
6

Last-Mile Transit Service with Urban Infrastructure Data

DESHENG ZHANG, University of Minnesota
JUANJUAN ZHAO and FAN ZHANG, Shenzhen Institutes of Advanced Technology, China
RUOBING JIANG, Shanghai JiaoTong University, China
TIAN HE and NIKOS PAPANIKOLOPOULOS, University of Minnesota

In this article, we propose a transit service Feeder to tackle the last-mile problem, that is, passengers’
destinations lay beyond a walking distance from a public transit station. Feeder utilizes ridesharing-based
vehicles (e.g., minibus) to deliver passengers from existing transit stations to selected stops closer to their
destinations. We infer real-time passenger demand (e.g., exiting stations and times) for Feeder design by
utilizing extreme-scale urban infrastructures, which consist of 10 million cellphones, 27 thousand vehicles,
and 17 thousand smartcard readers for 16 million smartcards in a Chinese city, Shenzhen. Regarding these
numerous devices as pervasive sensors, we mine both online and offline data for a two-end Feeder service: a
back-end Feeder server to calculate service schedules and front-end customized Feeder devices in vehicles for
real-time schedule downloading. We implement Feeder using a fleet of vehicles with customized hardware
in a subway station of Shenzhen by collecting data for 30 days. The evaluation results show that compared
to the ground truth, Feeder reduces last-mile distances by 68% and travel time by 56%, on average.

Categories and Subject Descriptors: H.4 [Information System Application]: Miscellaneous

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Taxicab carpool, graph theory, mobile applications

ACM Reference Format:
Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, Tian He, and Nikos Papanikolopoulos. 2016.
Last-mile transit service with urban infrastructure data. ACM Trans. Cyber-Phys. Syst. 1, 2, Article 6
(November 2016), 26 pages.
DOI: http://dx.doi.org/10.1145/2823326

1. INTRODUCTION

Pubic transit contributes significantly to reduction of travel delay and gas consump-
tion [Ferris et al. 2010], for example, in 2013, public transit reduced 865 million hours
of travel delay and 450 million gallons of gas in U.S., achieving a saving of $142 billion
congestion cost [American Public Transportation Association 2010]. However, public
transit (e.g., train or subway) typically stops only every mile on average to maintain a
high speed, which means that most of an urban area is beyond an easy walking distance
from a transit station, as shown by our large-scale empirical analysis in Section 2. This

This work was supported in part by the US NSF Grants CNS-1544887 and CNS-1446640 and China 973
Program 2015CB352400. A preliminary work has been presented in ACM IPSN 2015 [Zhang et al. 2015].
Authors’ addresses: D. Zhang, Department of Computer Science, Rutgers University, 110 Frelinghuysen
Road, Piscataway, NJ 08854; email: dz220@cs.rutgers.edu; J. Zhao and F. Zhang, Shenzhen Institutes of
Advanced Technology, China, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China;
emails: {jj.zhao, zhangfan}@siat.ac.cn; R. Jiang, Department of Computer Science and Engineering, Shanghai
Jiaotong University, 800 Dongchuan Rd, Minhang, Shanghai, China, 200240; email: likeice@sjtu.edu.cn;
T. He and N. Papanikolopoulos, Department of Computer Science and Engineering, University of Minnesota,
200 Union Street SE, Minneapolis, MN 55455; emails: {tianhe, npapas}@cs.umn.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2378-962X/2016/11-ART6 $15.00
DOI: http://dx.doi.org/10.1145/2823326

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

http://dx.doi.org/10.1145/2823326
http://dx.doi.org/10.1145/2823326

6:2 D. Zhang et al.

issue is known as “the last-mile problem,” which is a key barrier to better public-transit
utilization [Wikipedia 2015].

In this article, we propose a real-time transit service, called Feeder, which utilizes
ridesharing-based vehicles (e.g., minibuses) to deliver passengers from their exiting
transit stations to nearby dropoff locations called service stops, thus reducing walking
distances to their destinations. Although Feeder is conceptually applicable to all public
transit, we focus on the design for subway and train networks where the last-mile
problem is more serious. We envision that Feeder is operated by a city transit author-
ity with following distinctive features: differing from bike systems, Feeder uses only
flexible vehicles without high costs for fixed docking infrastructures or extra efforts
to carry or park bikes; differing from taxicabs, a passenger in Feeder pays a much
lower flat fare and also travels more environmental friendly due to a large number of
co-riders; and, differing from regular bus services, Feeder is tailored for last-mile trips
with a ring route starting from a high-demand station, featuring dynamic departure
times and data-driven stops.

In Feeder, a passenger is mainly engaged in three phases: (i) wait for a Feeder vehicle
to depart; (ii) ride the vehicle to a service stop; (iii) walk the “last-mile” to destinations.
Therefore, Feeder has the three objectives to enhance passenger experience on wait-
ing, riding and walking. (i) Minimizing Passenger Wait Time: This objective would be
easily achieved by optimizing vehicle departure times if passengers can provide where
and when they will exit upstream transit (e.g., an exiting time in a subway station).
However, in the real world, passengers normally do not know future exiting times
in advance. (ii) Minimizing Passenger Riding Time: This objective would also be eas-
ily achieved by optimizing vehicle routes based on real-time urban traffic, if we have
a real-time sensor network for traffic detection at urban scale. But the traffic speed
sensors, for example, loop sensors, are only installed at major intersections in most
cities. (iii) Minimizing Passenger Walking Distance: This objective would be achieved
naturally by optimizing service stop locations if passengers are willing to provide fine-
grained destinations (e.g., a home address). However, passengers may be reluctant to
provide such information due to extra efforts or privacy concerns. As a result, we face
an essential challenge to infer detailed passenger last-mile transit demand (i.e., exiting
stations, times and fine-grained destinations) for Feeder optimizations without active
contributions from passengers or dedicated urban infrastructures.

To address this challenge, we employ existing extreme-scale urban infrastructures
to infer last-mile transit demand and traffic speeds, transparently to passengers. In
particular, we utilize various devices that generate passengers’ location data (e.g.,
cellphones and smartcard readers) in existing infrastructures in order to infer real-
time passenger exiting times and station as well as destinations for Feeder. Further,
we use Global Positioning System (GPS)-equipped vehicle networks, for example, taxi
and bus, to infer real-time traffic speeds to design optimal routes for Feeder vehicles.
As a result, the key novelty of our Feeder service is that it is a completely transparent,
automatic, and data-driven solution yet with neither marginal costs for deploying an
ad hoc demand-collecting system nor extra effort from the passenger side.

Conceptually, our core method provides a new possibility of using heterogenous data
from existing urban infrastructures to improve urban efficiency, as opposed to previ-
ous monolithic and closed ad hoc systems. As a real-world effort, we implement this
method by integrating streaming data from four infrastructures in Shenzhen, China:
(i) a 10.4 million user cellular network; (ii) a 14 thousand taxicab network; (iii) a 13
thousand bus network; and (iv) an automatic fare collection system for a public transit
network (i.e., subway and bus) with 16 million smartcards. We establish near-real-
time access to the above data sources for online analyses. Further, we store 400 million
cellphone records, 32 billion GPS records, and 6 billion smartcard records for offline
analyses. The key contributions of the article are as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:3

Fig. 1. Last-mile in XD. Fig. 2. Length in XD. Fig. 3. Last-mile trips. Fig. 4. All trip lengths.

—We utilize various infrastructures to infer passenger last-mile demand in real time.
To our knowledge, the utilized data have by far the highest standard for urban study
in two aspects: (i) the most complete data including cellular, taxicab, bus, and subway
data for the same city and (ii) the largest passenger coverage (i.e., 95% of 11 million
permanent residents in Shenzhen). The sample data are given in dat [dat].

—We conduct the first work to design a real-time data-driven service Feeder for the
last-mile problem by a two-end solution. For the back end, we propose and implement
a cloud server (called the Feeder server). It provides an online data fusion based on
integrated heterogenous data for three key components: (i) a departure time compu-
tation to minimize wait times based on straightforward yet efficient smartcard data
processing, (ii) a service stop selection to minimize last-mile walking distances based
on cellphone and taxi data, (iii) an online route calculation with a 3

2 approximation
algorithm to obtain a route to connect the stops. For the front end, we customize and
deploy a piece of hardware (called the Feeder device) as an onboard device to down-
load departure times and upload status from/to the Feeder server in real time. Feeder
spans the entire life cycle of data-driven application design, starting from hardware
design and through data collection, cleaning, offline analysis, online processing, and
real-world utilization to field evaluation.

—We implement Feeder in Shenzhen for a field study to test its real-world perfor-
mance. We rent three cars installed with our hardware in a subway station where
12 passengers were picked up every morning from the station to their workplaces for
30 days.

—We test Feeder by a comprehensive evaluation with 4TB Shenzhen data. The re-
sults show that Feeder reduces last-mile distances by 68% and travel times by 56%
compared to the ground truth.

We organize the article as follows. Section 2 gives our motivation. Section 3 presents
an overview. Section 4 describes the front-end devices. Sections 5, 6, and 7 depict the
back-end server. Sections 9 and 10 validate Feeder with a real-world test and a large-
scale evaluation. Section 11 discusses real-world issues, followed by the related work
and the conclusion in Sections 12 and 13.

2. MOTIVATION FOR LAST-MILE TRANSIT

To justify our motivation, we explore both severity and ubiquity of last-mile trips by
answering two questions: How long is a typical last-mile trip, and how frequently do
last-mile trips occur among all trips, based on datasets we have collected? The details
of the data are given in Section 5.

In Figure 1, we show last-mile trip lengths between a subway station XingDong in
Shenzhen and inferred passenger destinations closer to it than other stations. The
average length is given in Figure 2. The average distance (1.4km) is longer than the
distance that passengers are willing to walk [Dittmar and Ohland 2004], that is, 400
to 800m.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:4 D. Zhang et al.

Fig. 5. Feeder operational scenario.

In Figure 3, we plot the proportion of lengths from all inferred destinations to their
closest stations, that is, last-mile trips. In a log-log scale, a point, for example, (1.6km,
0.3%), indicates the last-mile trips with a length from 1.59km to 1.6km account for
0.3% of all last-mile trips we studied. The first part of the distribution follows an
uniform distribution (i.e., the horizontal line), and the second part follows a power-
law distribution (i.e., the big tail). Interestingly, the boundary is around 1.6km. It
reveals that the lengths of last-mile trips are uniformly distributed within the one-
mile boundary, while outside this boundary, the longer the trip, the less frequently it
occurs. Thus, we confirm the severity of the trips within the one-mile boundary.

We study the frequency of last-mile trips among all trips. Because last-mile trips
are usually finished by walking, they are more likely to be captured by cellphone data,
instead of transit data (including taxicab, bus, and subway). In Figure 4, we study the
CDF of the lengths of trips captured by cellphone and transit data. We found that 63%
of trips captured by cellphone data are shorter than 1.6km, while only 12% of trips
captured by transit data are shorter than 1.6km (most of them are taxicabs). Since
cellphone trips can be seen as proxies for all trips, we confirm the ubiquity of last-mile
trips by showing that they (i.e., the trips shorter than 1.6km) have a high frequency
of 63% among all trips. We also verify that passengers normally do not use existing
transit for last-mile trips since they only account for 12% of all transit trips.

3. FEEDER SERVICE OVERVIEW

We first present an operational scenario for Feeder based on Figure 5. Without the
Feeder service, a passenger would (i) enter public transit at an entering station, (ii) exit
public transit at an exit station, and (iii) walk to his/her final destination. Thus, the
last-mile walking distance is from the exiting station to the destination.

In this work, we envision that each of major transit stations has a Feeder terminal
where a Feeder service is operated individually. Therefore, with Feeder, a passenger
would (i) get on a Feeder vehicle at his/her exiting station (which is also a terminal
of a Feeder service); (ii) wait for this Feeder vehicle to leave the terminal based on a
departure time, which is optimally calculated according to inferred passenger exiting
stations and times; (iii) get off this Feeder vehicle at one of service stops on the service
route, which are optimally selected by Feeder according to inferred fine-grained desti-
nations and real-time traffic information; and (iv) walk to the final destination. Thus,
with Feeder, the walking distance is reduced to the distance from the Feeder-service
stop to the destination.

Based on the above scenario, three key design challenges for a Feeder service are
(i) how to infer exiting stations and exiting times for transit passengers in order to
optimize vehicle departure times, (ii) how to infer fine-grained destinations in order to
optimize service stop locations, and (iii) how to infer real-time traffic information order
to optimize routes to link different stops. These challenges are solved in the following
framework, which consists of three key components as in Figure 6.

Urban Infrastructures. These include cellular, taxicab, bus, and subway net-
works, playing an important role in our Feeder design. We collaborate with several
service providers and government agencies to establish the real-time access from

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:5

Fig. 6. Feeder system framework.

Fig. 7. Feeder device design and deployment.

infrastructure data sources to our Feeder server. Thus, we enable a complete rendering
about dynamics in last-mile transit demand for passengers in different categories, for
example, cellphone, taxicab, bus, and subway users, which almost cover all residents
in urban areas.

Back-End Feeder Server. A Feeder server is located at a dispatching center to
receive and process real-time data from urban infrastructures. Its functions include
(i) Data Management (introduced in Section 5): integrating heterogenous data (i.e.,
cellphone, taxicab, bus, and smartcard data) for real-time last-mile transit demand
mining, that is, passenger exiting stations and times as well as destinations; (ii) De-
parture Time Calculation (introduced in Section 6): calculating effective departure
times online based on mined passenger exiting stations and times to minimize passen-
ger wait times; (iii) Stop Location Selection (introduced in Section 7): selecting efficient
stops offline based on mined destinations to minimize last-mile walking distances;
and (iv) Service Route Computation (introduced in Section 8): selecting efficient route
online based on real-time traffic information minimize riding times.

Front-End Feeder Device. A Feeder device is a customized device installed on a
Feeder vehicle. It senses and uploads physical and logical status of each Feeder vehicle
(e.g., locations and numbers of onboard passengers), as well as downloads departure
times and stop locations to/from the Feeder server. These functions are performed by
the three subsystems of a Feeder vehicle as introduced in Section 4.

4. FEEDER DEVICE DESIGN

In our project [Zhang et al. 2013], we develop a prototype for front-end data trans-
mission to support functions in Feeder. Figure 7 gives a Feeder device’s real-world
deployment, including three subsystems: (i) an external device system with a GPS
module, a Code Division Multiple Access (CDMA) 1 X module, and an emergency

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:6 D. Zhang et al.

button; (ii) a sensing system with a camera, a Microphone (MIC) attached to a display,
and a ±2g triaxial acceleration sensor; (iii) a central control system with a TPS54160
power module and a STM32F103 Central processing unit (CPU) module. Based on
these subsystems, we discuss the capability of a Feeder device as follows.

By Feeder devices, a Feeder server shall be fully aware of Feeder vehicles’ physical
status, for example, locations. Thus, in this design, every Feeder vehicle periodically
senses and uploads its physical status to the server. The logical status, that is, numbers
of onboard passengers, is also important to the Feeder service, because it affects depar-
ture times. We envision that drivers or fare collecting devices will track the number of
onboard passengers and thus change logical status to inform the server.

A Feeder device shall have an efficient communication module for uploading and
downloading to/from the Feeder server. In the most existing vehicular networks (e.g.,
Shenzhen taxicab networks), General Packet Radio Service (GPRS) is typically used
for the communication between vehicles and a dispatching center. But in our Feeder
service, departure times and stops have to be sent to Feeder vehicles on time, and
vehicle status is also needed to be uploaded to the Feeder server in a timely manner.
Thus, we employ a CDMA 1X module utilizing separate channels, instead of Global
System for Mobile Communications, for better performance.

To summarize, the proposed Feeder device is capable of sensing detailed vehicle sta-
tus and efficiently communicating with the back-end Feeder server, therefore providing
a comprehensive front-end support for the Feeder service.

5. FEEDER SERVER: DATA MANAGEMENT

In this section, we first present data input in Section 5.1 and then discuss our data
cleaning in Section 5.2 and, finally, describe our data fusion in Section 5.3.

5.1. Data Input

We have been collaborating with Shenzhen service providers and government agencies
for access to infrastructures. Conceptually, we use four kinds of devices as sensors to
sense real-world passenger demand in this version of reference implementation.

—Cellphones as Sensors are used to detect cellphone users’ locations at cell-tower
levels based on call detail records.

—Taxicabs as Sensors are used to detect taxicab passengers’ locations based on
taxicab status (i.e., GPS and occupancy). The locations obtained by taxicab data
have a higher spatial accuracy than cellphone data and thus provide a complimentary
view, since the taxicab dropoff locations are normally the locations where passengers
want to get off.

—Buses as Sensors are used to detect bus passengers’ locations by cross-referencing
data of onboard smartcard readers for fare payments.

—Smartcard Readers as Sensors are used to detect a total of 16 million smartcards
used by passengers to pay bus and subway fares. These reader sensors capture
10 million rides and 6 million passengers per day. There are two kinds of reader
sensors: (i) a total of 14,270 onboard mobile reader sensors in 13 thousand buses
capturing 168 thousand bus passengers per hour, and (ii) a total of 2,570 fixed reader
sensors in 127 subway stations capturing 60 thousand subway passengers per hour.

We establish a secure and reliable transmission mechanism, which feeds our server the
above sensor data collected by Shenzhen Transport Committee and service providers
by a wired connection without impacting the original data sources. Since these data are
already being collected to help service providers operate their services, our large-scale
sensor data collection incurs little marginal cost.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:7

Fig. 8. Streaming datasets from urban infrastructures.

To enable a comprehensive offline analysis, we have stored a large amount of stream-
ing data as in Figure 8. Such a big amount of data requires significant efforts for the
efficient storage and management. We utilize a 34TB Hadoop Distributed File System
(HDFS) on a cluster consisting of 11 nodes, each of which is equipped with 32 cores
and 32GB RAM. For daily management, we use several MapReduce-based tools, such
as Pig and Hive.

5.2. Data Cleaning

Due to the extremely large size of our data, we found three main kinds of errant data.
(i) Data with Logical Errors: For example, GPS coordinates show that a vehicle is
far from its previous locations. Such data with logical errors are detected later when
we analyze the data. To detect these errors, we utilize a digital map of Shenzhen
to verify if a GPS location is plausible. This is performed by checking the previous
location and the duration between the timestamps of these two records. (ii) Duplicated
Data: For example, the smartcard datasets show two identical records for the same
smartcard. Such duplicated data are detected by comparing the timestamp of every
record belonging to the same data source, for example, the same smartcard. (iii) Missing
Data: For example, a taxicab’s GPS data were not uploaded within a given time period.
Such missing data are detected by monitoring the temporal consistency of incoming
data for every data source, for example, a taxicab. The above errors may result from
various real-world reasons, for example, hardware malfunctions, software issues, and
data transmission.

To address these errors, for all incoming data, we first filter out the duplicated
records and the records with missing or errant attributes. Then, we correct the obvious
numerical errors by various known contexts, for example, time of day and digital
maps. We next store the data by dates and categories. Finally, we compare the temporal
consistency of the data to detect the missing records. Admittedly, the missing or filtered
out data (which accounted for 11% of the total data) may impact the performance of
our analyses, but given the long period, we believe our analyses are still insightful.

5.3. Data Fusion

Our endeavor of consolidating and cleaning these data enables extremely large-scale
resident sensing from different perspectives, which is unprecedented in both quantity
and quality. In particular, we show the number of passengers detected by three kinds
of data in 5-minute slots in Figure 9, where we do not differentiate subway and bus
passengers, since they are both detected by smartcard readers as sensors.

Though comprehensive enough, the above data are in different granularity and for-
mats, which call for a data fusion procedure. Such a data fusion procedure aims to trans-
parentize the heterogeneity of the above data to infer passenger demand through an
integrated representation. As follows, we first discuss the heterogeneity of the utilized
sensor data from the passenger coverage as well as spatial and temporal resolutions
in Table I.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:8 D. Zhang et al.

Fig. 9. Detected residents by data.

Table I. Heterogeneous Sensor Data

Sensor Resident Temporal Spatial
Name Coverage Resolution Resolution

Cellphone 95% Sparse 17,859 Towers
Taxicab 4% Continuous GPS Coordinates
Reader 55% Continuous 10,448 Stations

As in Table I, (i) cellphone sensors cover 95% of 11 million residents, but each sensor
produces a record only when used for an activity, for example, making a call, and the
corresponding location is only given as one of 17,859 cell towers in Shenzhen; (ii) taxicab
sensors cover daily taxicab passengers only accounting for 4% of all residents but log the
origins and the real destinations of passengers in fine GPS coordinates during 24 hours
of a day; (iii) reader sensors cover daily bus and subway passengers accounting for 55%
of all residents, and log locations for passengers as one of 10,448 transit stations, that
is, 127 for subway and 10,321 for bus, when they use their smartcards.

Due to large scales of the heterogenous data, our fusion procedure is optimized for
simplicity and speed. Thus, we utilize a unified tuple (i.e., a data record) as a generic
abstraction to transparentize the heterogenous sensor data,

r = (i, S, T),

where i is an ID for a cellphone, taxicab, or smartcard user; S is a location in terms of
stations, cell towers, or taxicab GPS coordinates; T is an associated time based on a
granularity in minutes. Note that although many residents have both cellphones and
smartcards, and they may also take taxicabs, we cannot merge these three different
kinds of passengers in the following Feeder server design, due to the lack of unified IDs
across different datasets.

6. FEEDER SERVER: DEPARTURE TIME CALCULATION

We first discuss why we need dynamic departure times in Section 6.1, show how we pre-
dict passenger-exiting stations and times for dynamic departure times in Section 6.2,
and present how we optimize departures in Section 6.3.

6.1. Motivation for Dynamic Departure Times

Our motivation for dynamic departure times is based on the key difference in passen-
ger arrival between regular transit and Feeder. In regular transit, passengers arrive
at a transit station from various origins; however, in Feeder, passengers arrive at a
Feeder terminal mostly from one origin, that is, upstream public transit, for example,
the subway. As a result, passenger arrival for regular transit cannot be accurately pre-
dicted due to its various passenger origins, and thus they typically use fixed departure
times [Ferris et al. 2010]; but the passenger arrival for Feeder can be predicted by

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:9

Fig. 10. # of passengers. Fig. 11. Travel time. Fig. 12. Distinct station. Fig. 13. Entropy.

observing current passengers on public transit, which are known based on real-time
smartcard transactions. Thus, we are inspired to predict Feeder passenger arrival
by predicting exiting (in terms of stations and times) of current passengers in public
transit. Such a passenger exiting prediction for public transit is used as a passenger
arrival prediction for Feeder to calculate dynamic departure times for short wait times.

Based on empirical datasets, we use an existing bus line similar to the last-mile
transit, which has a terminal in a subway station yet with fixed departure times.
Such a bus line uses fixed schedules and does not consider the temporal dynamic of
passenger demand from subway stations. In Figure 10, we investigate (i) the number
of onboard passengers for its buses with fixed departures when leaving the terminal,
and (ii) the number of passengers exiting the subway station. As shown in the figure,
the number of passengers in buses with fixed departure times also fluctuates as in
the boxes because it does not consider real-time fluctuation on exiting passengers.
Such fluctuates may lead to potentially longer passenger wait times. This is because
a previous bus leaving with only few passengers may leave many passengers to the
next bus, which may not have the space for all these passengers to leave together with
new arriving passengers. Further, we simulate onboard passenger numbers about the
same bus line with dynamic departures, which is based on the number of exiting
subway passengers, that is, passenger demand. We found that the number of onboard
passengers under this departure schedule does not fluctuate significantly. It suggests
that dynamic departure times may reduce wait time with well-predicted passenger
demand.

6.2. Exiting Times and Stations

To obtain such a real-time number of exiting passengers in a public transit station
(which is also a terminal of Feeder), a trivial method is to use historical demand. But
it assumes that passenger demand is stable, which is often not the case in fine-grained
time periods. With real-time data, a straightforward method is to collect the demand
when passengers exit this station for a time period. However, after such demand be-
comes available, it is too late to schedule departures of vehicles because passengers
have already been waiting during the period. As follows, we show how to predict pas-
senger exiting times and stations.

6.2.1. Exiting Times. In this work, we notice that public transit systems have relatively
stable travel times between the same two stations in different periods, especially as we
found in subway networks. Figure 11 gives the CDF of standard deviations on travel
times based on our data. We found that 50% of travels have a deviation smaller than
2.2 mins, and 87% of travels have a deviation smaller than 5 minutes. This nice feature
allows us to use the timing information from smartcard transactions when passengers
enter, instead of exit, the transit system. By predicting when passengers will exit a
certain exiting station ahead of time, we have sufficient time to schedule departure
times of Feeder vehicles. Our exiting time prediction using entrance as a condition is

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:10 D. Zhang et al.

Fig. 14. Overview of departure optimization.

more accurate than the prediction based on pure historical information as shown in
the evaluation.

6.2.2. Exiting Stations. We infer an exiting station of a passenger by inspecting the
transit pattern of this passenger in the recent history under real-time contexts. This is
because the majority of passengers as regular commuters exit at the same stations daily
near workplaces or homes. For example, Figure 12 gives the CDF of distinct exiting
stations for passengers in a week, and we found that 67% of all passengers only exit at
two distinct stations or fewer, e.g., home and workplace. If we use more contexts (time
of day), the distinct exiting stations would be even fewer. More rigorously, we show the
CDF of the conditional entropy of passenger exiting stations given entering stations and
times in Figure 13 where the conditional entropy is lower than 0.7, indicating there are
only 20.7 possible exiting stations among total 127 stations. Such a result indicates that
urban transit is highly patterned by commutes, which allows us to provide accurate
prediction on exiting stations, given the real-time entering contexts.

6.3. Departure Time Optimization

An optimization overview for a station Sj is in Figure 14.
Given the current time slot is Tc and the time slot number of round-trip travel about

Sj is τ , we have a departure period from the next slot Tc+1 to the slot Tc+τ . Among these
slots, we aim to select a departure slot T ∗

d with the minimum expected passenger wait
time. Thus, we calculate an expected average passenger wait time (indicated as ATd)
for every possible departure slot Td where d ∈ [c + 1, c + τ]. A is a function of several
expected exiting-passenger numbers (indicated as BTd for Td) in Td and other slots in
the departure period. Further, BTd is based on the aggregation on probability (indicated
as C) of passengers exiting station Sj during Td. In the following, we use four steps
to show how to obtain C, B, A, and, finally, T ∗

d . Note that we compute in a time slot
unit, instead of the exact time, since it is difficult to find many transactions with the
same exact times even with our large datasets. For concise notation, we match a pair of
entering and exiting tuples for the same passenger to obtain an entry with the following
format: (i, Si, T i, Sj, Tj), indicating that a passenger i entered station Si during slot
T i and exited station Sj during slot Tj . Similarly, with ∗ as the wildcard character, we
present the entry set {·} about all entries for the passenger i as {(i, ∗, ∗, ∗, ∗)}.

Step 1: For every current passenger i in the transit system, we calculate the prob-
ability C(i, Si, T i, Sj, Td) that i who entered Si during T i will exit Sj during Td as
follows:

C(i, Si, T i, Sj, Td) = |{(i, Si, ∗, Sj, ∗)}|
|{(i, Si, ∗, ∗, ∗)}| · |{(∗, Si, T i, Sj, Td)}|

|{(∗, Si, T i, Sj, ∗)}| ,

where the first factor is for exiting station prediction showing, among all historical
trips where i entered Si, how many times i exited Sj ; the second factor is for exiting
time prediction showing, among all historical trips where any passenger entered Si

during T i and exited Sj , how many times s/he exited Sj during Td. All these subsets
can be obtained by aggrergation operations on historical data.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:11

For example, suppose a passenger i = 1 entered station Si=1 during slot T i=1. We
aim to calculate the probability that passenger 1 will exit Sj=0 during Td=4, given
the current time slot is Tc=3. Based on historical transaction entries of the passenger
1, suppose among 10 times that the passenger 1 entered S1, s/he exited S0 9 times.
As a result, we have |{(1, S1, ∗, ∗, ∗)}| = 10 and |{(1, S1, ∗, S0, ∗)}| = 9. Further, based
on historical transaction entries of all passengers, suppose among 100 times that a
passenger entered S1 during T 1 and exited S0, there are 80 times that a passenger
exited during T4. Thus, we have |{(∗, S1, T 1, S0, ∗)}| = 100 and |{(∗, S1, T 1, S0, T4)}| =
80. Finally, based on the formula in Step 1, we have C(1, S1, T 1, S0, T4) = |{(1,S1,∗,S0,∗)}|

|{(1,S1,∗,∗,∗)}| ·
|{(∗,S1,T 1,S0,T4)}|
|{(∗,S1,T 1,S0,∗)}| = 9

10 · 80
100 = 72

100 .
Step 2: We aggregate probabilities for all N passengers for the expected number

BSj ·Td of passengers who exit Sj during Td, given entering slots and stations.

BSj ·Td =
N∑

i=1

C(i, Si, T i, Sj, Td).

In our example, suppose only one passenger i = 1 is in the system now, that is, N = 1,
we have BS0·T4 = ∑N=1

i=1 C(i, Si, T i, S0, T4) = C(1, S1, T 1, S0, T4) = 72
100 .

Step 3: With a length of t, we divide a potential departure period from the next
slot Tc+1 to Tc+τ into equal slots. If a vehicle departs from Sj right after a given time
interval Td where d ∈ [c + 1, c + τ], then we calculate the average passenger wait time
ASj ·Td for all passengers arriving during the departure period as

[∑d
y=c+1 BSj ·Ty · (d − y) · t

] + [∑c+τ
z=d+1 BSj ·Tz · (τ − (z − d)) · t

]
∑c+τ

x=c+1 BSj ·Tx

,

where (i) the denominator
∑c+τ

x=c+1 BSj ·Tx is the expected passenger number during
the departure period from Tc+1 to Tc+τ . (ii) The first term in the numerator, that
is,

∑d
y=c+1 BSj ·Ty · (d− y) · t is the total wait time for the passengers who arrive before the

vehicle departs (i.e., arriving from Tc+1 to Td) and leave with the current vehicle. The
passengers arrived at Ty have an expected number of BSj ·Ty and an expected wait time
(d − y) · t. (iii) The second term in the numerator, that is,

∑c+τ
z=d+1 BSj ·Tz · (τ − (z − d)) · t,

is the minimum total wait time for the passengers who arrive after the vehicle departs
(i.e., arriving from Td+1 to Tc+τ) and have to wait for the vehicle to come back yet with
an unknown future departure time. The passengers arrived at Tz have an expected
number of BSj ·Tz and the minimum expected wait time (τ − (z − d)) · t.

In our example, c = 3, τ = 2, t = 10, d = 4, j = 0, BS0·T4 = 72
100 , and suppose

BS0·T5 = 18
100 , so average wait time AS0·T4 for all passengers if the vehicle departs after

T4 is
[∑4

y=4 BS0·Ty · (4 − y) · 10
] + [∑5

z=5 BS0·Tz · (2 − (z − 5)) · 10
]

∑5
x=4 BS0·Tx

.

Thus, we have AS0·T4 = 72
100 ·(4−4)·10+ 18

100 ·(2−(5−5))·10
72

100 + 18
100

= 4.

Step 4: We move Td through all possible departure slots from Tc+1 to Tc+τ , compare
all resultant ASj ·Td, and, finally, select the departure time after the slot T ∗

d associated
with the minimum ASj ·T ∗

d
among all ASj ·Td.

In our example, we continue to calculate the average wait time AS0·T5 associated
with the other possible departure slot, that is, T5, then we compare AS0·T5 with AS0·T4 ,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:12 D. Zhang et al.

Fig. 15. Inferred destinations in
downtown.

Fig. 16. Tower coverage. Fig. 17. Taxicab Dest.

and, finally, select the smaller one to set the depart time for a minimum expected
average wait time.

As an intuitive example, only one vehicle is waiting at Sj , but in our evaluation we
consider a multiple vehicle situation where we select the Top n slots with the minimum
average wait times for n vehicles as the departure slots. The coordination of vehicles
is implicitly considered in the departure time calculation. Further, the slot length, the
vehicle capacity, and the data history length also have impacts on Feeder performance,
which are evaluated in Section 10.

7. FEEDER SERVER: STOP LOCATION SELECTION

We first present our motivation, then show how to infer passengers’ destination, and,
finally, optimize stop selections.

7.1. Using Cellphone and Taxicab Data

Differing from regular transit, last-mile transit aims to reduce passengers’ walking dis-
tances to destinations [Wikipedia 2015]. As a result, we need a destination-driven stop
selection to reduce walking distances. However, large-scale fine-grained destinations
are usually unknown. We are inspired by the fact that the fine-grained destinations of
cellphone and taxicab users have already been captured by cellphone and taxicab data,
which have the potential to serve as proxies for destinations of all passengers.

The destinations of cellphone users are used to infer all destinations because almost
every urban resident has a cellphone, for example, in Shenzhen our cellphone records
cover 95% of the permanent residents. Further, a total of 17,859 cell towers partitions
the 1,991km2 Shenzhen area into fine-grained cells with the average coverage area of
1,991
17,859 km2 ≈ 333 × 333m2, which are generally within a walking distance and thus are
fine grained enough to serve as destinations.

The destinations of taxicab users are also good proxies for all destinations, providing
a complimentary view. This is because, in urban areas, the residents live in high-rise
apartments in high density, so numerous residents would share the same fine-grained
destinations, for example, the front gate of a residential community. Thus, it is very
common that a public transit passenger’s destination is shared with a neighbor who
uses taxicabs, and thus the destination of this public transit passenger is captured by
taxicab data.

To support our motivation, Figure 15 highlights the Shenzhen downtown area with
bus and subway stations, cell towers, and taxicab destinations. We found that (i) cell
towers are distributed in fine granularity and more evenly than public transit stations,
and (ii) taxicab destinations accumulated from one hour cover all major road segments.
Note that these two modes of travel (captured by cellphones and taxicabs) have their
unique advantages, which cannot be replaced by the other.

More rigorously, we show the CDF of coverage areas of all 17,859 cell towers in
Figure 16 where 61% of cell towers have a coverage area smaller than 0.2km2. Further,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:13

we show the CDF of numbers of daily taxicab destinations per 100m2 among 216
Shenzhen urban regions in Figure 17 where 91% of regions have at least one destination
per 100m2, which is typically within a walking distance.

7.2. Destinations for Public Transit Passengers

Based on the above discussion, we infer the passengers’ destination set D by combining
a Cellphone users’ destination set Dc and a Taxicab users’ destination set Dt.

To obtain Dc, we employ historical cellphone data offline for a given period (e.g.,
1 month) to infer the two most frequently visited locations, that is, home and workplace,
for every cellphone user at cell-tower levels. This process is executed offline by finding
two most frequently connected cell towers during the work time (9AM–5PM) and the
non-work time (6PM–8AM) on weekdays, respectively, for every user. Based on the
previous study [Isaacman et al. 2012], this approach has a high accuracy to infer
important locations for cellphone users.

To obtain Dt, we employ taxicab data to accumulate all obtained destinations into Dt

starting from the latest data, until the size of Dt is equal to the size of Dc. The reason
behind this size-based accumulation is that, due to lack of identifiable passenger ID
in taxicab tuples, we have to accumulate all destinations in Dt for a period of time
(in terms of days) to track more destinations for taxicab passengers, thus potentially
more destinations shared by public transit passengers. We stop the accumulation if the
size of Dt is equal to the size of Dc to avoid that Dt numerically dominates the stop
selection.

7.3. Stop Location Optimization

We assign every destination in the destination set D to the closest public transit station
based on their locations. This is because passengers usually exit public transit stations
closest to their destinations. Thus, we have a subset Dj of D for a transit station Sj . As
follows, we individually select stops for every public station. We first introduce Schwarz-
criterion-based service stop selection and then discuss context-aware stop updating.

7.3.1. Schwarz Criterion-Based Section. We utilize the classic K-mean clustering on all
destinations in Dj and select the centroids of clusters as the stops for the station Sj . But
one key issue is to determine K, that is, the number of stops. The more the stops, the
more delay is reduced for passengers to walk to destinations. But more stops could lead
to an overfitting problem and also incur more increased delay for onboard passengers
due to frequent vehicle stopping. Thus, to balance the stop number K, we employ the
Schwarz criterion [Moore 2001] as follows:

M∑

i=1

(li − c(li))2 + 2λK log M,

where M is the total number of destinations in Dj , li is the GPS location of a destination,
c(li) is the nearest centroid to li among K centroids, and λ is the regularization factor.
The first term

∑M
i=1(li − c(li))2 is called the distortion term, which shows the sum

of Euclidean distances of each destination to its nearest centroid. Under our Feeder
context, we regard the distortion term as the average reduced delay for passengers
due to the increased stops to reduce the average last-mile walking distance to their
destinations. The second term 2λK log M is called the penalty term, where K has to be
regularized by M with a term logM, because the penalty level of increasing K is decided
by both K itself and M. This penalty term is introduced in order to avoid overfitting.
In our Feeder context, we can also regard the penalty term as the average increased
delay for the vehicle stopping in the increased stops.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:14 D. Zhang et al.

In the above criterion, the lower the value, the better the clustering performance.
However, in a real-world setting, it is not practical to set too many stops for a small
service area to minimize the criterion. Thus, for a station Sj with a coverage area
Ej , we set the upper bound of Kj for Sj to Ej

100×100m2 , because an urban block is nor-
mally 100 × 100m2. The Kj for Sj is selected among one to its upper bound to mini-
mize the Schwarz criterion, that is, finding the “elbow” of the curve of this criterion
against Kj .

7.3.2. Context-Aware Stop Updating. We explore context-based stop updating for shorter
last-mile distances. This is because we found that passenger destinations differ quite
markedly under different contexts, for example, weekdays and weekends, as shown in
the evaluation. For all destinations in Dj about a station Sj , we use the day of week
as a context to divide Dj into two subsets, that is, D1

j to D2
j , each of which contains the

destinations from the data for weekdays and weekends, respectively. We use each of
them to update stop locations of the corresponding day. For a practical reason, we did
not use other contexts (e.g., the time of day) to more frequently update stops. This is
because consistently changing stops may discourage passengers to take Feeder, since
they may not know where vehicles would stop in advance. The performance of this
updating is tested in the evaluation.

8. FEEDER SERVER: SERVICE ROUTE CALCULATION

In this section, based on selected stops, we calculate a route A to connect a station Sj
and all its selected stops with the minimum cost. We first introduce the speed modeling
and then present our route calculation.

8.1. Need for Traffic-based Routes

The regular transit is typically used to connect two far regions, so their routes are
almost fixed due to intermediate stops [Ferris et al. 2010]. In contrast, the last-mile
transit is used to cover a small area centered at a transit station, so it typically starts
and ends at the same location with a typical ring route with few stops. As a result, it
can visit all stops by several routes with different traffic speeds at different times of
day, thus enabling dynamic routes to save travel time.

Based on empirical datasets, we investigate a bus line with a ring route similar to
the last-mile transit. Figure 18 gives the time of each bus took to finish the fixed route.
We found some fluctuations along the time due to the traffic condition in the rush hour.
In contrast, we plot the travel time of several taxicabs going through the same stops yet
with dynamic routes using less time. One important reason is that different routes have
different speeds at different times of day, and the experienced taxicab drivers usually
select the fastest route accordingly. In short, it suggests that using traffic-based routes
can reduce passenger travel time.

8.2. Travel Time by Traffic Speeds

As shown in Figure 18, the travel time has an online nature, that is, the travel time
differs for the same route in different times of day. To address this issue, we regard
taxicabs and buses as roving sensors to continuously infer real-time traffic speeds. A
tuple r = (id, l, m) of the taxicab or bus tuple sets indicates that a taxicab or bus pas-
senger id was at a location l at a moment m, which is used to calculate the traffic speed
on the corresponding road segment. The average uploading interval for those tuples
is less than 30s, thus enabling an accurate and continuous travel speeds monitoring
in urban scales. Figure 19 shows average traffic speeds during 6PM in 496 Shenzhen
regions, where a warmer color indicates a slower speed.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:15

Fig. 18. Travel Time. Fig. 19. Traffic Speeds in Regions.

In particular, based on our taxi and bus data, we have traffic speeds for individual
road segments. With these traffic speeds, we have the travel time for these road seg-
ments. Based on the travel time for individual road segments, we use travel time as
weights to obtain a weighted graph built upon a road map. In this weighted graph, a
vertex is an intersection; an edge is a road segment linking two intersections together;
a weight of an edge indicates the travel time between two intersections. Therefore,
when we calculate the travel time for a particular route from one location to another
location, we use this graph to obtain the shortest path in terms of the travel time.
Finally, we use the accumulated travel time of all the road segments in this particular
route as the travel time for this route.

8.3. Graph Theory-Based Route Calculation

Theoretically, by regarding the station and stops as vertices, we obtain a complete
graph with time-dependent weights. The weight on an edge indicates the real-time
travel time (obtained by pervasive buses and taxicabs) for a particular time of day
between two vertices (i.e., stops) of the edge. Thus, our route calculation problem is
formulated as follows: given a complete graph including a station and all its stops, find
a route to connect all stops with the minimum weight, that is, the travel time. This
problem is related to the multiple traveling salesmen problem (called mTSP, where n
salesmen start from a depot to visit different cities with the minimum weight [Oberlin
et al. 2012]). But our problem has a relaxed constraint where we can use fewer than n
vehicles to visit these stops, instead of exact n, and n is the number of available vehicles
for station Sj . By an analogy to the NP-hard mTSP, our problem is also NP-hard.

To solve this NP-hard problem, we propose an approximation algorithm with a
bounded performance ratio. Our algorithm produces a route to connect a station Sj
to its Kj stops, given the travel time between them as the weights. Note that the travel
time changes at different times of day, so the Feeder server recalculates the route on-
line and sends the route to a vehicle after its arrival at the public station. Specifically,
the algorithm is given in three steps.

Step 1: Connecting all stops from Sj by the minimum spanning tree T j. We
employ the minimum spanning tree (MST) algorithm to link the stops belonging to the
public transit station Sj to obtain a MST Tj rooted at Sj as an underlying connection.
Figure 20 gives an example to show the eight stops of Sj and the resultant MST Tj .

Step 2: Adding a special minimum perfect matching Mj to T j to obtain an
underlying structure T̄ j. (i) We first find a vertex set V ′ containing all vertices with
an odd degree in Tj ; (ii) we construct the minimum weighted perfect matching Mj for
all vertices in V ′; (iii) we add the edges of Mj to Tj to obtain a new graph T̄ j , as
an underlying structure to calculate the final route. Note that a perfect matching M

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:16 D. Zhang et al.

Fig. 20. Connecting stops by a MST Tj . Fig. 21. Add perfect matching Mj to Tj to Get T̄ j .

Fig. 22. Obtaining final route A by a traversal.

on V ′ is a set of pairwise non-adjacent edges (i.e., no two edges share a common vertex
in V ′) linking all the vertices in V ′; further, such a perfect matching with the minimum
weight for vertices in V ′ can always be found in a polynomial time [Cook and Rohe
1999], since the number of vertices in V ′ is always even. In Figure 21, the left subfigure
gives the grey vertices with an odd degree in Tj as V ′; the right subfigure gives their
minimum perfect matching Mj , consisting of three new edges (bold), which are added
to MST Tj to obtain T̄ j . The reason why we add Mj to Tj to obtain T̄ j is to enable cycles
to calculate the route; a cycle is a vertex traversal Sj ⇒ Sj that starts at the station
Sj and stops when it visits Sj again.

Step 3: Obtaining the final route A with a shortcutting-based traversal on
T̄ j. (i) From the station Sj , we perform a depth-first traversal on T̄ j ; (ii) during this
traversal, if we find a vertex that has already been visited before, we shortcut this
vertex (except for the root Sj) to visit the next vertex directly; and (iii) we obtain the
resultant graph, consisting of one or more cycles about the root Sj , and each cycle is
driven by at lease one vehicle. Figure 22 gives a traversal on T̄ j where the left figure
gives the short-cutting-based traversal by shortcutting k2, that is, deleting k1 → k2 and
k2 → k3 yet adding k1 → k3; the right figure gives the final route with two subroutes.

Note that we focus on the reduced travel time, so better performance can be achieved
by having (i) a large vehicle capacity c and (ii) the number nj of vehicles for Sj equal to
or larger than the number of cycles about Sj . Therefore, different passengers can select
vehicles for the cyclic subroute that quickly visits the stops close to their destinations
without long detours. Our design accounts for the constraint on the number of vehicles
nj for Sj , for example, if only one vehicle can be used nj = 1, we merge all cycles into
one big cycle by shortcutting Sj and make a route equal to the depth-first traversal on
T̄ j , that is, shortcutting all visited vertices, so a vehicle visits all stops and then goes
back to Sj .

In the appendix, we prove that our approximation algorithm has a bounded perfor-
mance ratio of 3

2 , that is, the travel time of the route obtained by our algorithm is at
most 3

2 times of the optimal travel time. Though having the same ratio bound with the
state-of-the-art solution for mTSP [Oberlin et al. 2012], our algorithm has a novelty in
its shortcutting mechanism based on the vehicle number constraint.

9. FEEDER REAL-WORLD IMPLEMENTATION

In this project, we have tried for a commercialized implementation of Feeder. The de-
signed Feeder devices have been configured on 98 vehicles in Shenzhen, and our server
has full capacities to efficiently perform Feeder server functions. However, through

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:17

Fig. 23. Feeder service in Tanglang Station.

Fig. 24. Real-world scenario.

Shenzhen Transport Committee, we have been informed that such commercialized
transit services require a government-issued permit. Alternatively, we implemented
Feeder by ourselves at a subway station Tanglang in Shenzhen for a small-scale trial
to show this system would function well in the real world. To enable a practical test
with our 12 prearranged volunteers, we use three low-capacity vehicles, that is, taxi-
cabs, as Feeder vehicles with Feeder devices to drive them to their workplaces as in
Figure 23. But in a real-world service with more potential passengers, a Feeder vehicle
shall have a high capacity, enabling more environmentally friendly services.

9.1. Implementation Overview

Based on taxicab and cellphone data, we first obtain the inferred destinations that are
closer to Tanglang than other stations. Next, we use these destinations to obtain eight
service stops and then find the route based on our routing computation to link these
stops to the Tanglang station. The stops and route are given in Figure 24. Further,
after arriving at the final stop, the vehicles have to use the same path to go back to the
station due to terrain features.

We collected the data in a 30-day period about the 12 passengers who take the
subway to work and exit at Tanglang station every morning. After exiting the station,
they were picked up individually or together based on their exiting times, and then were
dropped off at their workplaces. We calculate departure times based on their smartcard

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:18 D. Zhang et al.

Fig. 25. Average travel time in 30 days.

Fig. 26. Individual time. Fig. 27. Last-mile dist.

data in an online fashion for vehicles to leave. The vehicles would go back to the station
until all prearranged passengers were picked up and then delivered. We videotaped
the service, with which arriving moments, departure moments, last-mile distance and
travel time (equal to wait time plus ride time) were calculated.

9.2. Implementation Evaluation

We use two metrics, that is, travel time and last-mile distance, to compare Feeder
with regular bus services with fixed departures. We also provide a walking time for
reference. We first evaluate Feeder by the travel time, which is divided into (i) the
wait time from exiting the station to leaving with vehicles and (ii) the ride time from
leaving with vehicles to arriving destinations. Figure 25 gives the average wait and
ride time among 12 passengers during 30 days, compared to using a regular bus with
fixed departures. Feeder significantly reduces the travel time compared to a 38 min
bus trip. The ride time is stable around 14 minutes, but the wait time is variable at
around 9 minutes.

We evaluate the average travel time for 12 passengers in Figure 26. We found the
wait time for some passengers is shorter than others. This is because the prediction
about the passengers with highly regular patterns is accurate, which leads to effective
departure times. But for the passengers with irregular patterns (e.g., they go to work
from different stations), the prediction is not accurate, leading to ineffective departure
times, which may increase their wait time. Feeder is better than scheduled bus because
of a combined effect that the bus stop is farther than the Feeder stop to both stations
and final destinations of passengers and Feeder has a better schedule.

Finally, we evaluate Feeder by the last-mile distance. Due to the limited passengers,
we utilize the taxicab and cellphone data to obtain all potential destinations along this
route in one day. Then, we show if the passengers with these destinations were using
Feeder to get off at the closest stops and what the average last-mile distance would
be in the eight stops. We also provide a walking distance from the Tanglong station

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:19

to every stop for reference. In Figure 27, stops 2 and 4 are more effective since the
distance for passengers who got off at these two stops is less than 300m. For other
stops, the average last-mile distance is about 500m, still much shorter than regular
buses.

10. FEEDER DATA DRIVEN EVALUATION

With datasets introduced in Figure 8, we perform a large-scale data-driven evaluation
about 127 stations on all five of Shenzhen subway lines, though Feeder also applies
to major bus stations. For every station, we first obtain stops based on destinations of
cellphone and taxicab users; then, we find the shortest route to link stops to the station;
finally, we use streaming smartcard data to decide the number of exiting passengers
during a given time slot to simulate a real-world scenario (with unexpected passengers),
and we calculate departure times based on passenger arrival prediction with online
data.

We envision that only half of exiting subway passengers would take the Feeder
service. The destinations of these passengers are randomly set to the real-world des-
tinations of taxicab and cellphone users. We use two key metrics: Percentage of the
Reduced Last-Mile Distance and Percentage of the Reduced Travel Time com-
pared to the ground truth under different logical contexts: (i) Time of Day, (ii) Day
of Week, and (iii) District Population. In addition, we investigate several key pa-
rameters on the system performance: (i) Departure Slot Length t as a time unit for
vehicles to leave stations (the default is 4 minutes), (ii) Historical Dataset Length
h to show the impact of historical smartcard data amounts (the default is 6 months),
and (iii) Vehicle Status in terms of the vehicle number n and the vehicle capacity
c to investigate the impact of Feeder vehicles (the defaults are given later).

We compare Feeder with its three variations to show the effectiveness of Feeder
design components.

(i) Feeder+DBSCAN utilizing DBSCAN clustering in the stop selection, which is
used to show the advantage of Feeder using the Schwarz-criterion-based stop selection;
(ii) Feeder+Fixed-Schedule utilizing the fixed departures based on vehicle numbers
and the travel time without any smartcard data, which is used to show the advantage
of Feeder using smartcard data for the departure computation; (iii) Feeder+Train
utilizing real-time train arrivals as references to set the departure time, which is used
to show Feeder’s advantage from using individual smartcards; and (iv) Feeder+Offline
utilizing only historical smartcard, taxi, and bus datasets to obtain departure times and
service routes, which is used to show Feeder’s advantage from using real-time online
data to obtain its arrival prediction and real-time traffic-based routes. We evaluated
Feeder extensively, but, due to space limitations, we report effects of Feeder+DBSCAN
on reduced last-mile distances and effects of others on reduced travel time. The ground
truth of last-mile distances and travel time is obtained by locations of destinations and
stations and an average walking speed of km/h. All results are based on the average
of a 3-month evaluation. For scalability, we maintain transit patterns by probability
distributions for every passenger exiting at a station and update them every day. Thus,
in the real-time mode, the running time is negligible compared to departure periods.

10.1. Impacts of Logical Contexts

We test the impacts of three logical contexts as follows.

10.1.1. Time of Day. We evaluate impacts of the time of day during the normal public
transit operating hours from 7AM to 11PM. Figure 28 plots the reduced last-mile
distance among the evaluated subway stations in Shenzhen during 16 hours. Both
of services significantly reduce the last-mile distance. But in the rush hour, Feeder

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:20 D. Zhang et al.

Fig. 28. Reduced distance. Fig. 29. Reduced time.

Fig. 30. Distance at CGM. Fig. 31. Time at CGM.

outperforms Feeder+DBSCAN by 19%; whereas in the non-rush hour, Feeder has better
performance with a gain of 26% over Feeder+DBSCAN. It shows Feeder’s advantage
by utilizing Schwarz-based stop selection. Feeder has performance of a 68% last-mile
distance reduction at the default time 6PM.

Figure 29 shows the average reduced travel time. In the non-rush hour, all services
reduce the travel time by 51% on average; in the rush hour, their performance drops
to 47% on average. But Feeder outperforms Fixed-Schedule shown by 11% more travel
time reduction, because Feeder employs dynamic departure times based on collected
data. Further, Feeder outperforms Feeder+Offline by 23% more travel time reduction,
thanks to the utilization of real-time datasets for departure schedules and routing.
Feeder also outperforms Feeder+Train by 14%, thanks to individual smartcard-based
prediction. Feeder+Train cannot predict exact numbers of arriving passengers, thus
leading to a suboptimal schedule. Feeder has performance of a 56% travel time reduc-
tion at the default time 6PM.

Note that we show the performance of the Feeder service in terms of percentages,
instead of the nominal values, because of the various travel time and last-mile dis-
tances at different subway stations. In Figures 30 and 31, we show the nominal values
of the reduced travel time and the last-mile distance for the subway station CheGong-
Miao with the largest passenger arrival in Shenzhen. In Figure 30, we found that
the average reduced last-mile distance fluctuates, but Feeder performs better than
Feeder+DBSCAN. In Figure 31, we observed a similar tendency as previously shown
in Figure 29, that is, Feeder outperforms others, and the performance is better in the
non-rush hour.

10.1.2. Day of Week. Feeder+Weekday as well as Feeder+Weekend are used to test
context-aware stop updating based on the performance of Feeder on weekdays and
weekends. Figures 32 and 33 plot their reduced distance and time, respectively. In

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:21

Fig. 32. Reduced dist. Fig. 33. Reduced time.

Fig. 34. Time vs. t. Fig. 35. Time vs. h.

both of the figures, we found that Feeder+Weekday has higher reduced distances than
Feeder+Weekend during the morning and evening rush hour. This is because the resi-
dents travel in the morning and evening rush hour on the weekday, while they travel
in the regular daytime on the weekend.

10.1.3. District Population. Feeder+Urban gives the performance of Feeder in three ur-
ban districts (i.e., FuTian, LuoHu, and NanShan) in Shenzhen with high population
levels, while Feeder+Rural gives the performance in three rural districts (i.e., Baoan,
LongHua, and LongGang) with low population levels. Figures 32 and 33 plot their re-
duced distances and times. We found that Feeder+Rural has higher reduced distances
than Feeder+Urban during all day. This is because there are fewer and sparser subway
stations in the rural districts, leading to long last-mile distances.

10.2. Impacts of System Parameters

We test the impacts of four system parameters as follows.

10.2.1. Time Slot Length t. In Figure 34, we evaluate impacts of the slot length t, which
decides the Feeder’s granularity on scheduling. Note that t has no effect on Fixed-
Schedule and co-design schedules with train arrivals. With the increase of t, the perfor-
mance of Feeder and Feeder+Offline increases first and then decreases. This is because
the prediction on exiting passengers in a smaller slot is not accurate. But when the slot
becomes too long, the passenger wait times are also prolonged.

10.2.2. Historical Dataset Length h. We investigate how much historical information is
necessary for the predictions on passenger exiting stations in Figure 35. As expected,
the longer the time, the better the performance. But a too long slot does not help
much. Even with 6-month historical datasets, Feeder reduces 56% of the travel time
for passengers.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:22 D. Zhang et al.

Fig. 36. Time vs. n. Fig. 37. Time vs. c.

10.2.3. Vehicle Status n & c. In Feeder, we set a different vehicle number n for each
different station due to the various demands. For a station Sj , the default nj = N(τ)

c
where the default c is set to 20, which is the normal capacity of a MiniBus; N(τ) is
the number of exiting passengers using Feeder (i.e., the half of all passengers) during
the round trip time slot τ for a vehicle of a station Sj . Figure 36 plots the reduced time
on different multiples of n. With more vehicles, the percentage of the reduced time
for Feeder increases, since the intervals between departures are reduced. The default
multiple of n is 1.5.

We investigate the impact of the vehicle capacity c on Feeder in Figure 37. With the
increase of c, the reduced time for Feeder increases. This is because a vehicle with
a large capacity carries more passengers and thus reduced the wait time. It implies
that Feeder functions more effectively when vehicles can carry more passengers. The
performance of Feeder+Train is dependent on capacity since it cannot predict passenger
numbers of each train, and a larger vehicle can reduce uncertain of passenger arrivals.

10.3. Evaluation Summary

We have the following observations based on the results. (i) The performance of Feeder
is depended on the time of the day as shown by Figures 28, 29, 30, and 31. The day of
week and district population also have significant impacts on Feeder as in Figures 32
and 33. Among these three real-world contexts, the district population has the largest
affects on the performance, and then on the day of week, and, finally, on the time of
day. (ii) The slot length has significant impacts on Feeder’s performance, and generally
as in Figure 34, the longer the slots, the more accurate the prediction about exiting
passenger numbers, yet the longer the wait time. But when the slot length is set
between 4 to 8 minutess, the difference in performance is not obvious. (iii) How much
historical data to be used by Feeder significantly affects the performance of Feeder as in
Figure 35. Normally, the longer the history, the better the performance. But the effect
becomes less obvious when the history is longer than 6 months. (iv) The Feeder vehicle
status, that is, vehicle number and vehicle capacity, has big impacts on the passenger
travel time as in Figures 36 and 37. It seems Feeder is more sensitive to the vehicle
capacity than the vehicle number, which motivate us to use few big vehicles, instead
of more small vehicles, in real-world large-scale implementation. (v) The three design
components of Feeder, that is, stop selection, route computation, and departure time
computation are more effective than DBSCAN-based stop selection and fixed departure
times and routes, as shown by the fact that Feeder outperforms others.

11. DISCUSSION

Passenger Involvement. Feeder is described as an automatic and transparent service
for passengers who do not have to provide any additional information, for example,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:23

arriving time at public transit stations or real destinations such as home and work
addresses. But, unfortunately, the majority of passengers is not willing to provide
detailed travel demand due to several reasons, such as manual efforts and privacy.
Sampling a subset of passengers who are willing to provide requests would introduce
a bias against other passengers.

First-Mile Travel and Other Types of Travel. In this work, we focus on the last-
mile problem only and do not aim to address generic travels or the first-mile travel
where passengers travel from origins to transit stations. It has a different setting
where the time of a passenger starting the travel from an origin cannot be accurately
predicted without active passenger involvement such as smartphone apps. A dedicated
first-mile service-based smartphone app may also be used to address the last-mile
problem if passengers would like to participate by providing detailed demand.

Privacy Protections. We took three steps to protect passenger privacy.
(i) Anonymization: All data are anonymized by providers and all identifiable IDs in
data are replaced with serial identifiers. (ii) Minimal Exposure: We only store and pro-
cess the data that are useful for our Feeder service and drop other information for the
minimal exposure. (iii) Aggregation: Our Feeder service uses the aggregated results
and is not focused on individual residents.

Real-World Deployment Issues. We focus on technical aspects of Feeder, and
here we discuss some real-world issues. (i) Focusing on data utilization, we envision
that a passenger would pay a flat fare for short last-mile transit in Feeder. But more
sophisticated fare models can be designed based on unique public transit fare structures
in targeted cities. (ii) A portion of passengers (e.g., visitors) may pay cash to purchase
temporary cards, so we have no historical data about these passengers. But our method
still applies because we can infer their exiting stations and times by general travel
trends given entering stations and times. (iii) In a city where exiting a station does
not require using smartcards, we can still infer an exiting station of a passenger by
exploring his/her next entering station, assuming most passengers take round trips.
(iv) If passengers use their smartcards in the Feeder service, Feeder design would be
easier, because we would know their real destinations. But we still need Feeder to
predict passenger-exiting times in subway networks to schedule vehicle departures.
(v) The main deployment cost for Feeder is the service vehicle, which we envision
would be carpooling-based passenger vehicles such as passenger vans or minibuses,
instead of regular taxis. Based on this carpooling feature, Feeder would significantly
reduce passenger fare comparing to the taxicabs. In Feeder, the most calculations are
performed at the server side because we have to use real-time data consolidated in
the server for prediction. If the real-time smartcard data can be accessed by frontend
onboard devices, the the calculation can also be dispatched to the frontend.

12. RELATED WORK

In addition to walking, discussed in the Introduction, biking, carpooling, and minibus
services are three major alternatives for the last-mile problem. For bikes, many cities
have bike rental systems, for example, CITI Bike in New York City, for passengers to
rent bikes near the public transit stations for the last-mile trips, but, currently, its
popularity is limited by the low docking network coverage and the high infrastructure
cost. For personal bikes, it may not be convenient to carry the bike when taking a bus,
a subway, or a train. Carpooling with personal automobiles is another way to bridge
the last mile. But only a few bus stop or subway stations have parking services for
personal carpooling, and finding a way to arrange and schedule drivers and passengers
for these ad hoc carpooling systems is still challenging. Some cities, for example, New
York City [New York Times 2010], Beijing [Ma et al. 2013], and Shenzhen [Zhang et al.
2013], have introduced taxicab ridersharing services for passengers to share taxicabs

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

6:24 D. Zhang et al.

for ad hoc rides, but both time and locations are preset, and no infrastructure support
is provided. In contrast, our Feeder service provides a new service as the extension of
existing public transit. It employs the already-collected data to design stops, routes,
and schedules by modeling passenger last-mile transit demand. This demand model
can also be used for bike and carpooling to address the last-mile issue. Some cities,
for example, Hong Kong [Minibus 2015], use minibuses to deliver passengers closer to
their destinations, but they have fixed routes and schedules. The key difference between
Feeder and ridersharing is that Feeder learns passenger demand automatically, while
ridersharing assumes demand is given in advance. Feeder also diffes from the above
services in terms of low infrastructure costs, flexible network coverage, and real-time
support from the Feeder server with online data from urban infrastructures.

Another type of related work to Feeder is urban data-driven applications. The in-
creasing availability of GPS has encouraged a surge of research for urban data-driven
applications [Liu et al. 2012]. Many novel applications are proposed to assist urban
residents or city officials, for example, assisting mobile users to make transportation
decisions, such as taking a taxicab or not [Wu et al. 2012], finding parking spots for
drivers [Nandugudi et al. 2014], inferring real-world maps based on GPS data [Biagioni
and Eriksson 2012], predicting bus arrival times [Biagioni et al. 2011], enabling passen-
gers to query taxicab availability to make informed transit choices [Balan et al. 2011],
informing drivers with smart routes based on those of experienced drivers [Wei et al.
2012], predicting passenger demand for taxicab drivers [Ge et al. 2010], recommending
optimal pickup locations [Ge et al. 2011], modeling urban transit [Zheng et al. 2010],
suggesting profitable locations for taxicab drivers by constructing a profitability map
where the nearby regions of drivers are scored serving as a metric for a taxicab driver
decision making process [Powell et al. 2011], detecting the taxicab anomaly [Sen and
Balan 2013], navigating new drivers based on GPS traces of experienced drivers [Yuan
et al. 2011], and enabling us to better understand region functions of cities [Yuan et al.
2012]. Yet existing research on these systems has not focused on the last-mile problem
and typically utilizes only one type of dataset. But Feeder utilizes streaming data from
several urban infrastructures to tackle the last-mile problem without the burden on
the passenger side. Such a unique combination has not been investigated before.

13. CONCLUSION

In this work, we analyze, design, implement, and evaluate a service Feeder to tackle
the last-mile problem with extreme-scale urban sensing infrastructures, reducing 68%
of last-mile distances and 56% of travel time on average. Our technical endeavors
provide a few valuable insights, which, it is hoped, will be useful for commercially
implementing Feeder-like data-driven services in the near future. Specifically, (i) we
found unprecedented evidence of the last-mile problem and design guidelines based on
large-scale infrastructure datasets; (ii) we customized an onboard device supporting
the essential functionalities (e.g., communication and sensing) for real-time on-demand
services; and (iii) we combined several independent datasets to design a data-driven
service and affirmed that complicated functions (e.g., stop location and departure time
optimizations) should be designed based on real-world data.

APPENDIX

A. THEORETICAL ANALYSIS ON FEEDER

In Section 8, we proved that our algorithm has a bounded performance ratio of 3
2 , that

is, the total Weight W(A) (in terms of travel time) used in our route A is at most 3
2

times of the Optimal weight W(O) used in the optimal route O, obtained by Linear

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

Last-Mile Transit Service with Urban Infrastructure Data 6:25

Programming. T is the MST to connect the stops; M is the minimum perfect matching
linking all vertices with an odd degree in T ; T̄ is the new underlying graph obtained
by adding M to T . We prove W (A)

W (O) ≤ 3
2 as follows.

(i) W(A) ≤ W(T̄), since A is obtained by shortcutting the edges in T̄ ;
(ii) W(T̄) = W(T) + W(M), since T̄ is obtained by T + M;

(iii) W(T) ≤ W(O), since the optimal solution O is a subgraph connecting all ver-
tices and T is the minimum subgraph connecting all vertices (because T is the
minimum spanning tree);

(iv) W(M) ≤ W(O), since if W(M) > W(O), we can delete some edges in O to find a
new perfect matching m, which is smaller than M; but this contradicts the fact
that M is the minimum perfect matching.

(v) Then, by (i), (ii), (iii), and (iv), we have W (A)
W (O) ≤ 2 via

W(A) ≤ W(T̄) = W(T) + W(M) ≤ W(O) + W(O) = 2W(O).

Note that W(O) is only a straightforward yet loose upper bound for W(M), and we
show a tight upper bound for W(M) as 1

2 W(O) as follows.
To present a tighter upper bound for the total weight W(M) of the minimum perfect

matching M for all vertices with an odd degree, we let O′ be the optimal solution
corresponding to all vertices with an odd degree in T . We connect M to O through
O′. (i) W(O′) ≤ W(O): This is because the vertices in O′ is a subset for the vertices
in O, so we can always shortcut some edges in O to obtain O′ with a smaller weight
compared to O. (ii) We establish the relationship between O′ and M by decomposing O′
into the combination of two regular (not the minimum) matchings M1 and M2 for all
vertices with an odd degree in T . For example, we can select alternative edges in O′
to obtain a matching M1, and the rest of edges is another matching M2. Therefore, by
W(M1) + W(M2) = W(O′), we have min{W(M1), W(M2)} ≤ 1

2 W(O′). (iii) Since M is the
minimum matching for the vertices with an odd degree, W(M) ≤ min{W(M1), W(M2)} ≤
1
2 W(O′) ≤ 1

2 W(O). Finally, we have a tighter upper bound for W(M), which is 1
2 W(O).

It leads to W (A)
W (O) ≤ 3

2 as follows,

W(A) ≤ W(T) + W(M) ≤ W(O) + 1
2

W(O) = 3
2

W(O).

REFERENCES

Sample data. 2015. Retrieved from http://cloud.siat.ac.cn/Feeder.html.
American Public Transportation Association. 2010. Retrieved from http://www.apta.com/mediacenter/

ptbenefits/Pages/default.aspx.
Rajesh Krishna Balan, Khoa Xuan Nguyen, and Lingxiao Jiang. 2011. Real-time trip information service for

a large taxi fleet. In MobiSys’11.
James Biagioni and Jakob Eriksson. 2012. Map inference in the face of noise and disparity (SIGSPATIAL’12).
James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. 2011. EasyTracker: Automatic

transit tracking, mapping, and arrival time prediction using smartphones. In SenSys’11.
William Cook and Andre Rohe. 1999. Computing minimum-weight perfect matchings. In INFORMS Journal

on Computing.
Hank Dittmar and Gloria Ohland. 2004. The New Transit Town: Best Practices in Transitoriented Develop-

ment. Island Press.
Brian Ferris, Kari Watkins, and Alan Borning. 2010. OneBusAway: Results from providing real-time arrival

information for public transit. In CHI’10.
Yong Ge, Chuanren Liu, Hui Xiong, and Jian Chen. 2011. A taxi business intelligence system (KDD’11).
Yong Ge, Hui Xiong, Alexander Tuzhilin, Keli Xiao, and Marco Gruteser. 2010. An energy-efficient mobile

recommender system. In KDD’10.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

http://cloud.siat.ac.cn/Feeder.html
http://www.apta.com/mediacenter/ptbenefits/Pages/default.aspx
http://www.apta.com/mediacenter/ptbenefits/Pages/default.aspx

6:26 D. Zhang et al.

Sibren Isaacman, Richard Becker, Ramón Cáceres, Margaret Martonosi, James Rowland, Alexander
Varshavsky, and Walter Willinger. 2012. Human mobility modeling at metropolitan scales. In
MobiSys’12.

Xuemei Liu, James Biagioni, Jakob Eriksson, Yin Wang, George Forman, and Yanmin Zhu. 2012. Mining
large-scale, sparse GPS traces for map inference: Comparison of approaches. In KDD’12.

Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic taxi ridesharing service. In
ICDE 2013.

Minibus. 2015. MiniBus in Hong Kong. Retrieved from http://www.minibus.hk/.
A. Moore. 2001. K-means and hierarchical clustering. Retrieved from http://www.autonlab.org/tutorials/

kmens11.pdf.
Anandatirtha Nandugudi, Taeyeon Ki, Carl Nuessle, and Geoffrey Challen. 2014. PocketParker: Pocket-

sourcing parking lot availability. In UBICOMP’14.
New York Times. 2010. Limited share-a-cab test to begin soon. Retrieved from www.nytimes.com/2010/

02/22/nyregion/22ataxis.
Paul Oberlin, Sivakumar Rathinam, and Swaroop Darbha. 2012. A transformation for a multiple depot,

multiple traveling salesman problem. In Proceedings of the Conference on American Control Conference
(ACC’09).

J. Powell, Y. Huang, F. Bastani, and M. Ji. 2011. Towards reducing taxicab cruising time using spatio-
temporal profitability maps. In Proceedings of the 12th International Symposium on Advances in Spatial
and Temporal Databases.

Rijurekha Sen and Rajesh Krishna Balan. 2013. Challenges and opportunities in taxi fleet anomaly detection.
In SENSEMINE’13.

Ling-Yin Wei, Yu Zheng, and Wen-Chih Peng. 2012. Constructing popular routes from uncertain trajectories.
In KDD’12.

Wikipedia. 2015. The last mile problem. Retrieved from http://en.wikipedia.org/wiki/Lastmile(transport).
Wei Wu, Wee Siong Ng, Shonali Krishnaswamy, and Abhijat Sinha. 2012. To taxi or not to taxi? - Enabling

personalised and real-time transportation decisions for mobile users. In MDM’12.
Jing Yuan, Yu Zheng, and Xing Xie. 2012. Discovering regions of different functions in a city using human

mobility and POIs. In KDD’12.
Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowledge from the physical world.

In KDD’11.
Desheng Zhang, Ye Li, Fan Zhang, Mingming Lu, Yunhuai Liu, and Tian He. 2013. coRide: Carpool service

with a win-win fare model for large-scale taxicab networks. In SenSys’13.
Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, and Tian He. 2015. Feeder: Supporting last-

mile transit with extreme-scale infrastructure data. In Proceedings of the 14th ACM Conference on
Information Processing in Sensor Networks (IPSN’15).

Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma. 2010. Understanding transportation modes
based on GPS data for web applications. ACM Trans. Web 4, 1 (Jan. 2010).

Received July 2015; revised February 2016; accepted April 2016

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 2, Article 6, Publication date: November 2016.

http://www.minibus.hk/
http://www.autonlab.org/tutorials/kmens11.pdf
http://www.autonlab.org/tutorials/kmens11.pdf
http://www.nytimes.com/2010/02/22/nyregion/22ataxis
http://www.nytimes.com/2010/02/22/nyregion/22ataxis
http://en.wikipedia.org/wiki/Lastmile

