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1 INTRODUCTION
According to the United Nations, we are undergoing a rapid process of urbanization where 54% of the world’s
population has already been moved into urban areas in 2014, and this number is projected to rise to 70% by 2050
[33]. Thus, it is essential to improve the mobility of urban residents on a daily basis, which can be achieved
by accurately providing travel time estimations for improving passenger confidence when selecting different
transportation systems, e.g., subway, taxi, bus, and private vehicles. However, urban anomalies, e.g., transportation
accidents [38] and social events [35], have major impact on travel time across all transportation systems in
cities. In this paper, our goal is to understand, quantify, and predict the impact of urban anomalies on the travel
time of different transportation systems, which is essential to many real-world applications, e.g., emergency
response [15], trip planning [16], and location-based services [33].
In recent years, as a result of urbanization, urban transportation systems have been equipped with advanced

sensing and communication devices to generate massive amount of data [14], which provide an excellent
opportunity for travel time estimation. Researchers have accumulated abundant knowledge for travel time
modeling through various state-of-the-art models [22, 35, 37, 38]. In this paper, we focus on a combination of
three key factors as follows to advance the state-of-the-art models. (i) Fine-Grained Travel Time: since most
transportation data are mainly collected for management purposes and do not provide direct measurement of
different stages of a trip, most existing studies have been focused on end-to-end travel time [22, 37], instead of
fine-grained travel time. (ii) Urban Anomalies: the existing studies on urban anomalies were mainly focused
on the anomaly detection from traffic flows [35, 38] instead of measuring the impact of anomalies on travel time.
(iii) Multiple Transportation Systems: Due to limited data access, almost all existing work has been focused
on an individual transportation modality, e.g., taxi [24, 26] or subway [7], instead of multiple transportation
systems.
To the best of our knowledge, little work, if any, has been conducted under the above three factors. This is

because it is challenging to access large-scale data on urban mobility and anomalies with fine-grained spatiotem-
poral coverage across different transportation systems. In the vision of smart cities, many of them, e.g., New York
City, Beijing and Shenzhen, have been collecting urban-scale data across different systems to improve urban
efficiency. Some of these data have been made available for researchers to understand urban mobility, e.g., travel
time[37]. However, since most of these data are collected for billings across different systems, they lack direct
measurement of detailed components of the travel time, e.g., walking time and waiting time.

In this paper, to address the above challenges, we design a measurement framework called MAC to Measure the
impact of Anomalies on different travel time Components of heterogeneous transportation systems. In particular,
we utilize various existing data sources (e.g., vehicle GPS, fare transactions, etc) to infer walking time, waiting
time, and riding time for taxi, bus, subway and private vehicles. As a result, the key novelty of MAC is that
it measures the impact of urban anomalies on fine-grained travel time components of multiple transportation
systems, by utilizing data already collected for billing and management purposes. The key contributions of the
paper are as follows:

(1) We utilize various transportation infrastructures and their data for travel time measurement under urban
anomalies. To our knowledge, the utilized data is fairly complete, i.e., including taxi cab, bus, subway and
private vehicle data for the same city Shenzhen. The data covers more than 78% of 11 million permanent
residents. We further collect a city-scale dataset of urban anomalies including expected and unexpected
anomalies as ground truth for analyses. More importantly, for the benefit of the IMWUT community, we
will release our sample data.

(2) We design a framework called MAC to investigate the fine-grained travel time components and the impact
of anomaly events. In particular, we design a model to infer the waiting time and riding time and then
validate the inferred travel time components through case studies. Furthermore, we analyze the travel time
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patterns on the inferred travel time components under normal and anomaly events. Finally, we design a
learning model to integrate contextual information for the prediction of delay time in anomalies across
different transportation systems.

(3) We implement and evaluate MAC by integrating data from four transportation systems including (i) a
15-thousand taxicab network, (ii) a 13-thousand bus network, (iii) an automatic fare collection system for
a public transit network (i.e., subway and bus) with 5 million smartcards, and (iv) a 10-thousand private
vehicle network. Our prediction model achieves 86.5% prediction accuracy on delay time prediction. Our
research efforts lead to several insights and lessons learned, which are helpful for understanding city-scale
fine-grained travel time under extreme anomaly condition across different transportation systems.

The rest of the paper is organized as follows. Section 2 summarizes related work. Section 3 describes the dataset.
Section 4 shows the motivation of fine-grained travel time measurement, followed by design details in Section 5.
Section 6 presents the measurement results. Section 7 implements a delay time prediction application. Section 8
discusses the lessons learned, insights, and limitations. Finally, Section 9 concludes the paper.

2 RELATED WORK
Travel time analysis has been investigated by considerable studies because of its importance to people’s daily life.
We summarize existing works in Table 1 with a two-dimension taxonomy: (i) transportation modality, i.e., single
modality or multiple modalities; (ii) granularity, i.e., with or without travel time decomposition.

Table 1. Travel Time Measurement Survey

Categories Granularity
Coarse-Grained Fine-Grained

Transportation
Modality

Single [4] [9] [10] [13]
[23] [26] [27] [40] [5] [8] [11] [12] [39]

Multiple [30] [32] [34] [20] [29] MAC

2.1 Studies on Single Modality
Most existing studies on travel time estimation are based on single modality due to the isolation of transportation
systems, such as subways, buses, and taxis.
(i) Coarse-grained travel time: Given the task of estimating travel time, existing studies focus on the total travel
time between the two locations in a city by bus [23], subway [9, 10], taxi [4, 13, 26, 40], or private vehicles [27].
The travel time estimation models are carefully designed for a specific transportation system or modality. The
generalization is not investigated due to system isolation as well as data accessibility.
(ii) Fine-grained travel time: The actual travel time is not only the travel time in the transportation system
such as between getting into the bus and getting off the bus. Instead, it is decomposed into different stages
according to travel patterns. For example, the travel time is decomposed into waiting time in a bus station and
riding time in a bus [8, 39] in bus systems. Similarly, the travel time is mostly divided into waiting time in a
pickup location and the riding time in a taxi [5, 12]. For the subway system, the travel time is mainly divided into
waiting time, riding time and transfer time [11].

2.2 Studies on Multiple Modalities
Studies involved with multiple modalities either integrate multiple mobile systems or investigate the differences
and similarities between different mobile systems.
(i) Coarse-grained travel time: Due to the limitation of multi-modal data access, little work has been focused
on coarse-grained travel time for multiple modalities, i.e., riding time from one location to another location based
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on different systems. Some of the representative studies in this category include a multi-view learning model to
explore human mobility using transportation and cellphone data [32], and an integration model to infer real-time
traffic speeds with multi-source large-scale infrastructure data [34].
(ii) Fined-grained travel time: To the best of our knowledge, we are the first to investigate the fine-grained
travel time pattern with multiple modalities. Building upon four transportation systems, our study aims to provide
a comprehensive analysis on the fine-grained travel time pattern.

3 DATASETS

3.1 Investigated Transportation Systems
We are part of a team working under Shenzhen Smart City Initiative, through which we have access to four
transportation fleets for our analysis. The details about the data are given in Table 2.

Table 2. Four Fleets

Subway Bus
Daily Data Size 2.23GB 6.5GB
# of Passengers 4 million 5 million

# of Daily Records 9 million 44 million

Format Card ID Date&Time Plate Date&Time
Station ID IN/OUT Stop ID GPS&Speed

Fare Collection Machine ID
Personal Vehicle Taxi

Daily Data Size 11 GB 6 GB
# of Vehicles 10,043 15,457

# of Daily Records 240 million 66 million

Format Device ID Date&Time Plate Date&Time
GPS&Speed free/occupied GPS&Speed

• Subway: An automated fare collection (AFC) system is utilized to collect passenger’s trip origins and
destinations in the subway system when passengers tap in and tap out of subway stations. The data record
includes passenger id, tap-in station, tap-in time, tap-out station, tap-out time, two fare collection machine ID
(IN&OUT).

• Bus: There are two data sources in the bus system: The first data source is an automated fare collection
(AFC) system, which records the trip details of bus passengers with smartcard swiping. The bus AFC data
record includes passenger id, tap-on station, tap-on time, tap-out station, tap-out time, bus id, bus route.
The second data source is an onboard bus GPS tracker, which has two components: a GPS recorder and a
communication component. The GPS recorder logs the current bus GPS and time information, and the
communication component sends the data to a cloud server. The record collected by the GPS tracker
includes id, longitude, latitude, time. The accessed bus fleet data include 976 bus lines and 13 thousand buses.
The bus fleet has a regular pattern due to their operating routes.

• Taxi: For the taxi data, in addition to the on-board GPS data, one more bit is recorded to indicate if the taxi
is occupied by passengers or not. Therefore, one taxi record includes id, longitude, latitude, time, occupied
or not. The taxi fleet in Shenzhen has 14 thousand taxis generating one status record every 30 seconds.

• Private Vehicle: We access Private Vehicle (PV) GPS trace data recorded by an onboard GPS device, which
is installed by an insurance company for pay-as-you-go insurance programs. The GPS location is sent
to the insurance company. The PV GPS records are similar to bus GPS records, containing id, longitude,
latitude, time. We have access to this private vehicle network with more than 293 thousand vehicles, among
which 10 thousand vehicles are in Shenzhen.
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8 Lines
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1115 Lines
10106 Stations

5 Million Users
13K Buses

10,043 Cars500K Users
15K Taxis

Fig. 1. Transportation Record Visualization

To illustrate the data distribution difference in the four transportation systems, Fig. 1 gives a heatmap visual-
ization of these four transportation systems based on one-day data. We find some unique travel patterns in each
transportation system. The taxi system covers most areas of the city. The bus system covers the main roads of
the city. In the subway system, most of the congestion happens in the station. For the private vehicle system, it
has similar travel coverage as the taxi system.

3.2 Anomalies
We list the investigated anomalies in two categories, i.e., expected and unexpected anomalies, in Table 3.

Table 3. Anomaly Categorization

Anomaly Category Anomaly Examples
Expected concerts, musical festivals, college entrance exams, subway fire drill, sports

Unexpected station entrance of stagnant water, subway delay, facility malfunction, accidents

3.2.1 Unexpected Anomalies. Transportation accidents are one of the major unexpected factors that affect travel
time and passengers’ travel behaviors. However, accident datasets cannot be collected through city infrastructures
directly with highly accurate spatial and temporal information. To investigate its impact on fine-grained travel
time, we collect transportation accidents in the following procedures.
(i) Retrieval. We firstly build a web spider to extract and obtain all the posts from official accounts of the Shenzhen
Transportation Police from Sina Weibo, i.e., the Chinese version of Twitter. We filter the raw data with the
keywords road condition or accident. By this approach, we focus on the relevant information and use the texts
posted on the website for anomaly analysis.

Table 4. Description of Accident Data Set

Description keywords Anomaly Level
scrape, small cars, slow 1

bus, van, injured, several cars 2
fire, dead, construction 3

(ii) Structuralizing. We extract the useful information from the texts we have crawled in the previous step. We
apply regular expressions to obtain the time and location of the accidents. To further quantify the extent of
anomaly, we classify them into different anomaly levels according to the keywords in the description provided.
For example, if the keywords such as “small cars” and scrape” are mentioned, we consider it as a low level of
severity. The details of anomaly level and its corresponding keywords are provided in Table 4.
(iii) Matching locations. Geocoding is the process of converting addresses (e.g., “1600 Amphitheatre Parkway,
Mountain View, CA” or “Intersection of 5th street and 62nd street in NYC”) into geographic coordinates (e.g.,
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latitude 37.423021 and longitude -122.083739). Geocoding is conducted with two steps, i.e., Entity Extraction and
Location Matching with Google Map API [17].
(iv) Data cleaning. We clean out some unreasonable and unrealistic data such as the ones with coordinates out of
the region of Shenzhen. Finally, we obtain Table 5 to describe every item in the data set of unexpected anomaly.

Table 5. Sample of Unexpected Anomaly Data Set

Events Description Time Location Latitude Longitude Level
A many cars collided 2016-06-01 14:42 BeiHuan Ave, Shahe West Overpass 22.56829 113.95432 2
B two cars scraped 2016-06-01 08:55 NanPing Exp, TangLangShan Road 22.56748 113.99177 1
C a van turned over 2016-06-04 14:25 ShenShan Highway 22.53988 114.01955 3

3.2.2 Expected Anomalies. Expected social events such as Marathon, concerts and music festivals have a large
impact on passengers’ travel behavior. We collect these social events by crawling and analyzing online news.
The crawling procedures are similar to the irregular anomaly extraction, which includes event retrieval, event
structuralizing, location matching and data cleaning. We show the samples of the data set of regular anomaly in
Table 6.

Table 6. Sample of Expected Anomaly Data Set

Events Description Time Location Latitude Longitude Level
A Marathon 2016-12-04 8:00 Baoan People’s Government 22.553623 113.884333 3
B Midi Music Festival 2016-01-01 Universiade Shenzhen Gymnasium 22.693345 114.219014 2
C Emergency Drill 2016-06-26 1:00 Futian Subway Station 22.541603 114.052626 1

4 MOTIVATION

4.1 Fined-grained Travel Time

Fig. 2. Fine-grained Travel Time Fig. 3. Waiting Time Fig. 4. Waiting Time Ratio

We compare the fined-grained travel time, i.e., riding, waiting, and walking, with coarse-grained travel time,
i.e., total travel time or riding time. First, we study the average waiting time, walking time and riding time that
subway passengers spend between two major subway stations with high traffic, i.e., central station. Fig. 2 plots
the fine-grained travel time distribution between these two stations in the subway system. We find that even
though passengers spend a large portion of travel time on riding, the waiting time and walking time are not
negligible and have higher fluctuation. Fig. 3 compares the waiting time with the total travel time in all subway
trips. On average, the waiting time accounts for 16% of the total travel time in the subway system. Moreover,
we compare the waiting time with the total travel time in the bus, taxi and subway systems. Fig. 4 shows the
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CDF of the ratio of waiting time in the total travel time in all trips. We find that the waiting time accounts for
more than 20% of the total travel time in 20% of the trips in the taxi system. In the bus system, more than 20% of
the travel time is spent on waiting in 57% of all trips. In the subway system, passengers spend more than 20%
of the travel time on waiting for trains in 40% of all trips. Compared with the coarse-grained travel time, the
fined-grained travel time accurately describes passengers’ travel time in different stages. The details of travel
time decomposition will be provided in Section 5.4.

4.2 Multiple Transportation Systems
Passengers with travel demand in a city dynamically choose one or multiple of the transportation modalities,
e.g., bus, subway, taxi, and private vehicle, based on travel purposes and traffic conditions. For instance, in our
analysis, we find that commuters traveling between home and work locations prefer to take public transportation
systems or drive their own cars instead of riding taxis. In contrast, visitors mostly take taxis at airports or train
stations. We show the travel demand (i.e., the number of passengers) and the demand trend (i.e., the normalized
travel demand) in the four transportation systems in Fig. 5 and Fig. 6. We find some obvious differences among
these four systems in terms of travel demands. The two public transportation systems have two peaks of travel
demand during rush hours. The taxi demand increases significantly in the evening due to different travel purposes.
Therefore, a single transportation system is not the representative for travel behaviors in a city due to its biased
mobility patterns.

Fig. 5. Travel Demand Fig. 6. Demand Trend Fig. 7. Impact of the Storm

4.3 Anomaly Events
Anomaly events, such as social events and transportation accidents, affect the traffic flow, which leads to travel
delay. For example, the severe tropical storm Nida in 2016 has caused severe travel delay. We quantify the impact
of the storm on the travel time by the increased travel delay, which is calculated as the relative difference between
travel time. We study its impact of travel time on both above-ground and underground transportation systems.
Fig. 7 shows the increased travel delay during the storm. The storm significantly increases the travel time on
above-ground systems, i.e., buses, taxis, and private vehicles by around 40% to 70%. It also affects the service of
several subway lines and stations and leads to travel delay in the underground subway system as well.

4.4 Summary
In summary, we investigate the features of fine-grained travel time and anomalies. Even if passengers spend a
large portion of time on riding during a trip, the waiting time is not negligible as it makes up around 20% of the
total travel time. Due to mobility difference in different transportation systems, a single transportation system
is not representative of all passengers’ travel behavior in the city. This motivates us to measure the impact of
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anomalies on fine-grained travel time, i.e., waiting time and riding time on four different transportation systems
to better understand their impacts on urban mobility.

5 METHODOLOGY
This section describes how we decompose trips into travel components to better understand urban mobility. We
first describe passengers’ behaviors with different transportation modalities. Second, we elaborate on travel time
decomposition to infer fine-grained travel time components.

5.1 Background: Understanding Passenger Behaviors
In most cities, the major travel modalities include subways, buses, taxis and private vehicles. In order to decompose
the total travel time into fine-grained time components, we first aim to understand the travel behaviors in
passengers using different transportation systems.
(i) Taxi. In the taxi system, passengers walk from an origin to the pickup location and wait for the next available
taxi. Next, passengers take a taxi to a drop-off location, after which they walk to their final destination. Most of
the travel time is spent on waiting and riding.
(ii) Bus. If passengers choose to take a bus, similar to the taxi, passengers first walk to a bus station. Then
passengers wait in the bus station for the next available bus to their destination station. Similar to taxi passengers,
bus passengers spend most of the travel time on waiting and riding as well.
(iii) Private Vehicle. For private vehicle passengers, since there is generally no waiting time for pickup, most of
the travel time is spent on riding.
(iv) Subway. For the subway system, passengers’ behavior is decomposed into walking, waiting and riding.
Starting from an automated fare collection machine in a station, passengers walk to a train waiting platform.
Next, passengers wait in the platform for the next available train. In the third phase, passengers take the train
to the destination station and then walk to the tap-out machine to exit the subway system. Subway passengers
spend most of the travel time in walking, waiting and riding.
Summary. By analyzing passengers’ behavior, we specifically investigate (i) riding time for personal vehicles, (ii)
waiting time and riding time for taxis and buses, and (iii) waiting time and riding time for subway systems. The
analysis does not include in-station walking time since the dynamics of in-station walking time is negligible.

5.2 Terminologies
In this subsection, we describe the terminologies and their abbreviations in the travel time decomposition.
Transportation System. We use four initial characters to represent the four investigated transportation

systems. Specifically, we use B to represent the city bus system, S for the city subway system, T for the taxi
system and P for personal vehicles. We categorize the four systems into above-ground groupA and underground
groupU, since above-ground systems share the same mobility pattern and road traffic in travel time components.
Travel Time Components. The total travel time consists of three travel time components, i.e., walking,

waiting and riding, based on semantics of passengers’ behavior. A travel time component is described as τM
status(s, t)

where M and status are two global parameters to describe the transportation modality/system and the status of
passengers (e.g. walking or waiting). The two spatiotemporal parameters s and t are location and time respectively.
For travel time components involving two locations, e.g., riding time with an origin and a destination, we use two
parameters, i.e., τ S

status(s1, s2, t), to present the locations. In addition, an individual-level travel time component is
denoted as τ S

status(s, t, i), where i represents the id of a particular passenger.
Anomaly Event. Similar to a travel time component, an anomaly event Elevel

cateдory (s, t) is associated with two
global parameters and two spatiotemporal parameters where the two global parameters level and cateдory are
the extent of the anomaly event defined in the dataset section, and the category of the event (i.e., expected or
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unexpected event). The two spatiotemporal parameters s and t describe the location and time of the anomaly
event.

5.3 Travel Time Decomposition: Aboveground
Given city-scale mobility data in four transportation systems, we describe how to infer the fine-grained travel
time components in a specific transportation system. Specifically, we elaborate the inference of (i) the waiting
time in taxi, bus, and subway systems, (ii) the riding time in the four systems, and (iii) the in-station walking
time in the subway system.

Available Taxi

Fig. 8. Waiting Time Inference

Traffic Flow

Fig. 9. Riding Time Inference

5.3.1 Waiting Time τA
waitinд . We use the taxi system as an example to illustrate the idea of waiting time inference.

As shown in Fig. 8, given taxi traces passing through location s, the upper bound of the waiting time is inferred
by the time difference of two successive available taxis which accommodate at least one passenger. For buses, the
waiting time is inferred by the time difference of two successive buses from the same route. Therefore, we divide
the city into 50m × 50m grids, which leads to 1800 × 920 grids in the city. In addition, the waiting time is affected
by the number of passengers in the waiting queue. For example, if there are two passengers waiting in the same
location for taxis at the same time without ride sharing, the statistical waiting time is the average waiting time of
the two passengers. For the first passenger, the waiting time is obtained through the waiting time estimation
of the next available taxi. For the second passenger, in addition to the waiting time of the next available taxi,
the extra time is the queuing time that equals the waiting time of the first passenger. This total queuing time is
determined by the travel demand which is estimated through the historical records of the taxi data.

τA
waitinд(s, t) =

∑D(s,t )
n=1 (ri+n .time − ri .time)

D(s, t)
;

s = ri .location; ri .time in t time slot ;
(1)

For location s , e.g., a grid for taxis and a station for buses, we estimate the waiting time τA
waitinд(s,t) at time t

in Equation (1) where ri+n is next n available vehicles after vehicle i and D(s, t) is the travel demand at location s
and time t . We model the demand by the number of passengers in the historical data, which is captured by the
taxi status changing from 0 (empty) to 1 (occupied). Since it is almost impossible to infer the large-scale exact
waiting time of individuals, our inference model focuses on the upper bound of individual roadside waiting time
based on taxi GPS locations.

5.3.2 Riding Time τA
r idinд . The riding time inference from historical data has been extensively investigated in the

previous works [26] [39]. Instead of estimating travel time on road segments, we infer the riding time in grids
before and after an anomaly happens. We first investigate the riding time from the traffic flows that have to pass
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the grid in the normal cases. Then, to compare the travel time difference before and after an anomaly event in
the central red area, we compare the average riding time from eight directions, i.e., from the top to the bottom,
from the left to the right, from the upper left to the bottom right, from the upper right to the bottom left and the
reverse directions, as shown in Fig. 9.

5.4 Travel Time Decomposition: Underground
Different from above-ground systems, which mainly use GPS devices to track vehicle locations, underground
systems depend on stationary devices, e.g., automated fare collection systems, to track passenger flows. For each
trip, the total travel time is captured by autonomous fare collection machines, which record time and location
when passengers tap in or tap out the subway system, i.e., the origin and destination stations. Therefore, the total
travel time of taking the subway is the time difference between the tap-in time and tap-out time of a passenger.
With travel flows from an origin station so to a destination station sd , the total travel time between the two
locations is τUtotal (so , sd , t , i). As described in passenger behavior analyses, the total travel time is decomposed
into walking, waiting and riding time components, as shown in Equation (2).

τ S
total (so , sd , t) = τ

S
walkinд(so , t) + τ

S
waitinд(so , t1) + τ

S
r idinд(so , sd , t2) + τ

S
walkinд(sd , t3);

t1 = t + τ S
walkinд(so , t); t2 = t1 + τ

S
waitinд(so , t1); t3 = t2 + τ

S
r idinд(so , sd , t2);

(2)

5.4.1 Waiting Time τ S
waitinд . To illustrate the inference of the waiting time for a passenger i in a station so ,

we first define the fluent travel time. We infer the fluent travel time with the following observation in subway
systems. Most of the trips include four stages: i) the walking time in the original station, ii) the waiting time in the
original station, iii) the riding time from original station to the destination station, and iv) the waiting time in the
destination station. Since the riding time following the subway schedule is constant and the difference of walking
time among passengers is negligible, the minimal travel time occurs when “lucky” passengers catch the subway
without waiting. We define the fluent travel time as the travel time without waiting which is inferred based on
those “lucky” passengers. Therefore, the fluent travel time is the travel time between two stations without the
waiting time, which is estimated by the minimum travel time between two stations. The waiting time is the time
difference between the total travel time and the fluent travel time. The inference is described in Equation (3).

τ S
f luent (so , sd , t) = min

i
τ S
total (so , sd , t , i);

τ S
waitinд(so , sd , t , i) = τ

S
total (so , sd , t , i) − τ S

f luent (so , sd , t);
(3)

5.4.2 Walking Time τ Swalkinд . We use an example to show how to extract the walking time in a station, i.e.,
station B, in Fig. 10 where the dash arrow represents the walking time in the station and the solid line represents
the riding time between two stations.

A B C
a
b

c

Walking

Riding

Fig. 10. Subway Passenger Behavior

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 42. Publication date: June 2019.



MAC: Measuring the Impacts of Anomalies on Travel Time of Multiple Transportation Systems • 42:11

Given three fluent trips (i.e., trips without waiting time), trip a from station A to station C, trip b from station A
to station B, trip c from station B to station C, B is the intermediate station of A and C. The fluent travel time in
the three trips is decomposed into walking and riding time, as shown in Equation (4).

τ S
f luent (A,C, t

′) = τ S
walkinд(A, t

′) + τ S
r idinд(A,C) + τ

S
walkinд(C, t

′′)

τ S
f luent (A,B, t

′) = τ S
walkinд(A, t

′) + τ S
r idinд(A,B) + τ

S
walkinд(B, t)

τ S
f luent (B,C, t) = τ

S
walkinд(B, t) + τ

S
r idinд(B,C) + τ

S
walkinд(C, t

′′)

(4)

The riding time of trip a is the summation of the riding time of trip b and the riding time of trip c.

τ S
r idinд(A,C) = τ

S
r idinд(A,B) + τ

S
r idinд(B,C) (5)

In Equation (4), we find the second equation plus the third equation minus the first equation, we can remove
the τ S

walkinд(C, t
′′). After applying Equation (5), the riding time will be removed. Therefore, the walking time of

station B is inferred by the fluent travel time difference of the three trips, which is described in Equation (6).

τ S
walkinд(B, t) =

1
2
[τ S
f luent (A,B, t

′) + τ S
f luent (B,C, t) − τ S

f luent (A,C, t
′)];

t = t ′ + τ S
f luent (A,B, t

′);
(6)

5.4.3 Riding Time τ Sr idinд . Given the waiting time and walking time, according to Equation (2), the riding time
inference is straightforward, which is the difference of the total travel time and other time components, as shown
in Equation (7).

τ S
r idinд(so , sd , t2) = τ

S
total (so , sd , t) − τ S

walkinд(so , t) − τ S
waitinд(so , t1) − τ S

walkinд(sd , t3); (7)
Summary. With the decomposition method, we infer the walking time and waiting time in subway stations, as
well as the riding time between subway stations. In the implementation, we find there are multiple entrances in
large stations, e.g., 12 entrances in Futian station which is adjacent to the city train station, and the walking time
difference among different entrances is not negligible. Fortunately, since there are always high traffic demands
in large stations, it provides enough observations in each entrance. On the other hand, different entrances can
be identified by the id of fare collection machine in the dataset. Therefore, we identify the large stations by a
threshold on the number of entrances, i.e., fare collection machines. Instead of modeling travel time in the station
level, we infer the walking time, riding time and waiting time on entrances in the large stations. When calculating
the average waiting time in the station or riding time between stations, we aggregate inferred time from multiple
entrances.

5.5 Measurement Method
Anomaly Measurement: We investigate the impact of an anomaly at location s and time t on a travel time
component τM

status (s, t) in multiple transportation systems in a city. With the anomaly measurement task, we
are able to study the impact of an anomaly event E on the travel time components in multiple transportation
systems at the city level. As a result, it enables us to compare the robustness of different transportation systems
under abnormal conditions at extreme fine-grained travel patterns, which hopefully will provide insights for
urban planning [3], navigation [18], travel planning [28] and anomaly detection systems [1].

Metrics: In addition to the direct comparison of travel time components, we use delay time in Equation (8) since
travel time components differ at different spatiotemporal dimensions, and the delay time is defined as the time
difference between the time that passengers spent under the impact of anomalies and the time that passengers
spent without anomalies.
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dM
status (s, t |E) = τ

M
status (s, t |E) − τM

status (s, t) (8)
System-level measurement. To understand the impact of anomalies, for every system, we study dM

status under
different types of anomalies with certain degrees. For an event Elevel

cateдory (s, t), we compare the anomaly events
with different category and study their impact on travel time in individual systems.

Inter-system comparison. To compare the robustness of different transportation systems under the impact of
anomalies, we study the impact of anomalies of the same category on different transportation systems.

6 MEASUREMENT RESULTS AND ANALYSIS
In this section, we first briefly evaluate our travel time decomposition methods with case studies since it is the
foundation of the anomaly measurement. Second, we study the fine-grained travel time patterns in the four
systems. Third, we investigate the impact of anomalies on the travel time by the delay time.
Since the riding time estimation is a statistical aggregation of observations and the waiting time is inferred

from the data, we validate the waiting time inference by case studies. We conduct case studies by videotaping
the passenger flow in both subway stations and bus stations to validate the τM

waitinд for both underground and
above-ground systems as shown in Fig. 11 and Fig. 12. We collect videos recording passengers’ waiting behaviors
in the subway stations and the bus stations in both peak hours (i.e., morning rush hours and evening rush hours)
and non-peak hours (i.e., regular time) in one week, which covers 1181 subway passengers and 677 bus passengers.
For the subway system, we count passengers’ waiting time by recording the time they arrive at the station and

Fig. 11. Subway Passenger Behavior Fig. 12. Bus Passenger Behavior

the time they get on the train. Due to the space limitation, we show the waiting time distribution during two
peak hours (08:30-09:30 and 17:30-18:30) and one regular time (13:30-14:30) in Futian subway station in Fig. 13,
Fig. 14, and Fig. 15, which cover the waiting behavior of 241 out of 1181 subway passengers in our dataset.

Fig. 13. Subway -Morning Peak Hour Fig. 14. Subway - Evening Peak Hour Fig. 15. Subway - Regular Time

Fig. 16 shows the inferred waiting time from subway transaction records. We first use a noise reduction by a
distance constraint between points to remove noises. Second, we divide the points into clusters by a clustering
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algorithm, e.g., DBSCAN. In the third step, we apply an in-cluster regression algorithm on the inferred waiting
time. We show the process in Fig. 17. We then compare the observations with the regression center at the same
time. The average root mean square error is 0.829 minutes in the case study, which shows the inference can
capture passengers’ waiting behaviors in the subway station. We use the waiting time in bus stations to validate

Fig. 16. Subway Inference Fig. 17. Subway Inference Regression

the aboveground waiting time inference. Fig. 18 to Fig. 20 shows the waiting time of 138 passengers in Futian bus
station in both peak hours and regular time. The waiting time distribution in the subway system is different from
that in the bus system, i.e., the waiting time is more regular in the subway system compared with the bus system.
The difference is caused by the waiting patterns and schedules of the two systems. In the subway system, subway
passengers wait for the same train while bus passengers wait for different buses. Therefore, the waiting time in
the subway system is linearly related with the time when the passengers start the waiting while the waiting
time in the bus system is additionally determined by a specific bus arrival time. Since the above-ground waiting
time inference estimates the upper bound of the waiting time in the bus system and the taxi system, we use
the precision score as the accuracy metrics. If the passengers’ waiting time is in the estimated bounds, the true
positive will increase by 1. In this way, the precision score is 96.8% for the bus system in the case study.

Fig. 18. Bus - Morning Peak Hour Fig. 19. Bus - Evening Peak Hour Fig. 20. Bus - Regular Time

6.1 Waiting Time Patterns
6.1.1 Above-ground System. Based on our waiting time inference of above-ground transportation systems, we
study the the waiting time of the three transportation systems, i.e., taxi, bus and subway. We compare the
aboveground waiting time distribution of weekdays and weekends in Fig. 21. Comparing the weekday pattern
with weekend pattern, we find that the main difference of waiting time is located at around 5pm, which is the
peak hour in the afternoon.
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Fig. 21. Aboveground Waiting Time Fig. 22. Underground Waiting Time

To study the difference in the spatial dimension, we visualize the waiting time distribution of the peak on the
spatial dimension in Fig. 23 and Fig. 24 for taxi systems. We find that the waiting time is longer in the downtown
area and the transportation junctions such as the airport and the train station. Similar pattern has been found in
the bus system as shown in Fig. 25 and Fig. 26. The waiting time is higher on peak hours in the weekdays in the
bus system and around 18.9% of the buses cannot follow the regular time table schedules.

Weekday – Taxi

Longer Waiting Time 
Downtown

Train Station
Airport

Fig. 23. Taxi Waiting - Weekdays

Weekend – Taxi

Longer Waiting Time 

Fig. 24. Taxi Waiting - Weekends

Longer Waiting Time 

Weekday - Bus

Fig. 25. Bus Waiting - Weekdays

Weekend - Bus

Longer Waiting Time 

Fig. 26. Bus Waiting - Weekends

6.1.2 Underground System. Fig. 22 compares waiting times on weekdays and weekends. On weekdays, the
waiting time is longer in non-peak hours during daytime and nights. However, in the two peak hours, the waiting
time is lower compared with non-peak time. The reason is that subway operators send more trains in the peak
hours, which decreases the time interval between two consecutive trains in a subway station. Besides, the waiting
time difference is small between weekdays and weekends during peak hours. The reason is that passengers in
peak hours are most commuters, who are sensitive with time. Those passengers take the train although the trains
are highly loaded. However, during the non-peak hours, since there are more passengers on weekdays, unlike
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commuters, those passengers prefer to wait for next available trains if the current one is highly loaded. Therefore,
it increases the waiting time compared with weekends.
Fig. 27 and Fig. 28 present the waiting time distribution on the spatial dimension. Although the spatial

distribution is similar between weekdays and weekends, we find higher waiting time in the downtown areas
during weekdays. Fig. 29 shows the weekly pattern of the waiting time distribution. Motivated by the cellphone

Weekdays – Subway

Longer Waiting Time 

Fig. 27. Subway Waiting - Weekdays

Weekend – Subway

Longer Waiting Time 

Fig. 28. Subway Waiting - Weekends

tower clustering by traffic patterns [25], we apply k-mean clustering on the normalized weekly patterns. According
to the tuning of parameters, the best k is 4. The result is shown in Fig. 30, in which each line indicates different
functions of regions where the stations locate.

Fig. 29. Subway Average Waiting Time Fig. 30. Subway Waiting Time Patterns

6.2 Riding Time Patterns
Since the three above-ground systems present very similar riding time patterns due to the shared road networks,
we present their average riding time distribution in Fig. 31. The riding time in the aboveground systems is inferred
by the average time that aboveground vehicles spend in passing a grid (50m × 50m). In weekdays, especially
during the peak hours, the riding time increases dramatically due to poor traffic conditions. Moreover, the peak
hours shift from 8am and 6pm on weekdays to 11am and 5pm in weekends, which are the time for lunch or
dinner. For the subway system, we find that the riding time on weekdays and weekends between the same origin
and destination stay almost unchanged. Therefore, we compare the riding time of individual passengers to study
their travel behaviors. Fig. 32 shows the cumulative distribution where passengers take much more riding time
during weekends. The reason is that a large portion of trips on weekdays are commuting between home, work
and central business areas. Since passengers live around their work locations, the home-work distance is not
far. In contrast, the trips during weekends are random trips, e.g., from home location to parks with families.
Therefore, the distances of trips during weekends are longer compared with those on weekdays.
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Fig. 31. Riding - Above Fig. 32. Riding - Subway

6.3 Impact of Anomalies
Wemeasure the overall impact of anomalies on the travel time components in the four transportation systems. We
show the cumulative distribution of delay waiting time under the impact of two categories of anomalies in Fig. 33,
Fig. 34 and Fig. 35. In general, the unexpected anomalies have a larger impact on the travel time components
compared with the expected anomalies. Compared with the bus and taxi system, the subway system has lower
delay time in expected anomalies but higher delay time in unexpected anomalies. The reason is that unexpected
anomalies cause a large impact on the subway operation (e.g., closing subway lines or changing the schedule of
subway trains).

The taxi system shows higher delay time in expected events compared with the bus system. In the analysis, we
find that in expected anomalies, such as concerts, the increase of travel demand increases the waiting time. In the
bus waiting time inference, we assume that buses accommodate all passengers. Therefore, the taxi delay time is
caused by traffic delay and the availability of taxis while the bus delay time is caused by the traffic conditions. In
terms of unexpected events, i.e., accidents, the taxi systems show a lower waiting time increase. One reason is
that taxis are more agile with poor road conditions.

Fig. 33. Taxi Waiting Fig. 34. Bus Waiting Fig. 35. Subway Waiting

We show the cumulative distribution of delay riding time under the impact of two categories of anomalies
in Fig. 36, Fig. 37 and Fig. 38. We ignore the riding time analysis for the subway system since we find that
the riding time is rarely affected by anomalies inside or close to the subway stations. As shown in Fig. 9, to
capture the travel delay caused by the detours in the anomalies, we compare the travel time of eight directions
of traffic flows between the normal cases and anomalies. Since the three above-ground systems share the same
road infrastructures, the riding time changes are similar in the three transportation systems. Among the three
transportation systems, the taxi system is most stable and the bus system is the least stable in terms of anomalies.
The possible reason is that taxis choose detours while buses have a constant route, which may cover the regions
where accidents happen. Compared with personal car drivers, the taxi drivers are more experienced. This leads
to a lower delay in riding time in the taxi system.
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Fig. 36. Taxi Riding Fig. 37. Bus Riding Fig. 38. PV Riding

7 APPLICATION: DELAY TIME PREDICTION

Anomaly – t0 Anomaly – ti

A

B B

A

Regular – tn

A

B

Fig. 39. Delay Time Prediction

In this section, we use the measurement results to predict delay time in anomalies. As shown in Fig. 39, given
an observation that an anomaly Elevel

cateдory (s, t0) happens at location s and time t0, our target is to predict the
delay time in the following n time slots {d(s, t0), d(s, t1), · · · , d(s, tn−1)} for a travel time component τ .

Population 

Delay TimeSpatial Information

PoIs

Road Types 
LSTM LSTM LSTM

Anomaly

Category Embed

Level Embed

Locations

Concat

Concat

Normalization

LSTM LSTM LSTM

copy

Encoding

Decoding

Future Delay Time

Fig. 40. Prediction Framework

7.1 Prediction Framework
As shown in Fig. 40, the prediction framework consists of three components: (i) an anomaly information feeder to
feed anomaly features, (ii) a spatial information feeder to feed spatial features, and (iii) a long short-term memory
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(LSTM) learning model that takes a sequence of delay time after the anomaly and predicts the future delay time.
We describe the details of each component as follows.

(i) Anomaly Information. In the measurement study, we find that the impact of anomaly events differs
with categories and levels at different time. Therefore, we use three features of the anomalies in our prediction
including anomaly category, level and time. Since the three features are all categorical features, which cannot
be directly used as the input for the learning model, we add an embedding layer before feeding them into the
learning model.
(ii) Spatial Information. Figs. 23-26 have shown that the spatial dimension influences the travel time

components significantly. We use different features related to the locations where the anomaly happens. Besides
the geographic value of the location, the spatial features include population, PoIs (i.e., point of interests), and
road types. The population information is extracted from the Worldpop data set [19], which provides population

Fig. 41. Population Distribution Fig. 42. Road Network

Fig. 43. PoI Distribution

Higher Level

Fig. 44. Anomaly Distribution

distribution with high resolution, i.e., 100m × 100m. We map the population under the preset partition to our
partition based on the intersection area of the two partitions [2]. We access the road networks and PoIs from an
online service provider OpenStreetMap [6]. We categorize roads into four classes, i.e., main roads, secondary roads,
path and highway, and the PoIs into five groups, i.e., educational, residential, office, recreation and transport,
based on the labels in OpenStreetMap. We use the distribution of PoIs and road segments in regions as spatial
features. We visualize the population distribution in Fig. 41 , the road network in Fig. 42, the PoI distribution in
Fig. 43, and the anomaly distribution in Fig. 44. We find higher population on road segments and more PoIs in the
central business district, i.e., the middle bottom area on the map, compared with other areas. The distribution of
spatial contextual information, i.e., population, roads and PoIs , shows a positive correlation with the occurrence
of anomalies on the spatial dimension. To reduce the impact of data scales, we apply minmax scaler on the
numerical values of all regions for normalization.
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We describe the functions of units in Equation 4.

gt = f(WgxXt +Wghht�1 +bg)

it = s(WixXt +Wihht�1 +bi)

ft = s(Wf xXt +Wf hht�1 +b f )

ot = s(WoxXt +Wohht�1 +bo)

st = gt � it + st�1 � ft
ht = f(st)�ot

(4)

In equations 4, (i) gt is the input node at time t, which takes
activation in the standard way from the input layer xt and
previous hidden layer ht�1; (ii) it is the input gate, similar to
gt , which takes the input xt and ht�1 with a sigmoid activa-
tion; (iii) st is a self-connected internal state with a fix unit
weight, which is designed to solve the vanishing or explod-
ing problem; (iv) ft is the forget gate and used to flush the
internal state; (v) ot is the output gate.
Multimodal LSTM: A Multimodal LSTM is designed to
integrate multiple data sources with different weights of data
sources. The previous work [28] has shown the multimodal
model outperforms single modal model in computer vision
and natural language processing to recognize audio data with
image data in videos. The memory cell unit of Multimodal
LSTM is shown in Figure 11.

Fig 11. Multi-modal LSTM Memory Cell

The model can be described in equations 5 where k indi-
cates the modality and |K| is the total number of modalities.

gk
t = f(W k

gxXs
t +Wghhk

t�1 +bk
g)

ikt = s(W k
ixXk

t +Wihhk
t�1 +bk

i )

f k
t = s(W k

f xXk
t +Wf hhk

t�1 +bk
f )

ok
t = s(W k

oxXk
t +Wohhk

t�1 +bk
o)

sk
t = gk

t � ikt + sk
t�1 � f k

t

hk
t = f(st)

k �ok
t

k = 1,2, · · · , |K|

(5)

In this work, instead of merging heterogeneous data in the
preprocessing step, our prediction model shares weights
across different modalities (data sources) during the forward
pass in the training process but does not share memory u-
nit [25]. In Equation 5, Wgh , Wih, Wf h and Woh are hidden

layers’ weights in the forward pass. Where gives the feature
of sharing weights across modalities. Instead, every modali-
ty keeps the memory unit hk

t1 in the forward pass. Therefore,
it has features to share weight but not memory unit in the
forward pass.

Fig 12. Prediction Framework
As in Figure 12, our prediction framework takes different

mobility tensors (i.e., historical individual, historical class,
and historical global tensors) to learn the mobility pattern
and predict future trips for individuals by a multimodal LST-
M model. In this work, we utilize four major inputs, i.e., in-
dividual, class and global tensors, along with the open street
map road network data (i.e., I1 to I4) to provides context in-
formation for prediction; we use predicted future mobility
tensors for individual drivers as the output of our model s-
ince these mobility tensors (e.g., frequency, distance, time,
speed, route) can be used to quantify vehicle usage. We per-
form prediction by different temporal units, e.g., different
slots. Based on the above LSTM framework and different
tensor inputs in our modeling, this prediction framework is
flexible to work in different settings.

• LSTM-I with individual mobility tensors without
context-aware tensor decomposition;

• LSTM-G with individual mobility tensors and using
Global tensors for context-aware tensor decomposition
to address the individual tensor sparsity issue.

• LSTM-C with individual mobility tensors and using
Class tensors for context-aware tensor decomposition
to address the individual tensor sparsity issue.

We evaluate all of them in the evaluation section.

7 Evaluation
We introduce our trace-driven evaluation for VeMoC in

terms of methodology and results as follows.

7.1 Methodology
(i) Ground Truths: We utilize two kinds of vehicle data as
shown in Fig. 6, which contain nationwide long-term per-
sonal vehicle and commercial GPS data for evaluation, due
to their different mobility patterns shown in the motivation
section. The personal vehicle dataset has GPS data from 295
thousand vehicles; the commercial vehicle dataset has GPS
data from 45 thousand vehicles. Both commercial data and
personal data contain exact time and location of the vehicles
and a tracking device ID to identify each vehicle.
(ii) Training Data: Ground truth datasets are used for both
training and temporal cross validation. Besides, we intro-
duce Open Street Map road network data in the training pro-

8

Fig. 45. Prediction Framework

(iii) Delay Time Learning. Due to the spatial-temporal nature of human mobility, the delay time distribution
presents a high correlation with the spatial and temporal information. Recurrent Neural Network (RNN) is
especially suitable to capture the temporal and spatial evolution of human moving and delay evolution after
anomalies. Compared with a regression model, which restricts a constant relation between input and output, e.g.,
a polynomial relation, RNN presents higher flexibility on hidden relations. Besides, the configuration flexibility
makes it suitable to integrate spatial and temporal dependency. However, previous studies [21] have shown
that traditional RNNs fail to capture the long temporal dependency for the input sequence due to the vanishing
gradient and exploding gradient problems. To address these drawbacks, Long Short-Term Memory (LSTM) is
a special RNN architecture for sequence labeling and prediction tasks [21]. Therefore, we apply a time series
learning LSTM model combined with spatial information and anomaly information to capture the delay time
dynamics.
Fig. 45 illustrates the internal structure of LSTM cell, which consists of three gates, дt is the input node at

time t , which takes activation in the standard way from the input layer xt and previous hidden layer ht−1; it is
the input gate, similar to дt , which takes the input xt and ht−1 with a sigmoid activation; st is a self-connected
internal state with a fix unit weight, which is designed to solve the vanishing or exploding problem; ft is the
forget gate and used to flush the internal state; ot is the output gate.

In our learning model, we construct a two-layer LSTM model including an encoding layer and decoding layer.
The encoding layer takes two inputs (dM

status (s, tk ),o f f set), the delay time and the offset of anomaly time, which
is defined as tk − tE where tE is the time when an anomaly happens.
Since we use sigmoid as activation function, the encoding layer captures the inter-dependency of delay and

normalizes the output to a value between 0 and 1. In the decoding layer, we take the spatial information, anomaly
information and the delay time inter-dependency as input. We apply a LSTM layer to predict the future delay time.
The decoding layer is designed to capture the inter-dependency between delay time and external information,
i.e., the anomaly type and the spatial information.

7.2 Evaluation Methodology
7.2.1 Learning Data. We build the learning model upon the dataset in our measurement study. The learning
dataset includes four transportation systems, i.e., subway system, taxi system, bus system and private car system,
which cover passengers’ major modalities in a city. Each record in the dataset includes the following attributes:
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location, time slot, waiting time,riding time, transportation system, and anomaly. We store the data in a relational
database and build index on location, time slot, transportation system to construct travel time component tensors
for efficient queries.

7.2.2 Cross Validation. We apply a 5-fold cross-validation, in each round, we use 1-fold as testing data. We
train the models with different travel time components in multiple transportation systems. Specifically, when
estimating delay time dtaxiwait inд , which is the delay waiting time in the taxi system, we train the model with
historical dtaxiwait inд .

7.2.3 Metrics. We compare the predicted result d̂ with the testing data d̄ in terms of the delay time by Mean
Absolute Percent Error (MAPE) defined in Equation 9.

MAPE =
100
n

n∑
i=1

|d̂i − d̄i |

d̄i
(9)

7.2.4 Baseline Approaches. We compare our model with three baseline methods.
• ARIMA: ARIMA is autoregressive integrate moving average model, which is a time series model to predict
future points in the series. ARIMA model takes the delay time from previous n time slots as input and
the delay time in the following time slot as the prediction target. To improve the prediction accuracy and
reduce the noises introduced by anomaly types, we separate the data into groups by anomaly levels and
categories and train a regression model on each data group. The external information, such as population
and road networks, is not available in this prediction model [35].

• MLE:We implement the state-of-the-art model of travel time estimation [31], in which we fit a multinormal
distribution in the anomaly area and surrounding regions. We set the delay time with different traveling
paths as observations and maximize the likelihood of the estimated delay time based on the observations.
We apply the Expectation-Maximization (EM) algorithm for the model convergence. The MLE model is
implemented in different anomaly categories and levels.

• MAC-:We train three LSTMmodels: (i) a LSTMmodel without spatial information and anomaly information,
(ii) a LSTM model with spatial information but without anomaly information, and (iii) a LSTM model with
anomaly information but without spatial information. We integrate the three models and adopt the best
performance as the output of MAC-.

7.2.5 Implementation. We implement our prediction model on travel time components inferred from the four
transportation systems. Our model and baseline models are implemented with Keras and Tensorflow libraries.
We train and evaluate our design on a server with 8 Nvidia K40C GPUs. We set the learning rate as 0.01. For each
LSTM layer, we set the number of cells as 60 and initialize the LSTM parameter with random values between
-0.01 to 0.01.

7.3 Evaluation Results
7.3.1 Performance. We predict the waiting delay and riding delay after an anomaly in the four transportation
systems. Fig. 46 presents the performance of riding delay prediction after the anomaly for one-hour period. The
MLE is a fitting model with historical delay time. However, different from travel time estimation, which shows
regularity in the historical data, even though we categorize anomalies into different categories and levels and
implement the model in a specific category and level, the delay time shows a high variance in anomalies. As
a result, the delay time estimation depends on the time series features and time series models achieve better
performance compared with the state-of-the-art travel time estimation model. The three time series models
show similar performance trends in terms of time, where all models achieve the worse performance in the first
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5 minutes. This is caused by two factors: (i) the uncertainty of the location, the level of the anomaly and the
traffic condition, and (ii) the sparse after-anomaly observations as prediction features since ARIMA and MAC-
take the previous delay time as input features for the prediction. After a half hour of an anomaly happened,
the performances of the learning-based time series model become stable. Compared with the two baselines, our
model achieves better performance in terms of the prediction accuracy and stability. The performance of the
learning model on waiting delay prediction is given in Fig. 47, which shows similar results as the riding time
estimation. However, the waiting time estimation error is larger compared with riding time.

Fig. 46. Riding Delay Fig. 47. Waiting Delay Fig. 48. Systems Fig. 49. Anomalies

7.3.2 Impact of Factors. We further investigate the impact of two factors on the prediction performance, i.e., the
transportation systems and anomaly categories. Fig. 48 shows the performance distribution on the testing data.
The box plot shows the minimum, first quarter, medium, third quarter and maximum of the distribution, which
are used to present the average and the variance of the distribution. Even the subway system is the most stable
in terms of travel time compared with above-ground systems in normal cases, among the four transportation
systems, our algorithm has the lowest prediction error in the taxi system and the highest prediction error in
the subway system. This is due to the anomalies in the subway system cause large-scale changes of traffic flow,
especially the unexpected anomalies, which is difficult to be captured by limited observations. Comparing the
three above-ground systems, we find that our algorithm achieves the best performance in the taxi system and
it has the worst performance in the bus system. The reason is that the delay time of taxis is aggregated from
vehicles, where much more taxis serve as travel time sensors, providing accurate observations as training features.
Instead, since only riding time is predicted in private vehicles, the prediction error is the smallest in private
vehicles among all above-ground systems.

8 DISCUSSIONS
Lessons learned: Based on the measurement results, we summarize a few lessons learned as follows. (i) Dividing
travel time into fine-grained components helps us understand the impact of various factors on different parts of
travel time, specifically urban anomalies. (ii) Compared with above-ground transportation systems, the anomalies
have a larger impact on underground systems, i.e., subway systems, although underground systems are not
affected by above-ground traffic condition. (iii) Unexpected anomalies have a larger impact on riding time and
waiting time in all transportation systems compared with expected anomalies. (vi) While it is challenging to
model and predict human mobility in terms of fine-grained travel time, spatial related contexts show strong
correlations with human mobility and can improve the predictability significantly.
Generalization: We design, evaluate and implement the system in the Chinese city Shenzhen. Without access
to the data in other cities, we cannot verify the effectiveness of our system in other cities. In particular, cities
outside China have different policies for data releasing, which creates barriers to generalize our system in those
cities with 4 transportation systems. However, since existing works have shown the accessibility to city-scale
dataset in a single system such as London subway system [9], Beijing [26] and NYC [36] taxi system, Singapore
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bus system [39], we believe the analysis method and prediction model can be generalized to other cities with
similar spatio-temporal features. Moreover, our analysis about the impact of anomalies on different transportation
modalities can be referred by city administrators and urban planners to better manage the city transportation.
For the benefits of IMWUT community and peer researchers, we negotiate with the data provider and agree to
release our sample dataset including one day of taxi GPS data, one day of subway smart card transaction records
and one day of bus GPS records. Since private vehicle dataset contains personal information and is not a major
design in our analysis, we will not release the private vehicle dataset.
Privacy Protections: While modeling the travel delay is important for individuals, we have to protect the
privacy of participants involved. In this project, all data analyzed is anonymized by the collaborators, so data
cannot be used to trace back to individual users explicitly. We only store and process data that is useful for the
travel time modeling project, and exclude other information for the minimal exposure. All data are collected
legally under the consent of the users.
Potential Societal Impacts: In the case study, we have shown that our measurement result could be utilized to
predict the delay time when anomalies occur in a city. Our study can be applied to more potential applications
with better societal impacts. (i) One application could be heterogeneous travel modes. Generally, people only take
one mode of transportation towards their destinations if they do not have to transfer. Through understanding
the travel delay in each area, people may be able to choose multiple transportation modes to their destinations
depending on what kind of mode combinations achieve the minimum travel time. (ii) Another application could
be the arrangement of public transportation. The travel delay of each transportation mode implies the balance of
demand and supply in the area. Administrators can rearrange the existing transportation supply (e.g., increasing
more buses in some lines) or guide the transportation setting (e.g., guiding the bus or subway line construction in
the future).

9 CONCLUSION
In this work, we study the fine-grained travel time distribution in four transportation systems, which covers
10 million passengers in the Chinese city Shenzhen. In particular, we investigate the impact of anomalies on
the travel time components in terms of expected anomalies and unexpected anomalies. Finally, we design a
context-aware learning model to predict the fine-grained travel time under the impact of anomalies. Based on
the above efforts, we provide a few valuable insights for fellow researchers to understand urban-scale human
mobility with fine-grained travel behaviors. More importantly, our results have the potential to help the city
government to manage urban traffic given expected anomalies and unexpected anomalies, which significantly
improves urban efficiency and resilience.
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