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Abstract—One of essential components of public transport
systems is to provide travel time estimates for a better travel
experience. Based on these estimates, travelers can plan their
departure time to meet their target time of arrival. Most of
existing work has been focused on estimation on passenger riding
time, which is relatively stable. However, a significant portion of
time for a subway trip is spent on unstable walking and waiting.
As a result, the work solely based on riding times underestimates
the actual travel times. To fill the gap, we analyze travel data
from automated ticketing systems, which are collected from a
large group of passengers in a cost-effective way. We estimate
each component (i.e., walking, waiting, and riding) of the travel
time using tap-in and tap-out records of these passengers, by a
novel travel time decomposition. We evaluate the performance
of our travel time decomposition method based on large-scale
real-world smart card data from more than 2 million users
from Chinese city Shenzhen with 15 million smart card records.
The results show that our estimation has an average estimation
error of 8% on average and outperforms a baseline approach
by 38%. Based on our travel time estimates, we further propose
a practical application: digital advertising based on up-to-date
travel demand.
Index Terms—Stochastic time table, smart card, time decom-

position, digital advertising, metro demand model.

I. INTRODUCTION

Recently, the urban transportation systems, e.g., subway, bus
and taxi, become more advanced by well-equipped sensing and
communication components to improve ridership experiences.
Compared with other urban transportation systems, the subway
system is more reliable during peak hours, which means that
passengers are expected to spend predicted travel times in
subway than in buses or taxis, leading to millions of people
riding the subway for their daily commutes [7]. In subway
services, the travel time estimation is very important for
subway passengers in planning departure times to meet their
target arrival times. The subway system publishes static or
dynamic time tables that help passengers plan their trips [14].
However, the subway systems sometimes fail to run trains
punctually based on prefixed schedules due to various events
(e.g., maintenance, a switch problem at a station). As a result,
these time tables cannot provide accurate and fine-grained
travel information, e.g., how long it takes to go from a ticket
gantry at a particular station to its platform [14].
Automated fare collection systems (AFC) have been widely

adopted in many metropolitan cities around the world, e.g.,
New York City, Beijing, and Shenzhen [15], [3]. These AFC
systems enable us to calculate fine-grained travel time through

subway networks in a cost-effective way because (i) the smart
card data have been collected already for accounting purposes
and no additional process or infrastructures are required; (ii)
the fine-grained travel time can be measured by the difference
between the time stamps of tap-out and tap-in transactions
based on the smart card data.
Many existing methods have been proposed by using AFC

data to infer various subway systems or passenger activities
[11], [22], [10], including the travel time segmentation [21].
Given a significant portion of travel time is spent on walking
and waiting, it is important to estimate the actual total travel
time from an origin to a destination in the subway network.
However, even with the AFC data, it is extremely challenging
to infer fine-grained passenger activities related to subway
trips, e.g., (i) how long a passenger spends time on walking
from a ticket gantry to a platform, (ii) how long he/she waits
on the platform to board a train, (iii) how long he/she spends
time on the train, (iv) how long he/she spends time on walking
from the platform to a ticket gantry to tap out. This is because
the AFC data are mainly collected for accounting purposes,
instead of tracking these fine-grained activities.
In this paper, we utilize AFC data to infer these fine-grained

passenger activities. In particular, we propose a framework
called MetroTime based on the travel time decomposition
for metro networks built upon AFC data. We state our main
contributions specifically as follows.

• To our knowledge, we perform the first work to optimize
the travel time decomposition with large-scale data from
metro AFC systems, in contrast to existing works focus-
ing on in-vehicle travel time estimations.

• Based on extensive AFC data, we present an analytical
framework for metro networks with three key compo-
nents: (i) a new travel time decomposition method based
on inter-relationships of travel times between stations
with lightweight computational costs, whereas the exist-
ing work utilizes intensive sorting, mapping, and group-
ing operations; (ii) a waiting time estimation technique
where we provide a confidence interval, instead of a
single estimator, in terms of tap-in time to provide proper
inferences;

• We evaluate the performance of our framework through
an extensive trace-driven evaluation based on a data set
from 2 million passengers and 15 million records in
Shenzhen, China. We collect riding time reports from the
Shenzhen metro website and use them to validate our
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Fig. 1: Travel times (in seconds) between 8 am and 9 am from
Yitian station to Futian station on line 3

riding time estimates. The result shows that our method
has a 8% estimation error on average. In addition, we
show that the proposed travel time estimation can lower
the prediction error by as much as 38%, compared with
statistical approaches.

• Based on the analytical framework, we design a novel
application of advertisement to validate the real-world
value of our framework.

The paper is organized as follows. The research motivation
is in Section II. We introduce our model and problem in
Section III. Sections IV explains how to decompose the travel
time. Section V evaluates our method using Shenzhen smart
card data. We explain the application in Section VI. Section
VII reviews the related work, followed by conclusions in
Section VIII.

II. MOTIVATION

We present an interesting application that benefits the public
transportation as our research motivation. We also overview
the collected smart card data.

A. Application: Digital Advertising

Digital advertising becomes a great success in major
metropolitan transit systems. The digital screens are placed
inside subway stations to show advertisements to passengers.
The metro network sells advertising time of a digital screen
to advertisers and charges them based on the length of ad-
vertising time. According to the MTA transit system [13], the
advertisement revenue has risen dramatically, i.e., from $38
million in 1997 to $130 million in 2013.
The major problem that the system faces is how to estimate

the up-to-date travel demand for the spot where a digital screen
is installed. The empirical study [20] reveals that the coarse-
grained (e.g., one hour) demand is accurately predictable, but
the fine-grained (e.g., one minute) demand is unpredictable
based on historical data. The fine-grained demand is unpre-
dictable because a train fails to arrive punctually every day.
Furthermore, it is unpredictable because a passenger does not
arrive at a station at the same time daily.
Because the length of an advertisement is normally less

than one minute, it is essential to predict the fine-grained
demand accurately. To effectively schedule advertisements for
a maximum exposure, we explain the online demand modeling

by using real-time tap-in information and the travel time
decomposition technology in Section VI.

B. Data Set

Our data set is the metro transaction data from Shenzhen,
China. The Shenzhen subway network (serving the mobility
of the city) has five lines in 2013 and will have eight more
lines over the next seven years.
Each card swiping record includes card ID, station ID, date,

time, and tapping in or out. There are 118 metro stations
in Shenzhen. The summary of the data collected for our
evaluation is in Table I. The data set contains 2,854,022 unique
smart cards with 15,466,305 total card transactions ranging
from 10/21/2013 (Monday) to 10/25/2013 (Friday) (i.e., five
consecutive weekdays).

TABLE I: Data summary and record format
Collection Period 10/21/2013 (Mon.) - 10/25/2013 (Fri.)
Number of Cards 2,854,022
Number of records 15,466,305

Format: Card ID, Station ID, Date & Time, Tap-in/out

Figure 1 displays the travel times between two stations in
terms of tap-in times for those five days. We can roughly
say that the longer a passenger waits at the tap-in station,
the longer he/she spends on traveling. This simple argument
enables us to derive several findings. Trains arrived at the
tap-in station regularly for all the five days before 8:30 am.
However, it seems that the service was delayed right after 8:30
am on Monday. In addition, it seems that trains arrived earlier
after 8:30 am on Tuesday. The irregular service disappears as
time approached to 9:00 am. Hence, Figure 1 implies that the
trains were operated stochastically.

III. MODEL AND PROBLEM DEFINITION

This section introduces components constituting the metro
travel time, proposes an analytical framework, and then specif-
ically states the problem.

A. Activities in Metro Network

We describe activities happening in a typical subway trip.
Tapping in to enter an origin station and tapping out to exit
a destination station take place at ticket gantries that are
typically located away from train platforms. Hence, a typical
subway trip is expected to have several activities. Assume that
a passenger enters station i, by tapping in his/her smart card
at a ticket gantry and walks to the platform. He/she waits on
the platform until his/her train departs. After the train departs,
he/she spends in-vehicle time to travel to station j. Finally,
he/she alights when the train arrives at the platform of station
j and walks to a ticket gantry to tap out his/her smart card.

B. Notations

We define notations for those activities. The subway net-
work consists of multiple lines, but we define notations for
only one line for simplicity. Hence, we consider all single-leg
trips on the chosen line. The main notations are summarized
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in Table II, and we provide explanations for them hereinafter.

TABLE II: Notations
Notation Description
N Number of stations
TK
i Minimum Walking time for a normal person at station i

TR
ij Riding time from station i to station j

TW
i (t) Waiting time at station i when tap-in time is t

TD
i Dwell time at station i

Tij(t) Travel time from station i to station j when tap-in time is t

The number of stations is denoted by N (station 1, ...,
station i, ..., station N ). Except for a circular line, which runs
clockwise or counter clockwise, the line has two end stations
that are connected with only one other station. For a circular
line, we randomly select one station to name it station 1 and
name the rest stations clockwise.
We consider the walking time from a ticket gantry to the

platform and that of the reverse movement (i.e., from the
platform to the ticket gantry). If there are many different
locations for ticket gantries, which is especially true for a large
and complex station, the two routes may be different. Hence,
we consider a specific ticket gantry with a minimum distance
to the platform and call it the target gantry. In this case, the
two routes are same, and we make the following assumption.

Assumption 1. The walking time of a normal passenger from
the target gantry to the platform (for the tap-in activity) is
similar to the walking time for a normal passenger from the
platform to the target gantry (for the tap-out activity) with
some small tolerable difference.

The walking time for a normal passenger between the target
gantry and its platform at station i is denoted by TK

i (i.e., the
minimum walking time). The train-riding time from a train
departure time at station i to a train arrival time at station
j is denoted by TR

ij . Depending on when a passenger taps
in the card, the platform waiting time varies. Assume that a
passenger arrives at the platform just right before his/her train
departs. In this case, the waiting time becomes negligible. In
contrast, if he/she just misses the train, he/she needs to wait
until the next train departs. In this regard, the waiting time at
station i is expressed as a function of tap-in time t, which is
TW
i (t). The train dwells at station i to pick up and drop down

passengers. The dwell time at station i is TD
i .

C. Problem Definition

Summing up all the defined notations, we formulate the
travel time from station i to station j,

Tij(t) = TK
i + TW

i (t) + TR
ij + TK

j , (1)

where t is the tap-in time. Figure 2 illustrates this travel time
formulation. The blue cross mark represents the train departure
time at station i, the red circular mark represents the train
arrival time at station j.
We introduce the second assumption to establish an intuitive

analytical framework.

Fig. 2: Activities in a typical subway trip

Assumption 2. With sufficient trips over a long period of time,
at least one passenger boards a train without any waiting to
travel from station i to station j using only target gantries.

Given millions of trips per day in Shenzhen, we consider
Assumption 2 holds well. Hence, the travel time of that
passenger (without waiting and passing through the target
gantries) is the minimum travel time from station i to station
j. The time is approximated by taking the minimum over all
travel times between two stations. We denote it by T ∗

ij . Its
mathematical formulation is the travel time with zero waiting
time as follows.

T ∗
ij = TK

i + TR
ij + TK

j . (2)

We have multiple unknown variables in Equation (1) and
Equation (2). Specifically, we only know Tij(t) and T ∗

ij ,
because these can be calculated based on the tap-in times
and tap-out times of smart cards. We cannot extract directly
when each passenger boards or alights a train. In addition, it is
hard to extract how long each passenger spends on walking or
riding. To address this challenge, we devote the next section
to estimate each component of the travel time in Equation (1).

IV. NETWORK STATUS ANALYSIS

We estimate each component in Equation (1) and use the hat
notation for the estimated value. For example, the estimated
value of the walking time is denoted by T̂K

i .

A. Minimum Travel Time

We explain how to estimate the minimum travel time from
station i to station j for a normal passenger.
Intuitively the sample minimum (i.e., the smallest observa-

tion) among a large number of trips may be applied to estimate
the minimum travel time. However, a passenger may run to
catch a train. If there are unusual fast-running passengers
(i.e., outliers), the sample minimum is not appropriate for the
minimum travel time of a normal passenger. To automatically
discover outliers, we employ the density based clustering
of applications with noise (DBSCAN). The DBSCAN per-
forms well especially in discovering clusters and outliers with
arbitrary shaped patterns [5]. After excluding the outliers

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2020 at 22:15:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Relationship of travel times

discovered by DBSCAN, we can compute the minimum value,
which is T̂ ∗

ij .

B. Walking Time

If station i is not one of end stations (i.e., i /∈ {1, N}),
we can find two stations, station l and station j where
l < i and j > i. We depict the three stations in Figure
3. The components of the minimum travel time formulation
in Equation (2) are also displayed. We have the following
observation. While the minimum travel time from station l to
station i and that from station i to station j include the walking
time at station i, the minimum travel time from station l to
station j does not. Based on this observation, we have:

T ∗
il + T ∗

ij − T ∗
lj = 2 · TK

i − TD
i . (3)

Note here that our trip data cover all pairs of stations along
a single line. For each i = 2, ..., N −1, we have (i−1) · (N −
i) equations of Equation (3), leading to an over-determined
system for TK

i :

TK
i =

T ∗
li + T ∗

ij − T ∗
lj + TD

i

2
,

where l = 1, ..., i−1 and j = i+1, ..., N . We derive the least-
square solution for this over-determined system (i.e., (i− 1) ·
(N − i) equations for one unknown value). In this case, the
least-square solution is simply the average value of them. The
average value is T̂K

i for i = 2, ..., N − 1.
We do not include the walking time estimation at end

stations in this paper because it requires additional information
besides the smart card data.

C. Riding Time

We estimate the riding time, TR
ij , from station i to station

j. Using the minimum travel time in Equation (2), we can
estimate it because we already estimate the walking times at
both stations, T̂K

i and T̂K
j . The estimated riding time is

T̂R
ij = T̂ ∗

ij − T̂K
i − T̂K

j . (4)

D. Waiting Time Inference

Each travel time record in the smart card data, Tij(t),
includes the waiting time at station i, whereas the minimum
travel time, T̂ ∗

ij , does not. This means that we can extract the
waiting time information by subtracting the minimum travel

Fig. 4: Cluster result by DBSCAN when tap-in station is Yitian
with 10/12/2013 (Monday) data

time from the travel time. It is noteworthy that T̂ ∗
ij is the

estimation for a normal passenger with a normal walking
speed. Depending on passengers’ walking speeds, there may
be variability in waiting times. We explicitly express the
variability as follows.

TW
i (t) = Tij(t)− T̂ ∗

ij + ε,

where ε is the unobservable random part resulting from
individual walking characteristics. If we consider only a trip
from station i to station j, we may suffer from data sparsity.
To resolve the issue, we aggregate waiting time data as long
as their tap-in stations are station i. This makes sense because
waiting occurs only at tap-in station i. The aggregated data
set is

{TW
i (t)|∀t} = {Tij(t)− T̂ ∗

ij |∀t and i < j ≤ N}.
As mentioned before, the waiting time depends on when the
passenger taps in the smart card within the train schedule.
In this regard, the waiting time with respect to tap-in time t
decreases over some time interval (as the train approaches
the platform) and then suddenly jumps up at some points
(when he/she just misses the train). Hence, the repeating cyclic
patterns are expected to be observed. For illustration, we plot
waiting times for a station using Shenzhen smart card data as
in Figure 4. It is the waiting time with respect to the tap-in
time.
To automatically discover waiting time patterns, we employ

the DBSCAN. The applied DBSCAN result is also shown in
Figure 4. The shaded diamond dots represent outlier points.
Let clusters of DBSCAN be C1

i , C
2
i , ..., C

M
i , where M is the

number of clusters. Note that the outlier points are excluded
from this membership. Points in a cluster show a linear relation
of the waiting time and the tap-in time, but still have individual
variability represented by ε. The best line is found by applying
the regression analysis to those points.
For each cluster Ch

i , let thi be the smallest tap-in time and
t̄hi be the largest tap-in time. The estimated coefficients are
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denoted by ahi for the intercept and bhi for the slope. Then,
if tap-in time t is in Ch

i (i.e., thi ≤ t ≤ t̄hi ), the waiting time
estimation is ahi + bhi · t. Time t may not be in any cluster.
This may happen during non-peak hours when there are no
sufficient data points constituting a cluster. If time t falls in this
time frame, the average waiting time is used for its estimation.

T̂W
i (t) =

{
ahi + bhi · t if thi ≤ t ≤ t̄hi∑

t
TW

i
(t)

|{TW

i
(t)|∀t}|

otherwise.
(5)

The above analysis is for one-day smart card data. Because
the train schedule varies daily due to some events, this
value needs to be treated as a random variable. The process
repeats for all days in the data to have multiple estimations.
We let its mean value be E[T̂W

i (t)] and its standard devi-
ation be σ[T̂W

i (t)]. The standard error is S.E.[T̂W
i (t)] =

σ[T̂W

i
(t)]√

number of days
. Hence, the confidence interval for T̂W

i (t) is
provided, instead of the single estimator.
It is worth to note that the DBSCAN is computationally

expensive, but it can be done offline. For the real time appli-
cation, we note rely on the outcomes of regression analysis.

E. Travel Time Inference
Using the previous waiting time estimate in Equation (5),

we infer the travel time from station i to station j at tap-in
time t as follows.

T̂ij(t) = T̂W
i (t) + T̂ ∗

ij . (6)

Again, the above equation is for one-day smart card data.
Similarly, we obtain the confidence interval for T̂ij(t) by
obtaining multi-day estimations.

V. EVALUATION
In this section, we evaluate the performance of the proposed

travel time decomposition method.

A. Walking Time and Riding Time
According to Equation (4), the estimate of the walking time

is correlated with that of the riding time. This correlation
enables us to indirectly evaluate the walking time estimate
by evaluation the riding time estimate. For this, we compare
riding time estimates with riding time values posted in the
Shenzhen metro website [16]. The indirect evaluation is bene-
ficial because we can avoid the expensive on-site investigation
to measure the actual walking times.
Figure 5 is the cumulative distribution function (CDF) of

the walking time estimations for all the five lines. Most of
estimated walking times are less than 80 seconds. Around 80%
of them are less than 33 seconds. By using the walking time
estimates, we infer the riding time estimates by using Equation
(4). Figure 6 compares the CDF of riding time estimates with
the CDF of riding time values posted on the Shenzhen metro
website. The two graphs are alined well, which means that the
estimates are very close to the true values. In fact, the average
estimation error is only 7.65%. Therefore, we can conclude
that the decomposition method accurately estimates the riding
times, and also the walking times.
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Fig. 6: CDFs of estimations and posted values of riding times

B. Waiting Time and Travel Time

We test the performance of the waiting time and travel time
estimations. We call our proposed method as the regression
method because the regression analysis is hired for the waiting
time estimation.
1) Setup for Evaluation: For comparison, we introduce two

alternative methods: the time table method and the average
method. The first one is proposed by [21], which relies on
the estimation of the train time table. If passengers travel
together in the same train, they would get off their destination
station together. Based on this idea, the train time table is
constructed by clustering the tap-out times. The second one
computes the average travel time from a tap-in station to a
tap-out station. This is the static estimation method, unlike
the other two methods, because the estimate does not depend
on tap-in times of passengers.
We set aside the Friday (10/25/2013) data for testing.

The remaining data, from Monday (10/21/2013) to Thursday
(10/24/2013), are used for training. Note that we have the
travel time records as ground truth. The selected performance
measure is the mean absolute error (MAE) of the travel time
estimate from the ground truth.
2) MAE Comparison: Table III compares the three meth-

ods. The MAE of the average method is 68 seconds, 163
seconds for the time table method, and 58 seconds for the
regression method. As reported, the simple average method
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outperforms the time table method. The proposed regression
method improves the MAE value by 15% over the average
method. We divide the data set into two groups: peak-hour
data and non-peak-hour data. If the tap-in time is in peak
hours (7 am to 9 am; 5 pm to 7 pm), it is in peak-hour data.
It is noteworthy that whether or not the tap-in time is in peak
hours becomes significant for the time table method, compared
with the other methods: The MAE is 253 seconds for the peak
hour data and 74 seconds for the non-peak hour data.

TABLE III: MAE comparison (unit is in seconds)
Hours Average Time Table Regression Improvement
Peak 65 253 57 12%

Non peak 71 74 59 17%
Overall 68 163 58 15%

Note: Improvement is the MAE improvement of the regression method over
the average method.

We use the ground average value if a data point is not
in any DBSCAN cluster (refer to Equation (5)). Hence, data
points possessing cluster memberships are truly affected by
the regression method. To measure the true impact, we focus
on about 75% of the test data with memberships. Table IV
compares the average method with the regression method
using this partial data set. As expected, higher improvement of
26% is obtained by using the regression method. The reason is
that if a data point is not in any cluster, the regression method
uses the average value, resulting in no difference between
the two methods. This zero difference drags down the overall
MAE improvement.

TABLE IV: MAE comparison (unit is in seconds) for data
points with membership affected by regression analysis

Hours Average Regression Improvement
Peak 63 52 17%

Non peak 65 41 38%
Overall 64 47 26%

Note: About 75% of the test data have memberships.

We discuss several interesting observations from Table III
and Table IV:

• The average method performs better for the peak-hour
data than for the non-peak-hour data. When only one
estimate is used for trips of a pair of stations, it performs
better when trains are operated more frequently. The
frequent operation reduces the waiting time variation
among passengers. The Shenzhen metro operates trains
more frequently during peak hours.

• The regression method performs well for the non-peak-
hour data with membership. Passengers usually catch
their trains during non-peak hours, resulting in nice
patterns for the DBSCAN (in contrast, they may miss
trains during peak hours). At the same time, there may not
be sufficient data points to constitute a cluster for a certain
time frame. That is why the regression method performs
well after excluding data points without membership.

• The time table method especially does not perform well
for the peak-hour data. We discuss more in the following
subsection separately.

3) Over-estimation of Time Table Method: We discuss
why the time table method does not perform well especially
with the peak-hour data. Figure 7 graphically compares the
estimation outcomes for a tap-in station (i.e., Guomao). The
graphs are the travel time estimates with respect to the real
travel times. The 45 degree line in each graph represents the
perfect fit. The average method assigns the same estimate for
all the trips having the same tap-out stations. That is why
we see many horizontal lines in Figure 7a. Figure 7b is for
the regression method, and Figure 7c is for the time table
method. By comparing those three graphs, we see that the
regression method, having the points located much closer to
the 45 degree line, outperforms the other two methods. Many
points lying above the 45 degree line in Figure 7c represent
over-estimations. These over-estimations result from failing to
detect all the train departures through the data processing.
During peak hours, trains are operated more frequently. In that
case, a long line of passengers, riding on different consecutive
trains, are clustered as one group. Thus, it may diagnose one
departure during that time span, instead of detecting the actual
multiple departures. Figure 7d shows the estimates of the time
table method only for the peak-hour data. By comparing it with
Figure 7c, we can clearly see that the over-estimations mostly
occur in the peak-hour data.

VI. APPLICATION: DIGITAL ADVERTISING

We introduce an interesting application based on the two-
level demand estimation method. For simplicity, assume that
there is only one advertiser that makes a contract to display
one-minute advertisement n times in a day at station i. A
digital screen is on the platform of station i. What would be
the best strategy for the metro advertising system to provide
efficient advertising service?
As mentioned in Section II, the coarse-grained demand

is accurately predictable. For easier understanding, we use
explicit numbers to sketch the application. We use 30 minutes
as our coarse-grained time interval, leading to 48 time frames
in a day. On the other hand, we use 1 minute as our fine-
grained time interval (i.e., time slot), resulting in 30 time slots
in a frame. For each historical tap-in record at station i, we
consider that the passenger was at the platform after time T̂ k

i

and assign the passenger to a corresponding frame. For each
tap-out record at station i, we consider the passenger was at
the platform before time T i

k and assign him/her accordingly.
We distribute n advertisement slots into 48 time frames
that are proportional to the stable historical passenger traffic
percentage at station i.
The above frame-level allocation can be done offline. We

now explain how to schedule the slot-level allocation online.
We focus on one frame to explain the dynamic schedule.
Assume that m ≤ 30 slots are assigned to the frame offline.
We have 30 candidate slots and choose m slots from them for
advertisement. We let the start time of the frame be τs (i.e.,
the first slot is [τs, τs + 1]).
Assume that the current time is τ = τs. For each time slot,

we estimate the future passenger demand. If the first slot is (or
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(c) Time table method (overall)
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(d) Time table method (peak hours)

Fig. 7: Estimation performance for tap-in station of Guomao on Line 1

is not) one of top m heavy traffic slots, then the advertisement
is (or is not) displayed. At time τ = τ s + 1, we similarly do
the same process to schedule the remainingm−1 (orm) slots.

Specifically, we explain how to estimate the slot-level
demand at time τ online. Assume that passenger θ taps-in
his/her card at time t < τ at station l and is still in the subway
network. If l = i, then he/she is expected to be on the platform
of station i at time t+ T̂K

i and is counted in a slot including
that time. If l �= i, we derive the distribution of his/her
destination stations using his/her historical card transactions,
conditional on tap-in time t and tap-in station l. If the personal
data for him/her are not sufficient, we then use the general
distribution. From the distribution of the destination stations,
we can pinpoint the probability that his/her destination station
is i, which is denoted by P̂li. The expected tap-out time of
passenger θ is t + T̂li(t). Hence, the platform arrival time at
station i is estimated to be t + T̂ li(t) − T̂K

i . Then, he/she
is counted in a slot including that time, but only P̂li (≤ 1),
instead of one person, is counted.

VII. RELATED WORK

There is a broad literature mining travel data collected by
AFC systems. An excellent literature review including smart
card technologies and privacy issues can be found in [18].
AFC data are used to study the performance of overall

transportation systems. The transaction data are used for transit
demand modeling [4] and for service reliability measures [2],
[19]. State transfer trips are analyzed to provide information
about passengers’ transfer location choices [8].
To plan and design urban facilities and services, it is

important to understand the mobility patterns (e.g., daily two
peaks during weekdays, relatively even distribution during
weekends). For this purpose, the aggregated temporal and
spatial patterns are studied using AFC data [11], [22], [12].
The above works aggregate the trip data to derive system-

performance measures and to obtain traffic patterns. The other
line of research uses AFC data to reveal individual behaviors
of passengers. After demonstration of travel time differences
among passengers using AFC data, the personalized travel
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time estimation is built based on individual travel behaviors
[10]. Crowd levels are predicted to provide more personal-
ized travel plans [1]. By avoiding the overcrowded times,
the quality-based planning service can be provided. After
extracting individual travel behaviors, a tool can be built to
recommend the best fare to purchase [9]. In the sense that we
focus on each individual trip transaction for the travel time
decomposition, our work is related with this line of research.
The travel time decomposition has been studied [6], [17],

[21]. The waiting time is estimated by integrating the AFC
data with published time tables [6]. However, we obtain it
without the aid of the unreliable (due to unexpected events)
time table. The uniform walking time and dwell time across
every station are assumed in [17]. In addition, the method by
[17] requires the physical distance among stations.
Our work is close to [21]. However, we state the major

differences. First, the decomposition method in [21] requires
intensive sorting, mapping, and grouping operations to search
for passengers without waiting (called boarder-walkers). Thus,
our method has a potential advantage in saving computational
efforts. Second, the method by [21] does not work for end
stations because it requires two boarder walkers (i.e., a boarder
walker for tapping in and another boarder walker for tapping
out) for a chosen direction. Note that if a direction is chosen,
there is only one kind of smart card transaction (either tap-in
or tap-out) for the end stations. However, the analysis for end
stations can be extended easily (we do not include the analysis
in the paper). Therefore, our method is more general. Third,
we propose a new method of providing the confidence interval
for the travel time estimation.

VIII. CONCLUSION

This paper addresses the travel time decomposition problem
by using the tap-in and tap-out records in AFC data. The
decomposition enables efficient digital advertising that is based
on the up-to-date travel demand for the spot where a digital
screen is installed. The Bayesian demand model is constructed
by using real-time tap-in information, passengers’ moving
patterns, and the travel time decomposition. Furthermore, the
constructed stochastic time table enables new personalized
applications such as the reliable tap-in time recommendation.
A passenger can catch a target train with a given probability
by using the recommendation, which will be developed for our
future research. It is also an interesting research direction to
pursue a user study in order to determine the impact of the new
application on travel patterns. In other words, it is important
to shed light on how passengers adjust their travel behaviors
in response to the new personalized applications. Passengers
may arrive in bursty patterns resulting in long queueing lines
to tap-in their cards. Hence, queueing theory is applied to add
the pre-gantry queuing time to the total travel time. We leave
this as an interesting future work.
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