PoIs are not uniformly distributed in cellphone cells. It indicates a nonuniform distribution
of users in a cell. To overcome this issue, we apply a customized Gaussian �lter to the straightforward uniform
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alignment. For example, in Fig. 15, given the intersection-based partition, we assign the population for subcell
S0 based on data from Network B alone. We take the neighbor subcells of S0 into considerations, i.e., the green
subcells from S1 to S6. The weight of each subcell from S1 to S6 decreases as the distance from its center to the
center of S0 increases. Formally, it follows the Gaussian distribution as

W( €Sx , €Sx (l)) =
1

�

p
2U

e
� (k €Sx (l )� €Sx k2�µ )2

� 2 , (3)

where €Sx is the centroid of the center subcell Sx ; €Sx (l) is a centroid of the lth neighbor subcell Sx (l) of Sx , i.e.,
from S1 to S6 in our example; µ and � are the mean and standard deviation of distances from all neighbors. By
applying this Gaussian �lter in Equation 3, we have the formula 4.

U(Sx , t , i) =
’

1l M(Sx )
W( €Sx , €Sx (l)) ⇥ U(Sx (l), t , i) ⇥

| €Sx |
| €Sx (l)|

, (4)

where M(Sx ) is the total number of the neighbor subcells of Sx . We eliminate the in�uence of the subcell size
by | €Sx |

| €Sx (l ) |
. With the Equation 4, for a particular subcell Sx and a time slot t , we have N population estimations

(U(Sx , t , 1), ...,U(Sx , t ,N )) based on N networks. To keep the total number of the user distribution in cells, we
apply a normalization function to make the total number of users in related subcells equal to that in the original
cell. Our �nal user population estimation model for a network i is given by

U(Sx , t , i) = U(Ci
l , t , i) ⇥

U(Sx , t , i)Õ
S� 2C i

l
U(S� , t , i)

(5)

C
i
l is the cell to which the subcell Sx belongs. U (Ci

l , t , i) is the number of users in cell Ci
l at time t . As follows, we

introduce how to fuse N user population estimations to obtain a general population.

4.4.3 Phase-2: General-Population Estimation. In this phase, we use a particular subcell Sx and a time slot t as an
example to show how to fuse N user population estimations U(Sx , t , i), 1  i  N to obtain a general population
estimation G(Sx , t ,8). Similarly, we have general population estimations for all subcells, and thus an urban-scale
real-time general population model.
Based on the existing models driven by single networks, it has been shown [31] that there is an exponential

relationship between user population U(Sx , t , i) estimated by a network i and general population G(Sx , t , i)
inferred by i , i.e.,

G(Sx , t , i) = �
i
Sx ·t ⇥ (U(Sx , t , i))�

i
Sx ·t , (6)

where � iSx ·t and �
i
Sx ·t are the parameters we want to estimate in three dimensions, e.g., spatial Sx , temporal t ,

and network i . After we have these parameters, we directly obtain G(Sx , t , i), given a user population U(Sx , t , i)
obtained by data from Network i .
However, in population modeling, these two parameters are extremely challenging to obtain. A standard

approach to obtaining them is based on training with data obtained by di�erent time slots (i.e., temporal cross-
validation). However, we lack enough training data because the ground truths of urban population G(Sx , t , i)
at di�erent time slots are almost impossible to obtain, as we mentioned in Section 5.1. Some datasets based on
census (e.g., Worldpop [14]) can infer urban population in general, but they do not have detailed population at
di�erent time of day, i.e., a slot, as motivated in Figure 13. To address this issue, the state-of-the-art population
models [31] are using spatial dynamics to obtain more training data from regions with similar functions, i.e.,
spatial cross-validation. Built upon this technique, we show how to utilize multiple networks as a third dimension
(i.e., network cross validation) to provide more training data.
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Problem De�nition: Given a network i at a subcell Sx at a speci�c time slot t , let U(Sx , t , i) be the user
population estimated by network i; G(Sx , t , i) be the general population inferred by U(Sx , t , i). Our objective is to
combine G(Sx , t , i) from di�erent networks {1, · · · , i, · · · , j, · · · ,n} to estimate G(Sx , t ,8), which is the output of
our data fusion model, i.e., the general population inferred by all networks together.

Key Challenge: Since single networks introduce bias in both spatial dynamics and temporal dynamics, The
paper [31] reduced the spatial bias in the estimation based on single networks by grouping PoIs to functions
of regions. However, the bias in temporal dynamics increases with time in a static model. For example, if the
function of one region is changed from a residential region to a commercial region, the relation between phone
call activities and populations will change correspondingly, which is modeled by regression parameters. Therefore,
the bias in existing single networks and static estimation models increases as time evolves. To solve the challenge,
our data fusion model is seeking a way to control bias increase on the temporal dimension when the �ne-grained
spatial partition reduces bias on spatial dimension. The assumption is that the general human population is
identical although the user population di�ers in networks. Thus, we utilize the estimation results of di�erent
networks to control the bias in temporal dynamics. We reduce the bias introduced by both spatial and temporal
dynamics by co-training the user population and the general population of multiple networks in the same time
slot.

Single Networks: For cellCl , if the relation between the number of the user population and general population
is G = � ⇥ U � , which is described by the model M = (� , �) Given a user population for next n time slot is
U (t + 1),U (t + 2), · · · ,U (t +N ) and the general population isG(t + 1),G(t + 2), · · · ,G(t +n). Therefore, for each
time slot, we updateM by the real-time input (U (t + i), G(t + i)).U (t + i) is obtained in real time by the number
of active cellphone users in cell Cl . However, the general population in Cl , which isG(t + i), is almost impossible
to obtain in each time slot. Therefore, the sparsity of the general population G(t + i) on the temporal dimension
limits a single network modelM to dynamically evolve with time.

Multiple Networks: Compared with single networks, in MultiCell, we solved two problems with a two-
component model. The �rst component builds an initial modelM for each subcell Sx . The second component
provides an estimated G(t + i) at time slot t + i for the model updates. Therefore, our data fusion model is a
dynamic model based on two components. (i) an initialization component where we initially estimate regression
parameters based on an estimated general population G(Sx , t ,8) and multiple network data; (ii) a cross-network
component where we only utilize real-time multiple network data (i.e., no estimated general population) to
update the initially-estimated parameters in the initialization component as the time evolves.

(i) Initialization:We use an estimated urban population (obtained by census [14]) and multiple network data
as the input to obtain initial parameters. As in Figure 17, for a subcell Sx , given two networks i and j, we �rst
use a general population estimation based on census data as initial estimations for both G(t1, i) and G(t1, j). We
omit Sx in Figure 17 for concise representation. To estimate the initial parameters � and � in the subcell Sx , we
follow the spacial context-aware method proposed in [31]. The context-aware model �rst groups subcells to
di�erent functional groups based on the PoI distribution. We categorize PoIs to seven categories, , i.e., business,
residence, education, entertainment, industry, scenery spot, suburb, according to previous works [27] [33]. We
apply a k-mean clustering algorithm to cluster regions to 7 functional groups based on PoIs in the region. The
function of one region depends on the main category of PoIs. The model estimates regression parameters based
on U(t1, i) and G(t1, i) in the same function group. The context-aware model captures spacial dynamics by the
PoI distribution of the city. Thus, based on Equation 6 along with user population U(t , i) and U(t , j) obtained by
data from network i and j , we can obtain two sets of parameters, i.e., (� iSx ·t1 , �

i
Sx ·t1 ) and (� j

Sx ·t1 , �
j
Sx ·t1 ) for i and j ,

respectively. Since census data are static in the temporal dimension, after this initial slot t1, we do not have new
census data to update these parameters. The key technique we design based on co-training [32] is to utilize data
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from multiple networks to provide new data for updating these parameters as the time evolves, which is our key
contribution to advance state-of-the-art models based on single networks.

G(t1,j)

G(t1,i) G(t2,i)

Initialization coTraining

G(t3,i)

G(t3,j)

Network j

 ..Network i

Initial 
Population
Estimation

t2 t3t1

G(t2,j)

 ..

 ..

 ..

G(t4,i)

G(t4,j)

t4

U(t1,j)

U(t1,i) U(t2,i) U(t3,i) U(t4,i)

U(t2,j) U(t3,j) U(t4,j) 

(i)

(ii)

(iii)

(iv)

Fig. 17. Cross-Network Data Fusion

(ii) Cross-network Training:With initialization, the key objective of our co-training component is to update
two parameters � and � for all networks in the following slots. We show our core idea in Figure 17. The dashed
arrows indicate the process of cross-network updating parameters, and the solid arrows indicate the process of
obtaining the general population by single network data.
As shown in Figure 17, our co-training starts from time slot t2: (i) we use G(t1, i) and U(t1, j) to update two

parameters (� j
Sx ·t2 , �

j
Sx ·t2 ); (ii) we use these two updated parameters and new incoming U(t2, j) to obtain G(t2, j);

(iii) we use G(t1, j) and U(t1, i) to update two parameters (� iSx ·t2 , �
i
Sx ·t2 ); (iv) we use these two updated parameters

and new incoming U(t2, i) to obtain G(t2, i).
Note that G(t1, i) = G(t1, j) since they are equal to the initial estimation based on the census, which leads to

(� iSx ·t2 , �
i
Sx ·t2 ) = (� iSx ·t1 , �

i
Sx ·t1 ) and (�

j
Sx ·t2 , �

j
Sx ·t2 ) = (� j

Sx ·t1 , �
j
Sx ·t1 ). The reason is that the parameters (� iSx ·t1 , �

i
Sx ·t1 )

are inferred from (U(t1, i), G(t1, i)) and the parameters (� iSx ·t2 , �
i
Sx ·t2 ) are updated by points (U(t1, i), G(t1, j)) from

time slot t1. We can infer (� j
Sx ·t2 , �

j
Sx ·t2 ) = (� j

Sx ·t1 , �
j
Sx ·t1 ) in a similar way. However, G(t2, i) may not be equal

to G(t2, j) because based on Equation 6, these two sets of parameters are the same, but U(t2, i) and U(t2, j) may
change compared to U(t1, i) and U(t1, j) based on real-world data from network i and j. The di�erence between
G(t2, i) and G(t2, j) makes our cross-network training e�ective.
To generalize to a multiple network scenario, as in Figure 18, in a slot t , for a network i (e.g., Network 1), we

�rst use the general population estimated by another network {1, · · · , i � 1, i + 1, · · · ,n} and the user population
estimated by i during the previous slot t � 1 to cross-update parameters for Network i for the current slot t (i.e.,
dashed lines in Figure 18). Then we use the updated parameters along with the user population estimated by i
during the current slot t to obtain the general population estimated by i for this slot t (i.e., solid lines in Figure 17).
Finally, the average values of all estimations from all networks are the output of this cross-network training
G(Sx , t ,8) for a slot t and subcell Sx .

A standard approach to update model parameters is to use the Least Squares method [15], but it leads to a high
computational cost in our dynamic population estimation model since the model changes as the time evolves. To
reduce the computational cost in parameter updates, we utilize a dynamic computing method combined with a
memorization technique. In particular, with the formulas in Equation 7, where µ is the mean, Var is the variance,
and Co� is the covariance, the computational cost is reduced to a constant time when the data point (xi ,�i ) is
added to the existing regression model. The two parameters � and � in our model are obtained from updatedVar
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Fig. 18. General Cross-Network Data Fusion

and Co� . This method requires that µx , µ� , Var and Co� are memorized to be utilized at the next time slot.

�
i
x = xi � µ

i�1
x ;

�
i
� = �i � µ

i�1
� ;

Var (Xi ) =
n � 1
n2

�
i
x
2 � Var (Xi�1)

n
+Var (Xi�1);

Co�(Xi ,Yi ) =
n � 1
n2

�
i
x�

i
� � Co�(Xi�1,Yi�1)

n
+Co�(Xi�1,Yi�1);

(7)

As a result, the computational cost to update models at the time slot t isO(� |S |)where |S | is the spatial complexity
and � is a ratio depending on the number of networks.

5 MODEL: MULTICELL IMPLEMENTATION
To illustrate the feasibility of MultiCell, We implement MultiCell based on three major cellphone carriers in

Shenzhen with a near-100% penetration rate.
(i) Data Management: Due to the data-driven nature of MultiCell, we introduce how to obtain and manage our
cellphone data as follows. For security reasons, we are not allowed to directly access the carrier servers. Instead,
we obtain these data o� line. Such a large amount of data requires signi�cant e�orts for e�cient management,
querying, and processing. We employ a high-performance cluster with Spark for data processing. The details are
given as follows: (i) 12 HP machines with 2 Tesla K80c each; (ii) 10 Dell machines with 4 Tesla K80c each; (iii) 4
Xeon E5-2650 with a half TB memory each; (iv) A series of 800GB SSD and 15TB of spinning-disk spaces; (v) 2 PB
additional disk space.
(ii) Data Preprocessing: Due to the large size of our cellphone data, we performed a detailed cleaning process
to �lter out duplicate, error, and incomplete data.
(iii) Spatial Alignment: Based on themethod in Section 4.3, we implement spatial alignment with three networks
in Shenzhen, which generates 3 partitions P1, P2 and P3. We �rst integrate P1 and P2 to obtain an intersection
partition and then integrate P3 with it. To visualize the result, we show our intersection-based partition and
subcells based on real-world cell tower data in a heat map in Figure 19. We found that even with three networks,
we have a much �ner granularity compared to three tower-based partitions in Figure 8, 9, 10. As in Fig. 20, with
our MultiCell based on subcells, the downtown areas are covered by 36057 subcells, which leads to an average
area of 11 thousand m2. This subcell partition improves our spatial granularity by a factor of 10, compared to the
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41,794 Subcell Partition
 

Suburban 
Areas

Downtown 

0 0.1 0.25 0.5 0.75 1
Relative Human Density

Fig. 19. MultiCell Spatial Partition based on Intersections

Fig. 20. Cell Coverage Fig. 21. Top k Region Coverage Fig. 22. Bo�om k Region Coverage

single network data-driven modeling. Even with three networks, we achieve a granularity much closer to the
desired granularity of 10 thousand m2 in Worldpop. Note that in this paper we use three networks as a concrete
implementation of MultiCell based on multiple networks, we believe a model based on four or more networks can
have subcells smaller than the desired spatial granularity. In particular, as shown by the zoom-in area, we have
much more subcells in the downtown, compared to the suburban areas. For several business areas in di�erent
districts shown by the circles, we also have a much �ner granularity. Quantitatively, in Figure 21 and Figure 22,
we show the city area percentage covered by Top and Bottom K subcells. We found that MultiCell improves the
spatial granularity of areas in the whole city. MultiCell is based on an extremely �ne-grained partition, especially
in the Bottom-K subcells.
(iv) Population EstimationWe implement MultiCell on three dimensions (41794,k, 3) where k is the number
of time slots of one day. Several temporal granularities from 5 minutes to 24 hours are investigated in the
implementation. When the time granularity is small (e.g., 5 minutes), there are sparse regions with no user
activity. This issue is alleviated dramatically by applying the Gaussian �lter in the user population estimation
procedure. To further address the issue, we utilize the user population from previous nonempty time slots in the
same region in the implementation. For three networks, the log-scale user populations are correlated with the
log-scale ground truth linearly. It suggested a power-law distribution can model this relationship by Equation 6
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Fig. 23. Mapping Worldpop to Population in Subcells

with two parameters to learn. We map the general population in Worldpop to the general population in subcells
or cells by a method given in Fig. 23. First, we calculate the overlapping area of two partitions and then apply
function in Equation 1 to calculate the population in subcells. For human-unreachable areas (e.g., lakes), the
Worldpop marks the grid as special values �999. As a result, we removed subcells with only human-unreachable
areas to reduce the computational cost. For other subcells, we ignore the human-unreachable grids to calculate
the general population in the subcell. We apply the following Formula 8 to map estimated population in subcells
to cells and regions based on the size of intersected areas where Sx is the subcell and Rl is a mapped region or
cell, |Rl | is the size of the region Rl , n is the number of subcells intersected with Rl .

Ĝ(Rl , t , i) =
n’

x=0

|Rl \ Sx |
|Sx |

⇥ Ĝ(Sx , t , i), (8)

We examine this relationship by comparing user populations with the ground truth in Figures 24, 25 and 26 27.
We introduce a baseline called Shared Net to naively sum up user densities in the subcell from three networks in
the same spatiotemporal dimension. Network A, B and Shared Net show strong linear relation, while Network C
is partially skewed because the data we access are preprocessed by operators for privacy issues.

6 EVALUATION
6.1 Evaluation Methodology
We introduce �ve evaluation components as follows.
(i) Ground Truths: In this project, we use 2010 Worldpop data for training, and we use 2015 Worldpop data
for evaluation. A heat map of 2015 Worldpop data is shown in Figure 28 where the spatial resolution is very
high, and we can identify a few urban clusters. We map the population of 100m ⇥ 100m grips of Worldpop to our
subcells for the ground truth in our partition.
(ii) PerformanceMetrics:Given the extensive usage in populationmodels [31] [11] [24], we utilize the following
correlation coe�cient and normalized root mean square error (RMSE) as the metrics, respectively.

Correlation =
� |S |
l=1[Ĝ(Sl , t) �

1
|S |�

|S |
k=1Ĝ(Sk , t)] · [Ḡ(Sl , t) �

1
|S |�

|S |
k=1Ḡ(Sk , t)]q

� |S |
l=1[Ĝ(Sl , t) �

1
|S |�

|S |
k=1Ĝ(Sk , t)]2 ·

q
� |S |
l=1[Ḡ(Sl , t) �

1
|S |�

|S |
k=1Ḡ(Sk , t)]2

.
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Fig. 28. Ground Truth of Shenzhen Population

RMSE =

q
1
|S |�

|S |
l=1[Ĝ(Sl , t) � Ḡ(Sl , t)]2

1
|S |�

|S |
l=1Ḡ(Sl , t)

.

where Ḡ(Sl , t) is the ground truth for the subcell Sl during the time slot t , and Ĝ(Sl , t) is our result. The higher
metrics indicate a better accuracy of our model.
(iii) Baseline Approaches: We use �ve baseline approaches CAPE-A, CAPE-B, CAPE-C, CAPE-V and CAPE-S,
which are based on a state-of-the-art model called Context-Aware Population Estimation [31] driven by data
from �ve di�erent networks, i.e., single networks A, B, C, Virtual Net and Shared Net. Context-Aware Population
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Estimation model clusters regions to 7 function groups based PoI distributions, i.e., residence, entertainment,
business, industry, education, scenery spot, suburb. Then it builds a regression model for each group. Virtual Net
considers all towers in di�erent networks as one virtual network. We generate Voronoi partition based on towers
from three cellphone networks. Therefore, Virtual Net has 11,746 towers or cell partitions. The average area of
cell partition is 0.166 km2. It generates �ne-grained tower-based Voronoi partition but changes the coverage
range of existing towers. Shared Net calculates the user population in subcells as the total number of users in
three cellphone networks, where U (Sx , t, Shared) = U (Sx , t,A) + U (Sx , t,B) + U (Sx , t,C). We apply our spatial
alignment in CAPE-S since it is based on subcells. CAPE-V and CAPE-S are baselines to combine three networks
together. Similar to Virtual Net and Shared Net, MultiCell utilizes data from three networks A, B and C, but the
key di�erences are our subcell-based participation and resultant cross-network data fusion. We use the cellphone
data from 8pm to 12pm to estimate the population in the city and compare the result with the ground truth.
(iv) Impacts of Factors: We evaluate three real-world factors and their impacts. (a) Subcell Population: To
investigate the impact of di�erent population on the accuracy of models, we group subcells together by four
di�erent scales based on the population, and test the performance gains of our model with increasing urban
populations. (b) Temporal Granularity: We evaluate the impact of the temporal granularity by grouping
all cellphone data together by a time interval of 5 mins, 10 mins, 1 hour, 6 hours, and 24 hours. (c) Spatial
Granularity:We evaluate the impact of spatial granularity by selecting three partitions, i.e., subcells, 491 regions,
11 districts. The default setting is 5 mins at subcells.

Bus 
Passenger 
Population

Taxi 
Passenger 
Population

Subway 
Passenger 
Population

Fig. 29. Transportation Passenger Population

(v) Cross-Validation with Transportation Systems: A key challenge for all urban population modeling is the
lack of direct ground truths of the real-time large-scale population [11] [24]. Therefore, as a state-of-the-practice
method, many existing works utilize data from urban transportation systems to indirectly evaluate their real-time
population modeling results [31]. It has been showed by the previous research that there are strong correlations
between real-time urban population and passenger population from transportation systems [31]. Thus, if the
correlation between the results of a population model and passenger population is strong, it suggests that the
performance of this model is high. In our evaluation, we consider (i) a 14 thousand taxicab network with a 460
thousand daily ridership, (ii) a 13 thousand bus network with 976 lines and a 4.3 million daily ridership, and (iii) a
127-station subway network with a 1.4 million daily ridership. These three systems captured 10.5 million rides
and 6.5 million passengers per day. Di�erent from cellphone networks capturing users locations when using
phones, transportation systems can only capture passengers when they enter or exit the transportation systems.
We can map these three kinds of passengers to taxi GPS locations, bus stops, and subway stations, respectively,
which are visualized in Figure 29. For the evaluation, we map these locations into our spatial partition and test
the correlations in these locations only.
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6.2 Evaluation Results
In our evaluation, we �rst process cellphone records on a Spark cluster. The con�guration of the cluster is
described in the previous data management. Second, we build and run our MultiCell model in a local machine
with a Inter(R) Xeon(R) E5-1660 v3 CPU, a NVIDIA Tesla K40c graphics card, 32.0 GB Ram and 3TB available
storage. For each batch (i.e., time slot) of training, the data size is 571 KB. The training data includes subcell ID
and 3 separate numbers of users for the subcell in a speci�c time slot. Therefore, for one-day data with 5-minute
time slot, the data size is around 164 MB. For each batch (time slot), the training takes 0.123 seconds for model
updates in 41,794 subcells.
(i) Model Accuracy: In this subsection, we evaluate the performance of our model by RMSE and correlation.
We show the accuracy comparison with �ve context-aware baselines in Figures 30 and 31. From the results, we
found that our MultiCell model signi�cantly reduces RMSE by 28%, 23%, 44%, 33% and 17% and then enhances
correlation by 14%, 11%, 25%, 18% and 9% on average compared with �ve baselines, respectively. It indicates that

Fig. 30. Correlation Fig. 31. RMSE

our model produces much more accurate estimation. In multiple network models, CAPE-V changes cellphone
tower coverage on spatial dimension. It decreases average tower coverage. Therefore, CAPE-V performs worse
than single network model CAPE-A, CAPE-B. While CAPE-S reduces the single network bias by incorporating
user population from multiple cellphone networks, it fails to capture time dynamics compared with our model.
By comparing CAPE-A, CAPE-B, CAPE-C,CAPE-V and CAPE-S, we found that in general CAPE-S has a better
performance than single network models in both RMSE and correlation since Shared Network captures more
user activities than single networks and it keeps the original tower coverage by applying our spatial alignment
technique. Among single network models, CAPE-C performs worst due to the quality of data we access. For the
aforementioned reasons and space limitation, we ignore CAPE-C for detailed comparisons in further evaluations.
To study the relationship between errors and populations, we plot the distribution of estimated populations and
the ground truth of populations as a heat map for three models CAPE-A, CAPE-B and MultiCell in Figures 32, 33
and 34, respectively. The hot colors, e.g., from yellow to red, indicate more subcells; whereas the cool colors, e.g.,
from yellow to blue, indicate fewer. We found that (i) CAPE-A often overestimates populations compared to the
ground truth if the original population is high; (ii) CAPE-B slightly underestimates populations compared to the
ground truth if the original population is high. In contrast, we found that MultiCell is distributed more evenly
around the ground truth with a slight trend to overestimate when the population is high.
Further, we compare the di�erence between the training data Worldpop 2010 and test data Wordlpop 2015

since both datasets present population distribution in the night [14]. Fig. 12 (c) shows the population di�erence
in administrative regions. We further calculate the RMSE and correlation between Worldpop 2010 and Worldpop
2015. The RMSE is 0.189599 and correlation is 0.99293. However, Worldpop 2010 is a static dataset and CDR
provides the model ability to capture population change in a short time slot, e.g., 10 minutes.
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Fig. 32. CAPE-A Fig. 33. CAPE-B Fig. 34. MultiCell Fig. 35. Population

(ii) Impact of Population:We quantify the impact of populations on our performance gains in Figure 35, by
grouping all subcells into four groups based on their population and then show the performance gain of our
models. The performance gain is calculated as the relative di�erence of RMSE between the baseline model and
MultiCell. We found that MultiCell performs similarly or worse when the population is low (e.g., lower than
10) due to randomness in these lowly-populated regions, but MultiCell outperforms CAPE-A, CAPE-B, CAPE-V
and CAPE-S signi�cantly for regions with the populations from 10 to 10,000 by 27.3%, 29.1%, 28.6% and 16.9%,
respectively. Because the subcells with high populations are more important for real-world services, MultiCell is
more practical than these three baselines.
(iii) Impacts of Spatial Granularity: We merge our subcells to di�erent administrative regions to test the
performances of all models by formula 8. In Figure 36, we found that the average performance of all models
improve signi�cantly as the spatial granularity of models decreases for bigger areas. In particular, at the district
level, we have the best performance, which indicates the estimated population of MultiCell is almost identical to
the population given by the ground truth. The reason for this phenomenon is that the randomness of human
mobility is less signi�cant if we estimate the population of large areas. It suggests our model can scale to large
areas. More aggregation is better on performance but has coarser spatial granularity.
(iv) Impacts of Temporal Granularity: We merge cellphone data into �ve kinds of slots, i.e., 5 mins, 10 mins,
1 hour, 6 hours, and 24 hours, respectively. Since Worldpop is static data, we use the same ground truth. We tune
the training data with the user population in di�erent time slots. By cross-validating with the ground truth, we
evaluate all models and show the average performance change in Figure 37. We found that the performances of
all models improve when the length of time slots increases. It suggests that a lower temporal granularity leads
to better performances, but it is less useful in real-time applications, e.g., taxi dispatching. But as the length
continues to increase, the performances of all models do not become higher signi�cantly. Modeling population in
10-minute or 1-hour time slot is a reasonable balance between performance and temporal e�ectiveness.
(v) Cross-Validation with Subway: The subway passenger population is calculated at station level where
both entering and exiting passengers paying with smart cards are captured. Given a time slot. We calculate the
estimated population in the 496 administrative regions where subway stations locate based on the formula in
Equation 1. The stations cover 122 out of 496 administrative regions and 286.216km2 area. Then we vectorize
both estimated population and subway passengers in regions in the same time slot and calculate its correlation.
We compared correlation coe�cients between these subway populations and the estimated population from
MultiCell with 1-hour time slot in Figure 38. We found that the correlation is �uctuated based on the commuting
patterns. When the subway systems are operating, the correlations are high during the evening and morning
rush hours, but they are low during the non-rush hours.
(vi) Cross-Validation with Taxi: The taxi passenger populations are obtained by pickup and drop-o� events
inferred by taxi GPS data in Shenzhen. We aggregate the pickup and drop-o� location to 496 administrative

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 106. Publication date: September 2018.



106:22 • Z. Fang et al.

Fig. 36. S-Granularity Fig. 37. T-Granularity

regions by Equation 1. The correlations are given in Figure 39. We found that the correlation is low in the early
morning and high during the daytime or early night. This is because both taxi numbers and passengers are fewer
in the early morning, which leads to low taxi passenger population, while the general population obtained by our
model is still high.
(vii) Cross-Validation with Bus: We calculate the real-time bus passenger population by using data from
smartcards. We use the similar method to an aggregate number of passengers to 496 administrative regions and
calculate the correlation coe�cients in Figure 40. We found that from 5 AM in the morning where most bus lines
start to operate, the correlation becomes higher until the morning rush hour is over in Shenzhen around 9AM.
Then the correlation decreases in general during the daytime but increases again around the evening rush hour,
and decreases until all bus lines stop to operate around 11 PM. Such a correlation change is based on the daily
commutes. In general, the correlation with estimated population �uctuates with the change of passenger density.

Fig. 38. Subway Correlation Fig. 39. Taxi Correlation Fig. 40. Bus Correlation

7 RELATED WORK
Analyzing the human population based on multiple networks is crucial for many real-world applications, e.g.,
urban planning [37] and transportation [2] [21] [16]. In general, our work is directly related to population
modeling and system fusion from multiple systems.

7.1 Population Modeling
Due to its various applications and recent advances in data collection techniques, population modeling has been a
popular topic since 2000 [9] [10] [3] [8] [24]. These work has been focusing on simple area weighting methods or
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dynamic modeling to redistribute population obtained from census within �ner-grained urban regions. Along with
this direction, WorldPop [14] is the state-of-the-art method, which leverages the remote sensing to estimate the
world population based on static data but cannot obtain the real-time population. With the increasing popularity
of cellphones, many models driven by the cellphone data are proposed, e.g., cellphone data-driven models are
proposed for urban populations in Shanghai [31] and populations in European countries [13]. However, they
either only consider single network [31] or theoretically formulate multiple network problems with only synthetic
data [13].

7.2 Multiple System Fusion
Our work is also related to data fusion based on multiple systems. Several studies have been proposed to
theoretically fuse data from di�erent systems to improve modeling performances [30] [18] [17], e.g., integrating
CDR data with census data to model metropolitan-scale human mobility [23]; aligning speeds of buses, trucks
and taxis on road segments as spatial granularity to estimate speeds by a statistic model [36]; inferring road maps
with OpenStreetMap and GPS trajectories [7]; combining several models to obtain a model with the minimized
di�erence to all source models [26]. However, the above models either have dynamic ground truth for constant
training or have been projected to a coarser spatial granularity, e.g., blocks, districts, cities [30].

7.3 Summary
Similar to the above work, MultiCell is targeted at real-time urban sensing for �ne-grained human populations
based on data fusion at urban scale. However, based on the above analysis, almost all urban population models
based on cellphone networks have been focusing on single cellphone networks; whereas our MutliCell system is
based on real-world data from multiple networks with a novel technique for cross-network data fusion, which is
our key contribution to advance the state-of-the-art population models driven by cellphone data.

8 CONCLUSION
In this work, we motivate, design, and implement an urban-scale population model called MultiCell based on
data from three cellphone networks with 10 million users in the Chinese city Shenzhen. With MultiCell, we
addressed a key challenge for cellphone data based population modeling, i.e., individual cellphone networks are
biased for population modeling, by a network alignment technique and a cross-network data fusion technique.
We evaluated MultiCell by comparing it to state-of-the-art models driven by single cellphone networks, and the
results show that MultiCell outperforms them by 27% in terms of accuracy. We hope the results we demonstrated
in our MultiCell model could be used for other multi-network data-driven modelings at large scale.
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