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1. INTRODUCTION

The recent advance of urban infrastructures increases our ability to collect, analyze,
and utilize big infrastructure data to improve urban phenomenon modeling [Zheng
et al. 2014]. Numerous data-driven models have been proposed based on these
infrastructure data to capture urban dynamics [Aslam et al. 2012; Shang et al. 2014;
Yuan et al. 2011a]. However, although each infrastructure produces abundant data, al-
most all resultant models suffer from data sparsity [Zheng et al. 2014]. This is because
it is almost impossible to collect complete data about a particular phenomenon under
fine-grained spatial-temporal contexts. For example, traffic speeds can be modeled by
GPS data from taxicabs [Aslam et al. 2012], but under fine-grained spatial-temporal
contexts, such a speed model suffers from data sparsity. As shown by our empirical
analysis on the Chinese city Shenzhen, given a middle-length time slot of 5min during
24h, 57% of its 110,000 road segments on average do not have any taxicabs, which
leads to data sparsity.

In this work, we argue that with increasing updates of urban infrastructures, one
urban phenomenon can be separately modeled by many heterogeneous infrastructure
datasets. For example, a traffic speed can be directly modeled by vehicle GPS data and
loop detector data [Aslam et al. 2012] or indirectly modeled by cellphone and transporta-
tion smartcard data [Isaacman et al. 2012]. Integrating these relevant yet heteroge-
neous models can provide complementary predictive powers by combining the expertise
of heterogeneous infrastructures, which is used to address data sparsity issues about
single infrastructures. Although many effective models have been proposed based on
infrastructure data, they are typically based on single-source data, for example, taxicab
GPS [Aslam et al. 2012], cellphone data [Isaacman et al. 2012], bus data [Bhattacharya
et al. 2013], and subway data [Lathia and Capra 2011]. Due to various technical and
logistical reasons, little work, if any, has been done to integrate single-source hetero-
geneous models into a unified multi-source model based on large-scale infrastructure
data (TB-level data) to address practical issues, for example, sparse data, for real-world
applications. We provide a detailed survey of existing work in Section 6.

To this end, we motivate and design UrbanCPS, a Cyber-Physical Systems (CPS)
system with a generic heterogeneous-model integration based on extremely-large in-
frastructure data. In UrbanCPS, we implement five heterogeneous models based on a
14,000-taxicab network, a 15,000-truck network, a 13,000-bus network, a 10-million-
user cellular network, and an automatic fare-collection system with 17,000 smartcard
readers and 16 million smartcards in Shenzhen. With these five highly diverse hetero-
geneous models, we propose a model-integration technique to address their data spar-
sity, for example, integrating traffic-speed models based on vehicles data and urban-
density models based on cellphone data. However, we face three challenges as follows.

(1) Among all heterogeneous models, some models are only indirectly relevant to a
particular phenomenon of interest, for example, an urban-density model is only
indirectly revelent to traffic speeds. Thus, it is challenging to effectively integrate
directly relevant models with indirectly relevant models due to their heterogeneity.

(2) Indirectly relevant models normally cannot output a measurement about phenom-
ena of interest directly. Thus, even with complementary knowledge from indirectly
relevant models, it is a non-trivial problem to solve data sparsity for directly rele-
vant models.

(3) During a model integration, different models have different weights under different
temporal, spatial, and contextual conditions, and the optimal weights are usually
obtained by regression with the ground truth. But the ground truth of urban scale
phenomena is almost impossible or really expensive to be obtained.

A unique combination of the above three challenges makes our work signifi-
cantly differ from the previous model integration, where integrated models are often
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homogenous and based on complete data with known ground truth. The key contribu-
tions of the article are as follows:

—We propose the first generic CPS system UrbanCPS with heterogeneous model inte-
gration based on metropolitan-scale data. To our knowledge, the integrated models
have by far the highest standard for urban modeling in two aspects: (i) modeling
based on the most complete infrastructure data including cellular, taxicab, bus, sub-
way, and truck data for the same city and (ii) modeling based on the largest resi-
dential and spatial coverage (i.e., 95% of 11 million permanent residents and 93%
of 110,000 road segments in Shenzhen). The sample data are given in Sample Data
[2015].

—We theoretically formulate an optimization problem to integrate heterogeneous mod-
els. We propose a technique to dynamically measure heterogeneous-model simi-
larity on phenomena of interest under different temporal, spatial, and contextual
conditions to address three practical issues as follows: (i) how to integrate indi-
rectly relevant heterogeneous models, (ii) how to use an integrated model to ad-
dress data sparsit, and; (iii) how to assign weights to different models without a
regression process based on the ground truth. In particular, we design a technique
based on context-aware tensor decomposition to integrate multiple models with data
sparsity.

—We design and implement a real-world application called Speedometer, which infers
real-time traffic speeds in urban areas based on an integration of five models built on
taxicab, bus, truck, cellphone, and smartcard-reader networks. We test UrbanCPS
based on a comprehensive evaluation with 1TB real-world data in Shenzhen. The
evaluation results show that, compared to a current system, UrbanCPS increases
the inference accuracy by 29% on average.

We organize the article as follows. Section 2 gives our motivation. Section 3 presents
the UrbanCPS. Section 4 describes our model integration based on Bayesian model
averaging and tenser decomposition. Section 5 validates UrbanCPS with a real-world
application, followed by the related work and the conclusion in Sections 6 and 7.

2. MOTIVATION

To show our motivation, we compare two traffic-speed models built on large-scale
empirical data we collected in Shenzhen. The first model is called SZ-Taxi [Transport
Commission of Shenzhen Municipality 2014], which is a real-world system deployed
and maintained by the Shenzhen Transport Committee to infer real-time traffic speeds
based on taxicab GPS data in Shenzhen. The second model is called Travel Speed
Estimation (TSE) [Shang et al. 2014], which is a state-of-the-art traffic model in the
research community based on vehicle GPS data. We feed our bus and truck GPS data to
TSE and obtain two models called TSE-Bus and TSE-Truck, respectively. The details
are given in Section 5.2. As in Figure 1, we compare three models based on taxicab,
bus, and truck data to the ground truth on a major road segment in Shenzhen called
Shahe Road in 5min slots during a regular Monday.

The ground truth is obtained by loop detectors, which are deployed in limited in-
tersections of a city to obtain the real-time average traffic speeds. Loop detectors are
mostly managed by city transportation agencies. Due to costs and deployment efforts,
most cities, including Shenzhen, only install these detectors on major intersections or
road segments instead of urban-scale deployment. The details about loop detectors are
given in the evaluation section. Note that although different kinds of vehicles have dif-
ferent speeds on the same road segment, for example, a bus may have a different speed
from a passenger car [Garg et al. 2014b], we focus on developing an average speed model
for generic traffic, similar to other state-of-the-art models [Transport Commission of
Shenzhen Municipality 2014; Shang et al. 2014].
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Fig. 1. Inferred traffic speeds by three models.

In general, all three models have data sparsity issues, that is, among a total of 288
5min slots, SZ-Taxi, TSE-Bus, and TSE-Truck have data on 87, 49, and 39 slots, that
is, 30%, 17%, and 14%, respectively. If the data are all complete for all three models,
then we should have 24 points for every model, that is, a total of 72 points, for every
red box covering a 2h period, but we have much fewer than 72 points, as shown in
Figure 1. (i) SZ-Taxi has a major data sparsity issue during the early morning when no
taxicabs are on this road segment. Further, it typically overestimates the speed at night
since taxicab drivers typically drive much faster than regular drivers at night when
passengers are few, but it underestimates the speed in the daytime due to frequent
stopping for pickups and dropoffs as well as long wait times for passengers. (ii) TSE-
Bus has sparse data for the nighttime when the bus service is not available and in
some regular daytime. Further, it underestimates the speed in the non-rush hour due
to frequent stops, but it overestimates the speed in the rush hour because of dedicated
fast traffic lines for bus only. (iii) TSE-Truck has sparse data in the morning and
evening rush hour, because trucks are forbidden to use several major roads during
the rush hour to relief traffic congestion. Even for the time period where trucks are
allowed, it still has this issue. Also, it usually underestimates the speed during other
times due to the speed limit of trucks. Note that this road segment was selected as 1
of 10 major road segments in Shenzhen, but we still face major data sparsity issues,
which are much worse on other small road segments where there are fewer taxicabs,
buses, or trucks, as shown in Section 3.2.

A seemingly promising solution is to integrate these three models to address data
sparsity issues from a homogenous complimentary view. However, such a straightfor-
ward homogenous-model integration may still face data sparsity issues due to their
inherent homogeneity, for example, all three models have incomplete data in common
slots in the red boxes. In this work, we address this challenge by introducing other
heterogeneous models (e.g., urban-density models) based on different datasets (e.g.,
cellphone data) under the observation that the traffic speed is correlated with urban
density in same spatial-temporal contexts [Cox 2015], as shown by Figure 2, where we
plot the density and traffic speed on a road segment in Shenzhen on a regular Monday.
We clearly found that when the traffic density goes up, the traffic speed goes down. It
motivates us to combine density models with speeds models to infer traffic speeds. In
fact, in the civil engineering community, such a phenomenon is called the fundamental
diagram of traffic flow [Wikipedia 2016]. There has been some previous work to empir-
ically quantify this fundamental diagram [Sen et al. 2013a] but in a small scale with
only traffic data. In contrast, our work is to integrate models driven by vehicle GPS
data, cellphone data, and smartcard data.
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Fig. 2. Correlation between speed and density.

Fig. 3. Urban Cyber Physical System.

However, determining a way to combine these heterogeneous models for the same
objective is challenging. In this work, we propose an integration technique in a reference
implementation of an extremely large CPS system, which is presented as follows.

3. URBAN CYBER PHYSICAL SYSTEM

Broadly, a CPS can be considered a system of systems. Therefore, in this work, we con-
sider a set of urban infrastructure systems (for example, cellular, taxicab, bus, subway,
and truck networks) as a Urban Cyber Physical System (UrbanCPS) from a broad per-
spective: Any device in urban infrastructures is considered a pervasive sensor in Urban
CPS if it generates data that can be used to build a model to describe phenomena of
interest. Built on an integration of models based on multiple data sources, UrbanCPS
provides unseen urban dynamics under extremely fine-grained spatio-temporal resolu-
tions to support real-world applications, which cannot be achieved by any model from
a single data source in isolation, for example, a monolithic infrastructure.

In Figure 3, we outline UrbanCPS with four components, that is, Data Collection,
Model Generation, Model Integration, and Model Utilization. These four components
span the whole data-processing chain in UrbanCPS.

As in Figure 3, we provide a road map for the rest of article as follows. (i) In
Section 3.1, we first introduce the data collection where we individually collect multiple-
source data from urban infrastructures of Shenzhen. (ii) In Section 3.2, we generate
various heterogeneous models based on collected single-source data. (iii) In Section 4,
we effectively combine these heterogeneous models by our model integration based on
their similarity and domain knowledge. (iv) In Section 5, to close the control loop, we
propose an application to estimate real-time traffic speeds based on integrated models
and other supporting data, for example, map data and urban partition data. We en-
vision that urban residents would use this application to find efficient routes, which

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 4, Publication date: November 2016.



4:6 D. Zhang et al.

in turn provides feedback to urban infrastructures. As a result, with the highlights on
extremely-large data collection and highly generic heterogeneous model integration,
UrbanCPS builds an architectural bridge between multiple domain-independent urban
infrastructures and real-world knowledge output tailored by applications.

3.1. Data Collection

In our project, we have been collaborating with several service providers and the
Shenzhen Transport Committee (STC) for real-time access of urban infrastructures.
In Figure 3, we consider five kinds of devices in this version of implementation, which
detects urban dynamics from complimentary perspectives.

—Cellphones are used to detect cellphone users’ locations at cell tower levels based
on call detail records. We utilize cellphone data through two major operators in
Shenzhen with more than 10 million users. The cellphone data give 220 million
locations per day.

—Smartcard Readers are used to detect locations of a total of 16 million smartcards
used to pay bus and subway fares. These readers capture more than 10 million rides
and 6 million passengers per day. We study reader data from STC, which accesses
real-time data feeds of a company that operates the smartcard business.

—Buses are used to detect real-time traffic and bus passengers’ locations by cross-
referencing data of onboard smartcard readers for fare payments. We study bus data
through STC, to which bus companies upload their bus status in real time, accounting
for all 13,000 buses generating two GPS records per minute.

—Taxicabs are used to detect real-time traffic and taxicab passengers’ locations based
on taxicab status (i.e., GPS and occupancy). We study taxicab data through STC, to
which taxicab companies upload their taxicab status in real time, accounting for all
14,000 taxicabs generating two GPS records per minute.

—Trucks are used to detect real-time traffic by logging real-time GPS locations of
a fleet of 15,000 freight trucks, which travel within Shenzhen and around nearby
cities. We study this truck network through a freight company that installs GPS
devices on all these trunks for daily management. Every truck uploads its real-time
GPS location and driving speed back to the company server every 15s on average,
which then are routed to our server.

Since our article concentrates on system aspects, we briefly introduce our data related
issues due to space limitation. We establish a secure and reliable transmission mech-
anism, which feeds our server the above data collected by STC and service providers
with a wired connection.

As in Figure 4, we have been storing a large amount of data to generate single-source
models. Their spatial granularity is given in Figure 5 where commercial vehicles, that
is, trucks, buses, and regular and electric taxis, generate data at road segment levels
but bus smartcards, subway smartcards, and cellphones generate data at station levels.

Such big data require significant effort for the daily management. We utilize a 34TB
Hadoop Distributed File System (HDFS) on a cluster consisting of 11 nodes, each of
which is equipped with 32 cores and 32GB RAM. For daily management and processing,
we use the MapReduce-based Pig and Hive. Due to the extremely large size of our
data, we have been finding several kinds of errant data, for example, missing data,
duplicated data, and data with logical errors, and thus we have been conducting a
detailed cleaning process to filter out errant data on a daily basis. We protect the
privacy of residents by anonymizing all data and presenting models in aggregation. In
short, our endeavor of consolidating the above data enables extremely large-scale fine-
grained urban phenomenon rendering based on existing single-source models, which
is unprecedented in terms of both quantity and quality as shown in the following.
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Fig. 4. Datasets from model generation.

Fig. 5. Data granularity.

3.2. Model Generation

Fellow researchers have proposed many effective single-source models [Zheng et al.
2014], so we restrain ourselves from developing new models. Instead, we directly use
our data to generate single-source models based on existing methods.

3.2.1. Model Summary. We implement two kinds of models based on the data collected
in UrbanCPS. (i) Speed Models: including MT , MB, MF , which use GPS data from taxi-
cab, bus, and freight truck networks individually to estimate real-time traffic speeds.
They are implemented similarly according to a state-of-the-art speed model, TSE,
which uses historical and real-time vehicle data as well as contexts (for example, phys-
ical features of roads) for a collaborative filtering [Shang et al. 2014]. In addition, we
consider all vehicles as a single fleet and feed its data to TSE to obtain a new model MV .
(ii) Density Models: including MC and MS, which use the Cellphone and Smartcard
data to estimate real-time urban density (i.e., count of residents). MC is based on a
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Table I. Heterogeneous Models

Model Spatial Temporal Resident
Name Resolution Resolution Coverage

MT 87% of Roads 30s N\A
MB 59% of Roads 30s N\A
MF 45% of Roads 15s N\A
MV 93% of Roads 7.5s N\A
MC 17,859 Towers Various 95%
MS 10,442 Stations Various 55%

Fig. 6. Covered road segments.

population density model that predicts future Call detail record (CDR) records based
on the previous CDR records to indicate the density [Isaacman et al. 2012]. MS is based
on a Gaussian process-based predictive model that uses contexts, for example, time of
day and day of week, to infer transit passenger density [Bhattacharya et al. 2013]. We
provide a summary of these models in Table I based on their results in one day. During
1 day, based on the GPS uploading speeds and traveling patterns, MT , MB, MF , and
MV cover 87%, 59%, 45%, and 93% of all 110,000 road segments in Shenzhen. During 1
day, MC covers 95% of 11 million residents and produces their locations as 1 of 17,859
cell towers when they use their phones. MS covers 55% of all residents and produces
their locations as 1 of 10,442 transit stations when they use their smartcards.

3.2.2. Data Sparsity in Fine Granularity. Although all these models have comprehensive
daily data, real-world applications typically require knowledge under fine-grained
spatial-temporal contexts [Aslam et al. 2012; Shang et al. 2014; Yuan et al. 2011a]
where all these models experience data sparsity issues.

Based on the historical data, we pick the first weekday after a national holiday, and
on this particular day, all these infrastructure systems generate the biggest data in
terms of volumes compared to other days.

We show the percentage of segments where speeds can be captured by speed models
in 5min slots in Figure 6. We found that these models capture a low percentage of
segments under 5min slots, for example, even for MV based on all vehicle data, we only
have 49% of road segments on average with vehicles, which leads to data sparsity.

Similarly, we show the number of residents captured by MC and MS in Figure 7,
where the result for MS is shown by a factor of 10 in order to show the fluctuation.

We found that these two density models also have data sparsity issues due to high
total population in Shenzhen, for example, among 11 million permanent residents, MC

can only capture 1 million of them at most during a 5min slot around 15:00, accounting
for only 9% of all residents. MC can only capture 80,000 of them at most during a 5min
slot of the morning rush hour, accounting for only 0.7% of all residents.
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Fig. 7. Covered urban residents.

3.2.3. Opportunity for Model Integration. In this work, we found that although all these
models have data sparsity issues, MC and MS have more complete data than others,
for example, for every 5min slot in both MC and MS, we have density data at cell
tower and transit station levels. Therefore, by resetting their spatial granularity to
road segment levels (that is, the details are given in Section 5.2), density models MC

and MS are capable of providing complimentary knowledge for speed models MT , MB,
and MF , which have severe data sparsity issues on road segment levels, for example,
if a speed model does not have GPS data about a road segment during a time slot, we
infer missing GPS data based on historical GPS data and the data from road segments
with similar urban density, shown by our model integration as follows.

4. MODEL INTEGRATION

We introduce our integration technique by combining models directly or indirectly rel-
evant to phenomena of interest (hereafter direct and indirect models for conciseness).
In this work, we simply identify a model as a direct model to an urban phenomenon
if it is based on the data with direct measurements of this phenomenon, for exam-
ple, a model based on taxicab data is a direct model for the phenomenon of traffic
speeds, because taxicab data have direct measurements of speeds. But a model based
on cellphone data is only an indirect model for speeds because it does not have direct
measurements on speeds. As discussed before, we also need these indirect models in
our integration, because they often provide complimentary knowledge to address data
sparsity issues of direct models. Note that direct and indirect models differ from classic
supervised and unsupervised models in data mining, which are both direct models in
our context since they are based on data with direct measurements for phenomena of
interest.

4.1. Problem Formulation

Let xt·s be an urban phenomenon we want to characterize associated with a temporal
context t and a spatial context s, and let y be a class label, where xt·s and y are selected
from a phenomenon space X and a label space Y. Based on K different data sources
in various urban infrastructures, we have a set of K models, that is, from M1 to MK,
and each of them is independently formulated based on a corresponding data source.
For example, in our later application, xt·s is a traffic speed on a road segment s during
a time period t, y is a label of 20km/h, and M1 is a model based on taxicab data and
assigns a particular label y to xt·s.
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Formally, based on the Bayesian model averaging approach, we have the probability
distribution for y as follows:

P(y|xt·s) =
K∑

k=1

P(y|Mk, xt·s) × P(Mk|xt·s), (1)

where P(y|Mk, xt·s) is the prediction made by Mk regarding to xt·s; P(Mk|xt·s) is consid-
ered as a model weight for a particular model Mk given a particular urban phenomenon
xt·s under with a temporal context t and a spatial context s.

To integrate different models in small-scale systems, Equation (1) can be directly
used. In particular, P(y|Mk, xt·s) can be accurately obtained by a direct model Mk di-
rectly relevant to the phenomenon of interest xt·s, based on the complete data. Further,
the ground truth of conditional probability P(y = yi|xt·s) can also be measured and then
used by a regression process to obtain the optimal weight P(Mk|xt·s) for a model Mk

given xt·s. However, to integrate models in our UrbanCPS with Equation (1), we face
three challenges to directly obtain the two factors, that is, P(y|Mk, xt·s) and P(Mk|xt·s).

First, the models in our UrbanCPS are mostly heterogeneous and based on the data
generated by service providers primarily for their own benefits, and thus these models
may be only indirectly relevant to the phenomenon of interest. For example, a model
based on cellphone data can be used to directly infer cellphone usage and thus urban
density. But this model cannot be directly used to infer a traffic speed, though they are
somehow related, because normally the higher the residential density, the lower the
traffic speed, as shown in our Section 2. As a result, given an indirect model Mk to the
phenomenon xt·s, P(y|Mk, xt·s) in Equation (1) is unknown.

Second, due to large-scale phenomena of interest, the data in UrbanCPS are typi-
cally quite sparse. For example, the model based on bus GPS data cannot infer traffic
speeds for road segments without bus routes or during the time periods without bus
services. As a result, even for a direct model Mk for the phenomenon xt·s, P(y|Mk, xt·s)
in Equation (1) may still be unknown.

Third, due to technical issues and high costs for direct measurements on urban
phenomena, the ground truth for certain phenomena is typically unknown. Without
the ground truth, we cannot use a regression process to obtain the optimal weights for
all models during integration. Thus, even with known P(y|Mk, xt·s) based on a direct
model with complete data, P(Mk|xt·s) in Equation (1) may still be unknown.

A combination of these three challenges provides us a unique design space for our
model integration compared to the existing work. As follows, we first show how to
solve this problem optimally if we are given all direct models with both the complete
data and the ground truth, and then we relax these three assumptions individually to
address the three challenges.

4.2. Optimal Solution

Suppose the label space Y is mapped into discrete labels {y1, . . , y|Y|} where |Y| is the
number of labels. Let Ht·s be a |Y| × K matrix where Hk

j = P(y = yj |Mk, xt·s) is the kj
entry, and thus it represents all predictions made for xt·s from all K models. Let wt·s
be a K × 1 weight vector where wk

t·s = P(Mk|xt·s), and thus it represents weights of all
K models. As a result, a |Y| × 1 vector Hwt·s is the output of our model integration for
xt·s, which gives a probability distribution of xt·s on a label space Y of {y1, . . , y|Y|}. With
this output, we aim to minimize the distance from this output to the true conditional
probability (given by the ground truth), which is represented by a |Y| × 1 vector ft·s
where f j = P(y = yj |xt·s). Therefore, based on a straightforward squared error loss
without regularization, the key objective of our model integration is to find an optimal
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weight vector w∗
t·s that minimizes the distance between the true ft·s and our output

Hwt·s as follows:

w∗
t·s = arg min

wt·s
(ft·s − Hwt·s)T (ft·s − Hwt·s).

The optimal solution of this function can be directly obtained by a least-squares linear
regression.

However, as discussed before, this optimal solution has three impractical assump-
tions (i.e., all directly relevant models, complete data, and known ground truth), which
leads to two issues. First, an element in Ht·s, for example, Hk

j = P(y = yj |Mk, xt·s), is not
always available for an indirect model Mk or a direct model Mk based on sparse data.
Second, the true conditional distribution ft·s is mostly unknown due to the unknown
ground truth. As in following three subsections, we relax these three assumptions one
by one and discuss the issues of (i) how to obtain P(y|Mk, xt·s) for an indirect model,
(ii) how to obtain P(y|Mk, xt·s) for a direct model based on sparse data, and (iii) how to
infer the weights without the ground truth, respectively.

4.3. Indirect Models

In our UrbanCPS, various models are built based on the collected data, and some of
these may not be directly relevant to the urban phenomenon we try to characterize. But
we still need the models based on these indirectly relevant data, because their diversity
can provide additional, more often complimentary, knowledge helping us to solve issues
of models directly related. Suppose we have a set of urban phenomena associated with
different real-world temporal and spatial contexts X = {xt1·s1 , xt1·s2 , xt2·s1 , xt2·s2}, and aim
to characterize them into a label space of Y = {y1, y2, y3}. In our later application, xt1·s1

is the average traffic speed on a road segment s1 during time period t1, which can be
assigned with a label of y1 = 10km/h. Suppose among all K models, the models from
M1 to Md are direct models, and the models from Md+1 to MK are indirect models. For
a direct model Mp ∈ (M1, . . . , Md), P(y|Mp, xt·s) is directly obtained, but for an indirect
model Mq ∈ (Md+1, . . . , MK), P(y|Mq, xt·s) is typically unknown. The main objective of
the following is to infer P(y|Mq, xt·s) for an indirect model Mq. The key idea of our
method is to use the internal similarity between an indirect model Mq and all direct
models to infer P(y|Mq, xt·s) for Mq for a particular temporal spatial combination.
However, the internal similarity between models is difficult to be directly quantified,
so we introduce a process of categorizing all elements in the phenomenon space X by
individual models as follows.

4.3.1. Categorizing. Based on a direct model Mp, we directly categorize all elements in
X = {xt1·s1 , xt1·s2 , xt2·s1 , xt2·s2} into |Mp| categories, and each of category is associated with
a unique label in Y. Thus, for a direct model Mp, |Mp| = |Y|. Similarly, based on an
indirect model Mq, we also categorize all elements in X into |Mq| categories by a given
clustering algorithm (the metric for clustering could be the direct measurement of data
used to build Mq). Normally, an indirect model Mq cannot directly characterize the
elements in X because Mq has a different phenomenon space Z. But we use a temporal-
spatial context t · s to perform one-to-one mapping from elements in Z to elements
in X in order to let Mp categorize X. For example, if an indirect model Mq clusters
elements in its own phenomenon space Z = {zt1·s1 , zt1·s2 , zt2·s1 , zt2·s2} into two categories
{zt1·s1 , zt1·s2} and {zt2·s1 , zt2·s2}, then it also categorizes X into two categories {xt1·s1 , xt1·s2}
and {xt2·s1 , xt2·s2} under an observation of similarity between elements in X and Z with
the same spatial and temporal conditions. Note that for an indirect model Mq, |Mq| is
based on a given clustering algorithm and thus is not necessarily equal to |Y|.

For example, as in Table II, we have K = 3 models, among which M1 and M2 are
Direct models and M3 is an Indirect model. Thus, M1 categorizes all elements in
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Table II. Categorizing Example

Label ID Similarity Vectors
M1 M2 M3 M1 M2 M3

D D I c1
1 c1

2 c1
3 c2

1 c2
2 c2

3 c3
a c3

b

xt1·s1 y1 y2 a 1 0 0 0 1 0 1 0
xt1·s2 y1 y1 a 1 0 0 1 0 0 1 0
xt2·s1 y2 y1 b 0 1 0 1 0 0 0 1
xt2·s2 y3 y3 b 0 0 1 0 0 1 0 1

X = {xt1·s1 , xt1·s2 , xt2·s1 , xt2·s2} into |Y = {y1, y2, y3}| = 3 categories, that is, c1
1, c1

2, c1
3, where

the elements of X in c1
i are with the label yi. As in Table II, suppose the model M1

(i) assigns a label of y1 to xt1·s1 and xt1·s2 , leading to its first category c1
1 = {xt1·s1 , xt1·s2};

(ii) assigns a label of y2 to xt2·s1 , leading to its second category c1
2 = {xt2·s1}; and (iii) assigns

a label of y3 to xt2·s2 , leading to its third category c1
3 = {xt2·s2}. Similarly, we have three

categories for the direct model M2 as well, and each of these categories is also associated
to a label in Y. But for the indirect model M3, we only have two categories c3

a and c3
b,

which are not directly associated to any label in Y. Continuing with the previous real-
world application where we try to characterize xt1·s1 , that is, the traffic speed for a road
segment s1 during a time period t1. M1 is the speed model MT based on taxicab data,
M2 is the speed model MB based on bus data, and M3 is the urban density model MC

based on cellphone data. Based on M1, we assign a label y1 = 10km/h to xt1·s1 , but,
based on M2, we assign a label y2 = 20km/h to xt1·s1 . Further, the indirect model M3

can only tell us that xt1·s1 may be similar to xt1·s2 , because, according to M3, the urban
densities for road segments s1 and s2 are similar during a time period t1.

Based on categorizing, given xt1·s1 , we have a unified formula for either a direct or
indirect model Mk as follows:

P(y|Mk, xt·s) =
|Mk|∑
l=1

P
(
y|ck

l , Mk, xt·s
) · P

(
ck

l |Mk, xt·s
)
,

where ck
l is the lth category of Mk; P(ck

l |Mk, xt·s) = 1 if xt·s ∈ ck
l ; P(ck

l |Mk, xt·s) = 0 if
otherwise. Thus, given xt·s ∈ ck

l ,

P(y|Mk, xt·s) = P
(
y|ck

l , Mk, xt·s
) = P

(
y|ck

l , xt·s
)
. (2)

Therefore, we transfer the problem from the model-level P(y|Mk, xt·s) to the category-
level P(y|ck

l , xt·s), because the comparison between categories is easier to quantify.
Given xt·s ∈ cp

l where cp
l belongs to a direct model Mp,

P
(
y = yi|cp

l , xt·s
) =

{
1 if l = i
0 if l �= i

. (3)

Note that for simplicity we assume that there are no errors during categorizing, that
is, given xt·s ∈ cp

l , it is always assigned to yl. But if P(y = yi|cp
l , xt·s) follows an em-

pirical distribution instead of as in Equation (3), then our method still works with a
straightforward probabilistic method.

Given xt·s ∈ cq
l where cq

l belongs to an indirect model Mq, however, P(y = yi|cq
l , xt·s)

is unknown. Thus, the key question we have now is how to infer P(y|cq
l , xt·s) for a

category cq
l belonging to an indirect model Mq. As follows, we solve this issue by

exploring similarity between categories from direct and indirect models.

4.3.2. Similarity Measurement. Basically, the rationale behind the similarity measure-
ment is that given a category cp

i from a direct model Mp and a category cq
l from an
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indirect model Mq, the closer cq
l is to cp

i , the more likely that the members in cq
l have

the same label with the members in cp
i . Essentially, we transfer the expertise from

direct models to indirect models by comparing their similarities on category levels.
Formally, for P(y|cq

l , xt·s) where the category cq
l belonging to an indirect model Mq,

we have

P
(
y = yi|cq

l , xt·s
) =

∑d
j=1 S(cq

l , c j
i )∑|Y|

i=1

∑d
j=1 S(cq

l , c j
i )

, (4)

where S(cq
l , c j

i ) is the similarity between two categories cq
l and c j

i . Therefore, the numer-
ator is the sum of similarity between a category cq

l and all categories with a particular
label yi from all direct models (i.e., from M1 to Md); the denominator is the sum of
similarity between a category cq

l and all categories with all labels (i.e., from y1 to y|Y|)
from all direct models (i.e., from M1 to Md).

To quantify similarity between two categories, we use a similarity vector ck
l to rep-

resent the membership of elements in X for a category ck
l . For example, as in Table II,

we have c1
1 = {1, 1, 0, 0} indicating the first and second elements in X, that is, xt1·s1 and

xt1·s2 , belong to c1
1. With similarity vectors, we calculate S(cq

l , c j
i ) by the Jaccard index,

S
(
cq

l , c j
i

) = |cq
l ∩ c j

i |
|cq

l ∪ c j
i |

.

For example, in Table II, S(c1
1, c1

2) = 0
3 , and S(c1

1, c2
1) = 1

3 . By changing yi from y1 to y|Y|
in Equation (4), we have the distribution of P(y|cq

l , xt·s).

4.3.3. Summary. In short, based on P(y|cp
l , xt·s) in Equation (3) for a category cp

l from
a direct model Mp where p ∈ [1, d] and P(y|cq

l , xt·s) in Equation (4) for a category cq
l

from an indirect model Mq where q ∈ [d + 1, K], we have P(y|ck
l , xt·s) for any category

from both either a direct model Mp or an indirect model Mq. As a result, we have
P(y|Mk, xt·s) for all models where k ∈ [1, K] in Equation (2), which addressed the
challenge of integrating heterogeneous direct models and indirect models.

4.4. Models Based on Sparse Data

In this subsection, for models with sparse data, we formulate a tensor decomposition
problem to infer real-time urban phenomenon xt·s on road segment s during time t.
Note that we use traffic speeds as a concrete example of urban phenomena because our
tensor decomposition needs specific contexts.

4.4.1. Tensor Construction. We design a three-dimensional tensor A ∈ R
N×K×M.

—A speed dimension indicates traffic speed labels: [y1, . . . , y|Y|].
—A time slot dimension indicates specific time windows (e.g., 1h window from 5PM to

6PM): [t1, . . . , t|T|].
—A spatial unit dimension indicates specific spatial units (e.g., a urban region):

[s1, . . . , s|S|].
—An entry A(y, s, t) indicates the traffic speed label y for a road segment s during a

time slot t.

With our data, we fill this tensor A and then obtain all traffic speed labels under
a specific spatiotemporal partition. However, a key challenge is that the tensor A
is sparse because for road segments without any commercial vehicles during a time
window, their corresponding entries are empty due to lacking GPS data.
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Fig. 8. Tensor decomposition.

A typical approach to address this challenge is to use a technique called tensor
decomposition. As in Figure 8, we have a tensor with three dimensions indicating
traffic speed, road segments, and time slots. An entry denotes a tuple [speed, location,
time]. But this tensor is sparse due to insufficient commercial vehicles. Based on the
classic Tucker decomposition model [Kolda and Bader 2009], we decompose A into
a core tensor I along with three matrices, Y ∈ R

|Y|×dy
, S ∈ R

|S|×ds
, and T ∈ R

|T|×dt
.

Y, S, and T infer correlations among traffic speeds, road segments, and time slots,
respectively. dy, ds, and dt are the number of latent factors.

We use the following objective function to optimize the decomposition:

||A − I × Y × S × T ||2 + λ(||I||2 + ||Y||2 + ||S||2 + ||T ||2),

where the first term is for the measurement of decomposition errors and the second
term is a regularization function to avoid over-fitting of modeling. || · ||2 denotes the
l2 norm, and λ is the parameter to control the regularization function’s contribution.
By minimizing the above objective function, we obtain the optimized I, Y, S, and T
with the sparse tensor A, which is given by commercial GPS data. As a result, we
use I × Y × S × T = A′ to approximate A where × represents the tensor-matrix
multiplication.

However, a key challenge for the above method is that A is over-sparse, especially
under fine spatiotemporal partitions (small road segment levels under 1min time slots).
Therefore, it leads to poor performance of the decomposition. We address this issue by
proposing a technique to use historical traffic data to establish correlated contexts that
improve the performance of the decomposition.

4.4.2. Context Extraction. To provide additional information for the decomposition, we
use the historical commercial GPS data to extract three contexts, that is, resident
density, speed temporal patterns, and speed spatial patterns. We use three matrices to
denote these three contexts as in Figure 9.

—Resident Densities are given by a matrix B where a row denotes a road segment, a
column denotes a time slot, and an entry denotes the average active resident count
obtained by CDR data and smartcard data in this spatial unit for this time slot over
a period of historical time.

—Speed Spatial Patterns are given by a matrix C where a row denotes a road segment,
a column denotes a speed label, and an entry denotes the probability of this speed
label on this road segment given a period of historical time.
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Fig. 9. Context matrix factorization.

—Speed Temporal Patterns are given by a matrix D where a row denotes a time slot,
a column denotes a speed label, and an entry denotes the probability of this speed
label during this time slot given a period of historical time.

All the matrices B, C, and D can be obtained by a set of historical commercial GPS data.

4.4.3. Context-Based Tensor Decomposition. Based on the three extracted context matri-
ces, we present a joint tensor decomposition. In particular, we design the objective
function as follows:

min
I,Y,S,T

L(I,Y,S, T ) = ||A − I × Y × S × T ||2

+ λ1||B − S × T ||2 + λ2||C − S × Y||2 + λ3||D − T T × Y||2
+ λ4(||I||2 + ||Y||2 + ||S||2 + ||T ||2),

(5)

where the first term is to measure the error of decomposing A; the second, third, and
fourth terms are to measure the error of factorizing matrixB, C, andD, respectively; and
the last term is to avoid over-fitting of the decomposition. In our setting, dy = ds = dt.
λ1, λ2, λ3, and λ4 are preset parameters to indicate term weights. We normalized all
values to [0, 1] for the decomposition.

In this objective function, A and B share S and T , A and C share S and Y, A and D
share Y and T . Since B, C, and D are not sparse, they lead to accurate S, T , and Y,
which increases the performance of decomposing A. As a result, the historical resident
densities and traffic speed patterns are transferred into the decomposition of A, which
leads to an accurate tensor decomposition.

Because this objective function does not have a closed-form solution to find the global
optimal I, Y, S, and T , we use an elementwise optimization algorithm as a numeric
method [Karatzoglou et al. 2010] to obtain a local optimal solution. Finally, after we
obtain I, Y, S, and T , we use I × Y × S × T = A′ to address the challenge of modeling
based on sparse data.

Note that this method addresses data sparsity for direct models by assuming the
data are complete for at least one indirect model, for example, a density model. If we
have missing data for all models, then we have to use traditional methods, for example,
weighted averaging, to infer missing data based on historical data.
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4.5. Weighting Models without Ground Truth

In this subsection, we address the issues of assigning a weight to a model for the in-
tegration without ground truth. Normally, the closer a model Mk is to the majority
of all models, the higher weight it should be assigned. Therefore, based on the simi-
larity between different models, we assign the weight of a model Mk for a particular
combination of a temporal context t and a spatial context s as follows:

P(Mk|xt·s) = wk
t·s =

∑K
j=1, j �=k S(Mk, M j)∑K

i=1
∑K

j=1, j �=i S(Mi, M j)
,

where the numerator is the sum of the similarity between Mk and all models; the
denominator is the sum of the similarity among all models. In this work, we define the
similarity S(Mk, M j) between two models Mk and M j as follows:

S(Mk, M j) =
∑|Mk|

u=1

∑|M j |
v=1 S(ck

u, c j
v )

|Mk| · |M j | ,

where we use the similarity at category levels to indicate the similarity at model levels.
Note that existing work usually weights each model globally, but our method assigns

weights to each model according to a unique phenomenon x under a unique temporal-
spatial combination t · s, which is used to identify variations in the model performance
for different real-world contexts. One weighting scheme that is globally optimal for
any phenomenon under all temporal-spatial contexts usually does not exist. Thus, the
urban phenomenon under different temporal and spatial contexts may favor different
models. Thus, the weighting scheme based on temporal-spatial contexts is better than
the global weighting scheme in terms of prediction accuracy.

4.6. Summary

Based on the problem formulation in the first subsection, we obtain the optimal solution
for model weights, which minimizes the distance between the true conditional distri-
bution and the output of our integration. Then, in the following three subsections, we
relax the three key assumptions in the optimal solution one by one towards a practical
model integration. Essentially, the key idea we have been using is to compare internal
similarity of effects of different models on a set of given urban phenomena. Then, we
transfer predictive powers of indirect models with complete data to direct models with
sparse data. The rationale is that the more similar two models are, the more likely
they would make the same prediction about an urban phenomenon. Finally, the sim-
ilarity is used as an indication of a model’s weight by assuming the majority of the
models are correct, and thus the closer a model is to other models, the higher weight it
carries.

5. APPLICATION: SPEEDOMETER

In this section, we present an application called Speedometer to test the performance
of our model integration based on the data we collected in Shenzhen.

5.1. Application Background

The real-time traffic speed in urban regions is an important phenomenon for both
residents and transportation authority. An accurate inference about traffic speeds on
road segment levels under fine-grained time slots improves many urban applications,
for example, more efficient automobile navigation. A direct yet trivial solution is to
install speed detectors, such as loop detectors and traffic cameras as shown in Figure 10,
in every road segment.
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Fig. 10. Loop detectors and traffic cameras.

However, this solution would involve tremendous costs, so these static sensors are
only installed in major segments for most cities. To achieve a speed inference for all
segments, vehicle GPS data from commercial vehicles, such as taxicabs, are utilized to
produce several models to infer traffic speeds [Aslam et al. 2012]. Also, several systems
also infer traffic speeds based on participatory sensing [Zheng et al. 2014]. But these
models typically are based on single-source homogenous data and are ineffective when
data are sparse in fine-grained contexts.

To address this issue, we propose Speedometer, which infers real-time traffic speeds
on segment levels based on an integration of five models, that is, MT , MB, MF , MC ,
and MS, as proposed in Section 3.2. MT , MB, and MF are speed models based on
taxicab, bus, and freight truck data, whereas MC and MS are density models based
on cellphone and smartcard data. Thus, MT , MB, and MF individually map a traffic
speed xt·s on a segment s during a period t into a label space Y to indicate a traffic
speed. MC and MS individually infer an urban density into another label space to
indicate a density under the same contexts. Based on domain knowledge, MT , MB,
and MF are direct models to speeds, and MC and MS are indirect models. Thus,
Speedometer effectively integrates them to produce accurate speed inferences based
on our integration. For different applications, Speedometer infers traffic speeds on
both segment and region levels by aggregating segments with the minimum time slot
of 5min. Figure 11 gives a visualization on average speeds inferred by Speedometer
from 6PM to 7PM in 496 Shenzhen regions where a warmer color indicates a slower
speed.

Note that, based on our model, another related application is to find the representa-
tive intersections to deploy loop sensors to capture traffic dynamics without other data
sources. This application can be formulated as an optimization problem to deploy the
minimal number of sensors with a guaranteed coverage rate. However, such an appli-
cation is very hard to deploy and evaluate, so in this article, we combine the existing
infrastructure and commercial vehicle network to predict the traffic speed, which can
be evaluated by the data we already have access to.

5.2. Application Evaluation

We compare Speedometer with one real-world system and one state-of-the-art
model. The SZ-Taxi System: The Shenzhen government has a pilot program called
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Fig. 11. Traffic speeds across urban regions.

TravelIndex to infer congestion levels on road segments for the convenience of its res-
idents, which shows inferred traffic speeds in real time based on GPS data from all
taxicabs in Shenzhen [Transport Commission of Shenzhen Municipality 2014]. SZ-Taxi
serves as a single-source model suitable for the situation where the multi-source data
are not available. The TSE Model: TSE uses real-time and historical vehicle GPS data
and contexts (e.g., physical features of roads) to infer traffic speed with collaborative
filtering [Shang et al. 2014]. For a fair comparison, we aggregate GPS data from taxi-
cabs, buses, and trucks to feed TSE. TSE serves as a naive multi-source approach for
the situation where multiple heterogeneous data sources are available, but the integra-
tion is at data levels. Differently, Speedometer uses five models, that is, MT , MB, MF ,
MC , and MS, for integration at model levels. We reset MC and MS to the same spatial
granularity with MT , MB, and MF . In particular, MC and MS give the urban density
at cell towers and transit station levels, which can be redistributed to road segment
levels based on coverage areas of particular cell towers or transit stations. We assign
numbers of residents inferred by MC and MS within a coverage area to all segments in
this area. The number of residents assigned to a segment is proportional to the segment
length. Further, we use DBSCAN to obtain categories for the similarity measurement.
Finally, we investigate the impact of different contexts in our tensor decomposition by
adjusting three model parameters, that is, λ1, λ2, and λ3, which control contributions
of different contexts in our tensor decomposition with Equation (5). The default setting
is λ1 = λ2 = λ3 = λ4 = 1

4 where we consider all contexts and the regularization term
equally.

We utilize 91 days of datasets from all infrastructures in Figure 4. We use a cross-
validation approach to divide the data into two subsets: the testing set as streaming
data, including the data for one particular day, and the historical set as historical data,
including the data for the remaining of 90 days. For a particular day, if we use 10min
slots, at the end of the first slot, that is, 12:10AM, we use models to infer the speed for
the slot from 12:00AM to 12:10AM based on both the “real-time” data from 12:00AM
to 12:10AM in the testing set and all historical data in the historical set. We move the
data in the testing set forward for 90 days, leading to 91 experiments. The average
results were reported.
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Fig. 12. Traffic speeds of four road segments.

We test the models with Mean Average Percent Error (MAPE) as MAPE =
100

n

∑n
i=1

|T̄i−Ti |
T̄i

, where n is the total number of temporal-spatial combinations we
tested. We test all models on 18 road segments under 10min slots, which leads to
24 × 60

10 × 18 = 2, 592 combinations for a 1-day evaluation. Ti is the traffic speed in-
ferred by a model under a temporal-spatial combination i; T̄i is the ground truth of the
traffic speed under a temporal-spatial combination i. An accurate model yields a small
MAPE and vice versa. We test models on these specific road segments because we have
access to the ground truth of traffic speeds on these road segments. This ground truth
is obtained by loop detectors in Shenzhen road networks, which are inductive loops
installed in selected major road segments and can detect metal and thus accurately
detect vehicle speeds. Figure 12 gives the ground truth of traffic speeds about four road
segments in Shenzhen.

We first compare all models to show results on four particular road segments and the
average result on all road segments. Then, we study impacts of inference slot lengths.
Further, we investigate the impact of historical data sizes on the running time and
the accuracy of Speedometer to show its feasibility and robustness for the real-time
inferences. Finally, we present an evaluation summary.

5.2.1. Accuracy on Road Segments. Figures 13, 14, 15, and 16 plot the MAPE under
10min slots for four major road segments (i.e., Nantou, Tongle, Fulong, and Shennan)
in Shenzhen urban area. The first three road segments are for uptown, and the last
road segment is for downtown. In general, Speedometer outperforms TSE, which out-
performs SZ-Taxi. This is because SZ-Taxi only considers taxicabs to infer the speeds,
which leads to high MAPE, for example, the early morning in Nantou as in Figure 13.
Although TSE uses all data from commercial vehicles, it does not consider other indirect
density models. Thus, when the GPS data are not available during certain temporal-
spatial combinations, its MAPE is high, for example, the early morning in Tongle as in
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Fig. 13. Nantou MAPE. Fig. 14. Tongle MAPE.

Fig. 15. Fulong MAPE. Fig. 16. Shennan MAPE.

Figure 14. For road segments where vehicles are abundant, these three models have the
similar MAPE, for example, the early morning in Fulong as in Figure 15. In general, the
performance gain between Speedometer and others is lower during the daytime and
the road segments in downtown, for example, Shennan in Figure 16. This is because
taxicabs and other commercial vehicles are abundant and thus quite representative in
downtown during the daytime, so all models have better performance.

Figure 17 gives the average MAPE for all road segments under 10min slots during
24h. The MAPE of all three models are typically higher than the MAPE we found in
Figures 13, 14, 15, and 16. This is because the traffic speed may change dramatically
between road segments, and some remote road segments with few vehicles uploading
GPS data lead to higher MAPE. But the relative performance between the three mod-
els is similar. Speedometer outperforms TSE by 24% on average, and the performance
gains are more obvious in the regular daytime, which may result from the consider-
ation of density models. Speedometer outperforms SZ-Taxi by 29%, resulting from its
integration of the multiple models.

5.2.2. Impact of Slot Lengths. Figure 18 plots the MAPE of all models with different
slot lengths with a default value of 10min. The MAPE of all models reduces with
an increase in the lengths of the time slots, because in a longer slot we accumulate
more data about vehicles, and the traffic speed becomes more stable. Speedometer
outperforms TSE and SZ-Taxi significantly if the slot is shorter than 30min, which
results from the consideration of density models. But when the slot becomes longer
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Fig. 17. Hourly MAPE. Fig. 18. Effects of lengths.

Fig. 19. Data vs. time. Fig. 20. Data vs. MAPE.

than 1h, all models have similar performance, because in such a long slot, all models
have enough data for an accurate inference about relatively stable speeds.

5.2.3. Impact of Historical Data. In this subsection, we study the impact of historical
data on model accuracies and running times by comparing Speedometer to TSE with
a default value of 13 weeks. We did not consider SZ-Taxi, since running times for this
model are unknown. Normally, the more the historical data, the more accurate the
models, the lower the MAPE error, and the longer the running time. Figures 19 and 20
plot running times and MAPE on different lengths of historical data in terms of weeks.
Speedometer has 18% longer running time, which in turn leads to a 29% lower MAPE.
This is because Speedometer has to perform its integration involving heterogeneous
models, which takes time to calculate the model similarity.

5.2.4. Evaluation Summary. We have the following observations: (i) The inference accu-
racy is highly dependent on both locations and times as shown in Figures 13 and 17.
On average, all models have better performance in more dense areas during the day-
time, due to the abundance of the data to feed the models. (ii) The length of the slots
has a significant impact on the performance of all models as shown in Figure 18. It is
intuitive that a longer slot has lower error rates, yet it also reduces the practicality
for real-time applications. (iii) As in Figures 19 and 20, the model integration takes
a longer running time, especially when the historical dataset is big, but it increases
the accuracy. A good tradeoff between accuracy and running times has to be designed
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based on domain knowledge and user preferences. (iv) Looking across different factors,
we found that slot lengths have the largest impact, and then locations and times, and,
finally, historical data sizes.

6. RELATED WORK

Three types of work are related to our UrbanCPS: (i) models based on single-source
urban infrastructure data, (ii) theoretical ensemble of multiple models, and (iii) data
mining based on traffic flow theory.

6.1. Models Based on Single-Source Data

Numerous novel models and systems have been proposed based on various urban in-
frastructure data to improve urban efficiency. We focus on the work closely related to
models based on vehicular GPS, cellphone, and transit data. Based on GPS data, many
models and systems are proposed to benefit various urban residents: estimating traffic
volumes or speeds for regular drivers [Aslam et al. 2012], assisting regular drivers to
improve their driving performance [Yuan et al. 2011a], detecting anomalous taxicab
trips to discover driver fraud for taxicab operators [Zhang et al. 2011], estimating cell-
phone users’ travel range [Isaacman et al. 2011], querying expected duration and fare
of a planed taxi trip for taxicab passengers [Balan et al. 2011], inferring gas consump-
tion at road segment levels [Shang et al. 2014], enabling us to better understand region
functions of cities [Yuan et al. 2012], discovering temporal and spatial causal interac-
tions to provide timely and efficient services in certain areas with disequilibrium [Liu
et al. 2011; Huang and Powell 2012], allowing taxicab passengers to query the expected
duration and fare of a planed trip based on previous trips and query real-time taxicab
availability to make informed transportation choices [Wu et al. 2012], recommending
optimal pickup locations or routes [Ge et al. 2010; Yuan et al. 2011b], and learning the
dynamics of arterial traffic from probe data [Hofleitner et al. 2012a].

Further, many methods have been proposed for the study of human density and mo-
bility based on cellphone CDR data, for example, identifying cellphone users’ important
locations [Isaacman et al. 2010], modeling how cellphone users move [Isaacman et al.
2012], and predicting where cellphone users will travel next [Dufková et al. 2009].
Finally, transit GPS data are another important source for research in human density
and mobility, for example, identifying passenger locations based on data from taxi-
cabs [Ganti et al. 2012], buses [Bhattacharya et al. 2013], and subways [Lathia and
Capra 2011].

To our knowledge, we are the first to store such a large multi-source dataset, then
build models based on single-source sparse data, and, finally, systemically integrate
these models from a complimentary standpoint. Obviously, the key difference of our
work is that our model integration is built on these models based on single-source data,
and then it effectively integrates them for better performance.

6.2. Theoretical Ensemble of Multiple Models

Our integration approach is inspired by several studies in the data-mining community
proposed to theoretically combine different models to improve their performance [Li
et al. 2014; Xie et al. 2014; Gao et al. 2008, 2009]. However, these studies are mostly
under perfect conditions, for example, the models are based on the complete data and
directly relevant data [Xie et al. 2014]. Differently, our work is focused on models
based on the imperfect data, for example, sparse and indirectly relevant data. Further,
semi-supervised learning also addresses issues related to imperfect data, for example,
unlabeled data, but the models in these work are mostly based on the same domain
knowledge, for example, similar weather data from different websites [Li et al. 2014] or
similar email data from different users [Gao et al. 2009]. In contrast, our approach is
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Table III. SoA Comparison

Reference Model Data Final estimation

Deng et al. [2013] Newell model Loop detector Macroscopic traffic states
AVI, GPS for freeways

Nantes et al. [2016] LWR model Loop detector Macroscopic traffic states
AVI, GPS for urban corridors

Work et al. [2010] LWR model GPS Macroscopic traffic states
for freeways

Hofleitner et al. [2012b] DBN model GPS Macroscopic traffic states
for arterial roads

Herrera et al. [2010] Not available GPS Speed for freeways
Xing et al. [2013] Newell model Loop detector Traffic sensor network design

AVI, GPS
Sen et al. [2013b] Not available Video Macroscopic traffic states

for unlaned traffic
UrbanCPS Model Integration Cellphone Macroscopic traffic states

Transit, GPS for urban traffic

Reference Approach Online vs. offline Spat.-temp. scale

Deng et al. [2013] KFs Offline Small scale
Nantes et al. [2016] Extended KFs Online Small scale
Work et al. [2010] Ensemble KFs Online Small scale

Hofleitner et al. [2012b] EM algorithm Online Small scale
Herrera et al. [2010] Not available Online Not available

Xing et al. [2013] KFs Offline Not available
Sen et al. [2013b] Image processing Offline Small scale

UrbanCPS Similarity measurement Online Large scale

to combine much more diverse models, that is, speed models and density models, based
on various urban infrastructure data. In addition, most studies on model integration
in the data-mining community are based on small-scale data, so their computation is
often complex for better performance [Xie et al. 2014], for example, computing inverse
matrices and conducting non-linear programming, which is undesirable for real-time
applications based on large-scale urban infrastructure data. Differently, the similarity
measurement in our model integration is optimized for computation efficiency, which
makes our work suitable for real-time applications.

Our work combining different data sources in urban systems is conceptually similar
to sensor fusion [Crowley and Demazeau 1993]. But the key difference is that for the
sensor fusion community, the data used are collected for their models and almost all
data are labeled data with directly relevant measurement, and, essentially, they are
homogeneous data. But for our data, they are collected for the billing and management
purposes, for example, vehicle GPS, smartcard data, and cellphone data, so some of
them are only indirectly related to our model, and so our data are heterogeneous data.
The heterogeneity of our data makes our modeling process significantly differ from
sensor fusion.

6.3. Data MiningBased on Traffic Flow Theory

There have been many studies to estimate and predict macroscopic traffic states (i.e.,
flow, density, and speed) at a very fine spatio-temporal scale while utilizing the power
of traffic models. Table III systematically compares those studies with UrbanCPS in
terms of the used traffic model, data sources, final estimation states, online vs. offline
estimators, spatial and temporal scales.
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Deng et al. [2013] adopt the Newell-type traffic model to explain a perturbation
in traffic flow. They use heterogeneous data sources, including loop detector counts,
AVI Bluetooth travel time readings, and GPS samples, to estimate macroscopic traffic
states on a freeway segment. They focus on the offline traffic state estimation using
Kalman filters (KFs) to construct a generalized least-squares estimator. Nantes et al.
[2016] use the first-order Lighthill-Whiteham-Richards (LWR) model to explain shock
waves that propagate upstream of the intersections in urban contexts. They build up
a real-time (i.e., online) traffic prediction model employing the ensemble KFs using
data from multiple sources incrementally, whenever they become available. Work et al.
[2010] estimate traffic states based on the LWR model using a Monte Carlo–based en-
semble KFs. Hofleitner et al. [2012b] estimate traffic states in arterial networks using
sparsely observed probe vehicles. They construct a dynamic Bayesian network (DBN)
to learn traffic dynamics from historical data and to perform real-time estimation with
streaming data. Herrera et al. [2010] perform a field experiment to show that a 2–3%
market penetration of cell phones is enough to provide accurate measurements of the
speed of the traffic flow. They also address concerns, including communication load,
device energy consumption, and privacy, existing in collecting GPS data by proposing
an appropriate sampling strategy. Xing et al. [2013] solve an information-theoretic
sensor network design problem to minimize total travel time uncertainties. Based on
a KF structure, uncertainties are quantified considering several error sources in the
travel time estimation process. The above studies are built for lane-based traffic in de-
veloped countries. However, in developing regions, heterogeneous vehicles are driven
on the same road (i.e., unlaned traffic). Garg et al. [2014a] propose a smartphone
sensor based system to categorize vehicles into four categories: two-wheeler bikes,
three-wheeler auto-rickshaws, four-wheeler cars, and public transport like buses for
developing regions. Sen et al. [2013b] estimate traffic density and speed in unlaned
traffic using image-processing tools.

Those studies integrate multiple heterogeneous traffic data to build a single pre-
diction model, and they are based on small-scale data (e.g., location data between
upstream boundary and downstream boundary). In contrast, UrbanCPS integrates
multiple heterogeneous models based on multi-source and large-scale sparse data.

7. CONCLUSION

In this work, we design and implement UrbanCPS to effectively integrate heteroge-
neous models based on multi-source infrastructure data. Our endeavors offer a few
valuable insights that we hope will allow fellow researchers to utilize our system for
not only model integration but also real-world applications. Specifically, these insights
are that (i) heterogeneous models based on different urban infrastructure data pro-
vide a different yet complimentary view for the same urban phenomenon, and thus
an effective integration of them would boost the model performance; (ii) for many ur-
ban phenomena, indirectly relevant models are often powerful to address the issue of
directly relevant models, for example, sparse data, but we need an effective method
to integrate them with directly relevant models; (iii) though difficult to be obtained,
the ground-truth data about urban phenomena are vital for both model designs and
evaluations. (iv) While it is challenging to integrate heterogeneous models, it is more
challenging to negotiate with service providers for large-scale infrastructure data to
feed models.

REFERENCES

Javed Aslam, Sejoon Lim, Xinghao Pan, and Daniela Rus. 2012. City-scale traffic estimation from a rov-
ing sensor network. In Proceedings of 10th ACM Conference on Embedded Network Sensor Systems
(SenSys’12).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 4, Publication date: November 2016.



Heterogeneous Model Integration for Multi-Source Urban Infrastructure Data 4:25

Rajesh Krishna Balan, Khoa Xuan Nguyen, and Lingxiao Jiang. 2011. Real-time trip information service for
a large taxi fleet. In MobiSys’11.

Sourav Bhattacharya, Santi Phithakkitnukoon, Petteri Nurmi, Arto Klami, Marco Veloso, and Carlos Bento.
2013. Gaussian process-based predictive modeling for bus ridership In. UbiComp’13.

Wendell Cox. 2015. How urban density intensifies traffic congestion and air pollution. Retrieved from
http://americandreamcoalition.org/landuse/denseair.pdf.

J. L. Crowley and Y. Demazeau. 1993. Principles and techniques for sensor data fusion. Sign. Process. 32
(1993), 5–27.

Wen Deng, Hao Lei, and Xuesong Zhou. 2013. Traffic state estimaton and uncertainty quantification
based on heterogeneous data sources: A three detector approach. Transport. Res. B 57 (2013), 132–
157.
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