
63

Generic Neighbor Discovery Accelerations in Mobile Applications

DESHENG ZHANG and TIAN HE, University of Minnesota
YUNHUAI LIU, Third Research Institute of Ministry of Public Security, China
YU GU, IBM Research at Austin
FAN YE, Stony Brook University
RAGHU K. GANTI and HUI LEI, IBM T. J. Watson Research Center

As a supporting primitive of many mobile applications, neighbor discovery identifies nearby devices so
that they can exchange information and collaborate in a peer-to-peer manner. To date, discovery schemes
trade a long latency for energy efficiency and require a collaborative duty cycle pattern, and thus they
are not suitable for interactive mobile applications where a user is unable to configure others’ devices. In
this article, we propose Acc, which serves as an on-demand generic discovery accelerating middleware for
many deterministic neighbor discovery schemes. Acc leverages the discovery capabilities of neighbor devices,
supporting both direct and indirect neighbor discoveries. Further, we present a proactive online rendezvous
maintenance mechanism, which is used to reduce delays for the detection of leaving of neighbors. Our
evaluations show that Acc-assisted discovery schemes reduce latency by up to 51.8% compared to schemes
consuming the same amount of energy. More importantly, to prove the real-world value of Acc, we further
present and evaluate a Crowd-Alert application where Acc is employed by taxi drivers to accelerate selection
of a direction with fewer competing taxis and more potential passengers, based on a 280GB dataset of more
than 14,000 taxis in Shenzhen, the most crowded city in China.

Categories and Subject Descriptors: C.2.1 [Computer-Communications Networks]: Network Architec-
ture and Design, Wireless Communication

General Terms: Design, Experimentation

Additional Key Words and Phrases: Protocol, neighbor discovery, mobile applications

ACM Reference Format:
Desheng Zhang, Tian He, Yunhuai Liu, Yu Gu, Fan Ye, Raghu K. Ganti, and Hui Lei. 2015. Generic neighbor
discovery accelerations in mobile applications. ACM Trans. Sen. Netw. 11, 4, Article 63 (November 2015), 35
pages.
DOI: http://dx.doi.org/10.1145/2832914

This research was supported in part by U.S. National Science Foundation (NSF) grants CNS 0845994, CNS
1444021, CNS 1525235, CNS-1513719, NSFC 61170247, IBM OCR Fund, and the K. C. Wong Education
Foundation of Hong Kong. A preliminary work was presented at ACM SenSys 2012 [Zhang et al. 2012].
Authors’ addresses: D. Zhang and T. He, Department of Computer Science and Engineering, University
of Minnesota, 200 Union Street SE Minneapolis, MN 55455; emails: {zhang, tianhe}@cs.umn.edu; Y. Liu,
Third Research Institute of Ministry of Public Security, 76 Yueyang Lv, Xuhui, Shanghai, P.R.China; email:
yunhuai.liu@gmail.com; Y. Gu, IBM Watson Health, 11501 Burnet Road, Austin, TX, USA 78758; email:
yugu@us.ibm.com; F. Ye, Department of Electrical and Computer Engineering, Stony Brook University, 217
Light Engineering, Stony Brook, NY 11794-2350; email: fan.ye@stonybrook.edu; R. K. Ganti and H. Lei,
IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598; emails: {rganti,
hlei}@us.ibm.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1550-4859/2015/11-ART63 $15.00
DOI: http://dx.doi.org/10.1145/2832914

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

http://dx.doi.org/10.1145/2832914
http://dx.doi.org/10.1145/2832914

63:2 D. Zhang et al.

1. INTRODUCTION

Mobile devices, e.g., smartphones and tablets, are popular, enabling numerous appli-
cations [Ganti et al. 2011; Lane et al. 2011]. Early applications usually were built on
the premise that users check into centralized servers to coordinates with peers [Google
2013; Foursquare 2013; Facebook 2013], so they typically result in excessive updating
process, heavy control overhead, long communication delay, and the exposure of loca-
tion information on centralized services. In contrast, new applications are proposed
based on direct peer-to-peer communication [Synerge 2013; Pietiläinen et al. 2009;
Softonic 2012]. Usually, they rely on data collected in an opportunistic fashion, which
they process and share within a community to monitor large-scale phenomena, e.g.,
urban environments [Dutta et al. 2009; Dutta and Subramanian 2010], user behaviors
[Yan et al. 2009; 2010], transportation [Biagnioni et al. 2011; Thiagarajan et al. 2010],
and social networks [Miluzzo et al. 2011].

Many of these applications require a fast discovery of neighbor devices in a nearby
region [Huang et al. 2005; Liu et al. 2004, 2010; Wikipedia 2013]. For example, fast dis-
covery is critical for firefighters to exchange information during rescue operations [Liu
et al. 2010], for players to interact with each other in location-based games [Wikipedia
2013; Nintendo 2012; Sony 2013], and for taxicabs to send status to other nearby taxi-
cabs to enable real-time distributed dispatching [Zhang and He 2012]. This quickly
collected neighbor information allows applications to effectively collaborate among
participating devices.

On the other hand, in the preceding applications, radios in mobile devices are usually
duty cycled between several modes to save energy or bandwidth, e.g., between an
infrastructure mode and an ad hoc mode. For example, sensor nodes have to alternate
their radios between an inactive mode and an active mode to save energy because most
sensor nodes are powered by batteries. The duty cycling scheme prolongs the devices’
lifetime; however, it poses a significant issue for the neighboring devices to find each
other, as the neighboring devices may not enter the active mode at same time for a long
time due to low duty cycles, e.g., 1%, and thus are incapable of finding each other in
time through such communication.

To address this issue, several state-of-the-art discovery protocols for wireless sensor
networks [Tseng et al. 2002; Zheng et al. 2003; Dutta and Culler 2008; Kandhalu et al.
2010; Purohit et al. 2011; Bakht et al. 2012] have been proposed to achieve a bounded
discovery latency. We found, however, that current protocols face two challenges when
directly employed on personal devices:

—First, typical applications of sensor networks are delay tolerant, but in many mo-
bile applications, humans are involved in the loop, and a longer latency, even though
bounded, distracts user attention. One could argue that adjusting duty cycles of exist-
ing solutions [Tseng et al. 2002; Zheng et al. 2003; Dutta and Culler 2008; Kandhalu
et al. 2010; Purohit et al. 2011] can reduce delay in a discovery when so desired.
These schemes, however, require coordinated changes of duty cycle patterns, a re-
quirement only suitable for the networks where a user owns the whole network and
can change all devices’ duty cycles collaboratively, i.e., sensor networks. In personal
device networks, a user may be unable to configure key system parameters, e.g., duty
cycles, of other users’ devices, meaning that accelerated discovery has to be achieved
only by adjusting the duty cycle of a user’s own device.

—Second, many mobile applications, e.g., geosocial networking, running on personal
devices desire a fast discovery only when such a need arises, unlike the sensor
network applications where continuous discovery is needed to maintain network
connectivity in mobile environments. Thus, we argue that allocating duty cycles
continuously in advance of user demands is wasteful.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:3

To address the preceding two challenges, in this article we advocate accelerated
discovery by individual users in an on-demand autonomous manner. In particular, we
consider a scenario in which an effective discovery protocol, e.g., Disco [Dutta and
Culler 2008], has already been deployed in networks running with a very low duty
cycle. When a faster discovery is needed by a user, an additional energy budget (in
terms of additional active slots) is used to perform an on-demand acceleration.

Our accelerator is called Acc, which functions based on knowledge collected by an
existing discovery scheme. We aim at a generic middleware design that supports a wide
range of discovery protocols with an arbitrary duty cycle pattern. Technically, the key
novelty of Acc is that it leverages knowledge in the neighbor tables of known neighbors
to maximize the utility of additional on-demand energy, i.e., effectiveness of additional
active slots, to accelerate discovery of unknown neighbors while also introducing no
changes on any device except the discovering one. Specifically, our contributions are as
follows:

—We introduce a transparent accelerating scheme Acc that works with deterministic
discovery protocols to greatly accelerate the discovery process. To the best of our
knowledge, this is the first work that provides an on-demand generic solution to
accelerate a wide range of deterministic discovery protocols under different duty
cycle patterns.

—We propose a concept of spatial-temporal coverage and define a model to quantify
the effectiveness of each slot in the acceleration of discovery. The model is fully
distributed and leverages only information in neighbor tables of known neighbors.
It does not make any assumptions regarding radio or mobility models.

—Based on this coverage, we design an agile online scheduling algorithm to decide
additional active slots under a given energy budget. Comparing our online scheduling
to its theoretically optimal Oracle version, we prove that our online scheduling is
competitive by obtaining its competitive ratio ρ, which indicates that our online
scheduling algorithm has bounded performance compared to its Oracle version.

—We present a neighbor verification mechanism and a proactive rendezvous main-
tenance mechanism, which utilizes the online information about common neighbor
reduction as a hint to infer the leaving of a neighbor, and then initiates a binary
selection for additional active slots to proactively accelerate the detection process
about the leaving of the neighbor.

—We test Acc at three scales of networks: (i) a small-scale testbed experiment with
11 TelosB devices, (ii) a middle-scale simulation with 100 mobile devices, and (iii) a
large-scale trace driven evaluation with 14,000 vehicles. The results show that Acc-
assisted schemes reduce the latency by up to 51.8% when consuming the same energy.

—To prove the real-world value of Acc, we propose a Crowd-Alert application to show
how Acc can be employed by taxicab drivers to select a direction with fewer compet-
ing taxis or more potential passengers. We further evaluate Crowd-Alert based on
a 280GB dataset consisting of 6 months of GPS traces of more than 14,000 taxis in
Shenzhen, which is the most crowded city in China with 17,150 people per square
kilometer [Sasin 2012]. Our application demonstrates that a smart driver increases
the possibility of picking up a passenger based on an accelerated discovery, which al-
lows drivers to quickly learn the distributions of potential passengers and competing
taxicabs.

The article is organized as follows. Section 2 introduces related work. Section 3
presents background information. Section 4 provides our motivation. Section 5 pro-
poses Acc design. Sections 6 and 7 present our implementation and simulation. Sec-
tion 8 demonstrates Acc’s application in a taxi dispatch system. Section 9 concludes
the article.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:4 D. Zhang et al.

2. RELATED WORK

The neighbor discovery in low-power wireless networks has recently been studied in
the literature. In general, neighbor discovery schemes can be divided into probabilistic,
quorum-based, and deterministic categories:

—Probabilistic: Probabilistic protocols, e.g., the birthday protocol [McGlynn and
Borbash 2001], assign different probabilities for sending, receiving, and sleeping in
individual slots. Due to the birthday paradox [Mitzenmacher and Upfal 2007], such
probabilistic schemes offer very good performance in the average discovery latency.
But their major limitation is an unbounded worst-case discovery latency, which leads
to a long tail on discovery probabilities over time. Moreover, the birthday protocol
concludes that this discovery scheme aims for the stationary networks instead of the
mobile networks.

—Quorum based: Quorum-based discovery protocols address the preceding unbounded
latency issue by ensuring overlapping active durations between any pair of devices
within a bounded time. In these schemes, time is divided into m× m continuous slots
as a matrix, and each device selects one row and one column (called quorums) to
become active. Therefore, regardless of which row and column a device chooses to
become active, it is guaranteed to have at least two common active slots with other
devices. But a main drawback of quorum-based protocols is a global parameter of m,
which forces all devices in the network to have the same duty cycle [Tseng et al. 2002;
Zheng et al. 2003]. Although some work has been proposed to support asymmetric
duty cycle patterns, they can support only two different duty cycle patterns [Lai
et al. 2010]. Again, quorum-based discovery protocols are also primarily proposed for
stationary networks where energy is the most pressing concern, not mobility.

—Deterministic: Deterministic protocols are most closely related to our work [Dutta
and Culler 2008; Kandhalu et al. 2010; Purohit et al. 2011; Bakht et al. 2012]. They
recently have been proposed to handle the global parameter problem by letting every
device distributedly select one or multiple prime numbers for itself to represent its
duty cycle. Based on the Chinese remainder theorem [Niven and Zuckerman 1991],
the devices would have bounded discovery latencies. In Disco [Dutta and Culler 2008],
each device selects two prime numbers and generates its period independently based
on these numbers. To improve Disco’s performance, U-Connect [Kandhalu et al. 2010]
proposes an activation pattern using one prime and has a shorter latency, especially
in asynchronous symmetric networks. Further, WiFlock [Purohit et al. 2011] com-
bines discovery and maintenance using a collaborative beaconing mechanism with
time synchronization. Searchlight [Bakht et al. 2012] leverages the constant offset
between periodic awake slots to design a simple probing-based approach to ensure
discovery.

Summary. Our work presents a different design architecture than the aforementioned
three categories and serves as a middleware for deterministic neighbor discovery
schemes. We utilize an existing deterministic discovery protocol, e.g., Disco, to guar-
antee a bounded discovery latency by maintaining original active slots. Built upon the
utilized protocol, our design adds only new active slots in addition to the slots specified
by the utilized discovery protocol. This unique design philosophy allows an on-demand
acceleration without the need for additional coordination among mobile devices. An-
other key novelty of this work is that when we add new active slots, we quantify the
effectiveness of each added active slot on both direct and indirect discovery, and the
latter part has not been considered in previous discovery designs.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:5

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9S

0 1 2 3 4 5 6 7 8 9A

0 1 2 3 4 5 6 7B - -
Active SlotsInactive Slots Discovery

Global
Time

-

10
10
10

Fig. 1. Neighbor discovery process.

3. PRELIMINARIES FOR NEIGHBOR DISCOVERY

In this section, we introduce some background information about how mobile devices
can discover each other in a distributed network without any infrastructure support.

Note that many applications include devices with highly diverse configurations dis-
tributed in a wide geographic area, such as low-cost sensors in the wild. Therefore, it
is difficult to achieve global time synchronization at fine granularity. GPS-based syn-
chronization schemes are part of the solution [Liu et al. 2004; Jun et al. 2006], but
they are typically too energy expensive to be implemented on battery-powered mobile
sensors [Elson and Römer 2003] or smartphones [Paek et al. 2010]. Therefore, the de-
vices usually decide their schedules based on a distributed yet coordinated duty cycle
pattern. Specifically, to schedule its discovery, a device S divides time into continuous
fixed-length time slots. Then, based on a specific protocol, S activates its radio and
switches into a discovery mode during a specific set of slots. After that, S broadcasts
one or multiple discovery messages for other devices to discover its existence. At the
same time, S also listens to a wireless channel to receive similar messages from other
devices. Essentially, when neighbor devices have overlapping slots in which they enter
the discovery mode, they are able to discover each other [Dutta and Culler 2008].

Although our Acc can work with a wide range of protocols, for the sake of clarity,
in this article we use Disco [Dutta and Culler 2008] as a representative example.
In the evaluation, we will show how Acc works with WiFlock [Purohit et al. 2011],
U-Connect [Kandhalu et al. 2010], and Searchlight [Bakht et al. 2012] as well. Specif-
ically, Disco employs the Chinese remainder theorem [Niven and Zuckerman 1991] to
guarantee a discovery latency bound. Whereas in the real implementation Disco se-
lects two different primes for a device to solve the issue of two devices having the same
prime, for simplicity we choose only one prime to represent a duty cycle of a device to
show the principle of Disco. For every chosen prime number of slots, the device will
enter into its discovery mode for one slot. Consequently, the actual duty cycle is equal to
the reciprocal of this chosen prime number. For example, to achieve an approximately
1% duty cycle, Disco would choose the prime number of 101. The maximal discovery
latency between two devices, according to the Chinese remainder theorem, is equal
to the product of two prime numbers chosen by these two devices. Figure 1 shows an
example of asynchronous discoveries among three devices: S, A, and B.

In this figure, devices S, A, and B start their local timers at global times 0, 0, and
3, respectively. According to Disco, S discovers devices A and B at global slots 0 and
10, respectively, based on their duty cycles, i.e., 20% (1

5), 33% (1
3), and 14% (1

7). Note
that existing discovery protocols only assume that the slots at individual devices have
equal lengths [Dutta and Culler 2008]. By sending two messages at the beginning and
end of an active slot, they do not require aligned slots and are robust to clock drift. The
perfect alignment in Figure 1 is for illustration.

The rationale behind the duty cycling–based neighbor discovery is to ensure that the
distributed asynchronous devices have their active slots quickly overlapped. Without

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:6 D. Zhang et al.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100

105%
Y

Pe
rc

en
ta

ge
 o

f D
is

co
ve

ri
es

 (%
)

Cumulative Discovery Time (mins)

Disco
Acc-Disco

Z 50%

X

Fig. 2. Motivation.

further information, neighbor discovery protocols have to be cautious about turning
nodes’ radios into active slots, which may waste the energy.

4. MOTIVATION: WHY DO WE NEED ACC?

Our work is motivated by the observation that current state-of-the-art neighbor dis-
covery schemes suffer from long discovery latencies due to duty cycling for energy
efficiency. In many mobile applications, however, neighbor discovery has to be fast
enough to enable crucial responsive user experiences. Unfortunately, for traditional
discovery schemes, its design objective is to discover neighbors with a more energy-
efficient method, no matter how long it will take, as long as it is bounded.

We utilize a GPS dataset of 14,000 taxicabs to simulate a real-world mobile network
(the detailed setting is given in Section 8) to investigate the performance of the neighbor
discovery protocols. In Figure 2, we plot results on the cumulative distribution function,
i.e., CDF, of latency for Disco [Dutta and Culler 2008]. As shown by point X, Disco
discovers more than 30% of neighbors after a latency of 3 minutes; as shown by point
Y , Disco discovers more than 70% of neighbors after a latency of 6 minutes.

Based on the preceding evaluation, we find that although such a long discovery
latency ensures energy savings, it poses a significant challenge for interactive appli-
cations where energy is important but not the most pressing concern. Thus, in these
applications, when needed, an on-demand fast neighbor discovery has to be performed
in a very short period of time before users begin to lose their focus on the applica-
tion. These observations consequently lead to a new design philosophy for neighbor
discovery: to perform an on-demand fast discovery within a given additional energy
budget, a device should discover its neighbors as quickly as possible to make applica-
tions function smoothly. Therefore, our design goal of Acc is to more efficiently utilize
the additional energy budget to accelerate the discovery process compared to current
designs with the same amount of energy.

In Figure 2, to visually show our design objective, we plot the curve of Acc-Disco,
where Acc works together with Disco to accelerate the discovery. To make the compari-
son fair, we run Acc-Disco at the same duty cycle as Disco. But in Acc-Disco, half of the
duty cycle is allocated to Disco for bounded latency and another half of the duty cycle
is allocated to Acc for acceleration purposes. Therefore, Disco and Acc-Disco have the
same total energy budget. The system details are given in Section 8. As shown by point
Z, Acc-Disco discovers more than 70% of neighbors after a latency of 3 minutes. Thus,
comparing point Z to X, under the same latency, our Acc assists Disco to achieve more
discoveries by a maximum of 105%, whereas comparing point Z to Y , to discover the

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:7

Existing Neighbor
Disocvery Protocol

Acc Accelerating
Middleware

Energy Efficient Discovery Mode

Applications

On-demand Accelerating Discovery Mode

+

=

Existing Neighbor
Disocvery Protocol

Acc Accelerating
Middleware

Applications

+

=

Original Active Slots

Additional Active Slots

Total Active Slots

Original Active Slots

Additional Active Slots

Total Active Slots

Fig. 3. Acc in the architecture.

same number of neighbors, our Acc assists Disco in accelerating its discovery process
by a maximum of 50%.

Based on the preceding observations, our goal is enabling Acc to optimally utilize
the additional energy budget to reduce the discovery latency for the same number of
neighbors rather than simply assigning this budget to the existing discovery protocols.

5. ACC DESIGN

In this section, we introduce our detailed design for accelerations of neighbor discovery
in mobile applications.

5.1. Main Idea

In Figure 3, based on the location of Acc in the whole networking architecture, we
introduce the main idea of Acc as follows:

In this figure, an effective existing discovery protocol, e.g., Disco, has already been
installed in each device. This existing protocol provides the neighbor information to
the upper applications. Our Acc serves as a middleware between the existing neighbor
discovery protocol and applications. Augmented further by Acc, a device runs in one
of two discovery modes: energy-efficient discovery mode and on-demand accelerated
discovery mode. If a fast discovery is not required, a device S is in the first mode, and
Acc is completely transparent, i.e., a device only turns on the radio at the active slots,
i.e., the black cells, indicated by the existing discovery protocol as in the left of Figure 3;
otherwise, S enters the second mode, concurrently performing Acc and the underlying
discovery protocol for both the acceleration and the bounded latency, i.e., turning on
the ratio at the active slots indicated by both the existing discovery protocol and Acc.
The detailed operations of a device in these two modes are given as follows:

—Energy-efficient discovery mode: In this mode, S performs the following two steps
during its original active slots (as specified by the underlying discovery protocol) and
turns off its radio in the rest of slots: (i) at the beginning and end of the original active
slots, S sends a discovery message including its neighbor table, i.e., its own duty
cycle as well as IDs and duty cycles of its current known neighbors, and (ii) S may
receive similar discovery messages from previously unknown or known neighbors
if they also become active in the same slots with S. Therefore, S will collect some
activation schedules about some known neighbors, i.e., when the known neighbors
will become active again in future slots. This information is valuable because when an
on-demand accelerating discovery is required, it will help S decide how to accelerate
the discovery.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:8 D. Zhang et al.

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9S

0 1 2 3 4 5 6 7 8 9A
0 1 2 3 4 5 6 7B - -

Active SlotsInactive Slots Discovery

Global
Time

-

10
10
10

Fig. 4. Indirect discovery.

—On-demand accelerating discovery mode: When an on-demand fast discovery is re-
quired, S enters this mode to accelerate the discovery with an additional energy
budget. In this mode, besides original active slots, S also becomes active during sev-
eral additional slots to receive discovery messages. These additional slots are optimal
for discovering more potential neighbors in two ways: direct neighbor discovery by S
itself, and indirect neighbor discovery by S’s known neighboring devices. This indi-
rect discovery is performed by receiving neighbor tables from other devices in active
slots. Figure 4 gives an example of the indirect discovery.

After the discovery of a device A in the global time 0, if S can select one additional
active slot between the global time slot 1 to 10, S would select slot 6 for possible indirect
discoveries via A, since (i) S knows that A will become active in slot 6 after the initial
discovery, and (ii) neighbors discovered by A in slot 3, e.g., B, will be forwarded to S in
slot 6. So S accelerates the discovery process of B by 4 slots, i.e., from slots 10 to 6.

A natural and key question comes up: how do we select additional active slots that
are most effective when the energy budget is given? Before answering this question, we
first explain the operational difference between existing discovery protocols and Acc.
In existing discovery schemes, a discovering device S discovers its neighbors only by
S itself, without any direct collaborations with neighbors already known. Therefore,
when characterizing a potential active slot in terms of discovery, existing schemes may
consider only how many unknown neighbors S can directly discover by itself if S be-
comes active in this slot. These direct discoveries can accelerate the discovery process
on a certain level, although not significantly. In contrast, our Acc characterizes a po-
tential active slot based on how many unknown neighbors S’s known neighbors will
discover can be forwarded to S to achieve indirect discoveries. This indirect discovery is
one of the key features of Acc. Compared to the direct discoveries, these indirect discov-
eries significantly accelerate the discovery process. This is because direct discoveries
increase only linearly, but indirect discoveries may increase geometrically.

We break down the question of how to select additional slots into two subquestions:
(i) how do we evaluate the effectiveness of all potential active slots, and (ii) among
these potential active slots, how do we select a subset of active slots to maximize the
discovery probability and reduce discovery latency. A potential active slot t is evaluated
by a metric of spatial-temporal coverage, which is considered as a slot gain to quantify
discovery capabilities of all known neighbors becoming active at slot t. These known
neighbors can discover common unknown neighbors for S during the slots that S is not
active and then forward such information to S at slot t. Since the known neighbors of
S will discover their neighbors anyway, Acc supports a transparent acceleration for S
running at the on-demand accelerating discovery mode. This is because no additional
marginal cost, e.g., additional activations, is needed for S’s neighbors running at the
energy-efficient discovery mode. We present the slot gain in Section 5.2. Then we
explain how to dynamically schedule a subset of active slots that maximize the total
slot gains, given a fixed energy budget, i.e., the number of active slots to be added. We
present this online scheduling algorithm in Section 5.3.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:9

Slot t1
(A wakes
up only)

S

S
Slot t2

(B wakes
up only)

Range of A

Range of B

Partial Temporal-Spatial Coverage

Slot t1
(A and B
wake up)

S

S
Slot t2

(C and D
wakes up)

Range of A

Range of D

Fully Temporal-Spatial Coverage

Range of B

Range of C

Fig. 5. Temporal-spatial coverage.

5.2. Characterization of Slot Gain

Before presenting the detailed characterization of the slot gain, we first provide some
intuition behind this concept. To discover more unknown neighbors, a discovering
device S should become active at a future slot that has the largest number of potential
unknown neighbors that are also becoming active. Therefore, intuitively, a future slot
with more active unknown neighbors should be assigned to a larger gain.

But without making further assumptions, S cannot have this information about how
many unknown neighbors will become active in a certain future slot. Alternatively, S
indeed has information collected during the previous discoveries about how many and
which kinds of S’s known neighbors will become active in a certain future slot. These
known neighbors will passively forward their new collected neighbor information to
S to achieve indirect discoveries by sending neighbor tables, if the known neighbors
become active together with S in a future slot. Again intuitively, a future slot with
more active known neighbors should be assigned to a larger gain.

Nevertheless, we observe that not all known neighbors at S are equally valuable
for indirect discoveries. Specifically, S should favor those important known neighbors
exhibiting both temporal diversity and spatial similarity to S. Temporal diversity indi-
cates that in how many slots a known neighbor is active even though S is not, whereas
spatial similarity indicates how likely a neighbor of a known neighbor of S is also
S’s neighbor. Finally, a future slot with more active known neighbors exhibiting both
higher temporal diversity and larger spatial similarity is assigned to a larger gain.

Note that the temporal diversity and spatial similarity of the neighbors indicate
their discovering capability for the discovering devices in terms of the temporal-spatial
coverage. An example of temporal-spatial coverage is given in Figure 5.

On the left side of Figure 5, we show a partial temporal-spatial coverage where the
discovering device S has two known neighbors A and B, and their radio ranges are
shown in the figure. Based on their waking-up schedules, S is inactive in both slots t1
and t2, A is active during slot t1 only, and B is active during slot t2 only. Thus, A and B
can only temporally and spatially cover partial neighborhood of S, i.e., discovering S’s
neighbors, when S is inactive during slots t1 and t2. This is because during t1, A cannot
find S’s active neighbors who are inside S’s range, but outside A’s range; similarly
during t2, B cannot find S’s active neighbors who are inside S’s range, but outside B’s
range. However, on the right side of Figure 5, we find a full temporal-spatial coverage
for S by known neighbors A, B, C, and D in another setting. During S’s inactive slots
t1 and t2, any S’s unknown active neighbor will be discovered by A, B, C, or D. The
discovery result will be forwarded to S, when S makes rendezvous with these neighbors
later.

As follows, we introduce the details of how to use the temporal diversity and the
spatial similarity to calculate the slot gain.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:10 D. Zhang et al.

A
B
C

Active SlotsInactive Slots

S

Discovery

Global
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

Fig. 6. Example of temporal diversity.

5.2.1. Temporal Diversity. The temporal diversity between a pair of devices S and its
known neighbor A is determined by the difference in active slot schedules between
them. The more the difference in active slots, the more likely that via A, S can early
indirectly discover new neighbors whom S was supposed to later directly discover
during S’s original active slots. For example, Figure 6 shows an example of temporal
diversity. In this figure, whenever A becomes active, S also becomes active, so the
temporal diversity between them is limited. Since A can only discover neighbors in the
slots where S also does, there is limited information that A can learn but S cannot.
But a device C frequently becomes active in the slots where S is inactive, e.g., slots 3,
6, 9, and 15. Given a slot t, the more frequently C becomes active before t, the larger
the possibility that C has more information on the potential neighbors not yet known
to S. Thus, to maximize the possibility that the known neighbors can forward more
information about the unknown potential neighbors to S, Acc attempts to activate S at
the slots where more known neighbors with higher temporal diversities become active.

At current slot t0, to calculate the temporal diversity between two device i and j at a
future slot t, denoted as α

(i, j)
t0→t, j utilizes the ratio between the number of nonoverlapping

active slots between i and j from the current slot t0 to slot t, and the total number of
slots until slot t. This ratio is given by the following formula:

α
(i, j)
t0→t = |m(i,i)

t0→t| − |m(i, j)
t0→t|

t − t0
, (1)

where m(i, j)
t0→t is the common active slot set of i and j from slot t0 to slot t; clearly, if j = i,

then m(i,i)
t0→t is the total active slot set of i from slot t0 to slot t.

In Figure 6, we show how to obtain α
(i, j)
t0→t. Assume devices S, A, B, and C first discover

each other at slot 0. At t0 = slot 1, the temporal diversity of slot 6 for A, B, and C to S
is α

(A,S)
1→6 = 0

5 , α
(B,S)
1→6 = 1

5 , and α
(C,S)
1→6 = 2

5 , respectively. Clearly, A has the least temporal
diversity to S, whereas C has the most temporal diversity to S.

5.2.2. Spatial Similarity. The spatial similarity between a pair of devices S and A is
determined by the spatial closeness between them. In multihop networks, not all A’s
neighbors are S’s neighbors. Intuitively, the closer A is to S, the larger the possibility
that more common neighbors exist between them. Thus, to maximize the possibility
that the potential unknown neighbors forwarded by the known neighbors to S are
indeed S’s neighbors, Acc attempts to activate S at slots where more known neighbors
with larger spatial similarities become active.

At current slot t0, to calculate the spatial similarity between device i and j, denoted
as β

(i, j)
t0 , j utilizes the ratio between the number of common known neighbors of i and

itself, and the total number of known neighbors to itself at slot t0. This ratio is given

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:11

Fig. 7. Example of spatial similarity.

by the following:

β
(i, j)
t0 = |n(i, j)

t0 |
|n(j, j)

t0 |
, (2)

where n(i, j)
t0 is the common known neighbor set of i and j at slot t0; clearly, if i = j, n(j, j)

t0
is j’s neighbor table at slot t0.

Figure 7 shows an example about how to obtain β
(i, j)
t0 .

In this figure, at t0 = slot 1, among three discovered neighbors, i.e., A, B, and C,
S shares two, three, and two neighbors with A, B, and C, respectively, including a
neighbor itself. Thus, for directly discovered neighbors A, B, and C, S calculates β

(A,S)
1 =

2
3 , β

(B,S)
1 = 3

3 and β
(C,S)
1 = 2

3 . For indirectly discovered neighbors, e.g., D, S calculates
β

(D,S)
1 = 1

3 , since only one, i.e., device A, out of three known neighbors of S has D in its
neighbor table.

5.2.3. Slot Gain Calculation. Based on the preceding observations, a discovering device
S assigns larger gains to the slots that have more active devices with higher temporal
diversity and larger spatial similarity. At current slot t0, based on Equations (1) and
(2), S calculates the slot gain of slot t, denoted as γ

(S)
t0→t, as follows:

γ (S)
t0→t =

∑

i∈n(S,S)
t0

α(i,S)
t0→tβ

(i,S)
t0 =

∑

i∈n(S,S)
t0

(|m(i,i)
t0→t| − |m(i,S)

t0→t|) × |n(i,S)
t0 |

(t − t0) × |n(S,S)
t0 |

, (3)

where n(S,S)
t0 is the neighbor table of S at slot t0.

Ideally, if S is required to discover all of its neighbors becoming active from slot t0 to
t but without being active all the time, then S should select a set of known neighbors
who can cover the entire radio range, i.e., spatial coverage, of S from slot t0 to t,
i.e., temporal coverage, such as the fully temporal-spatial coverage on the right side
of Figure 5. The temporal coverage is easy since we select a neighbor subset, if any,
that has neighbors continuously becoming active from slot t0 to t. But without further
assumptions regarding a device’s radio model, the spatial coverage is hard to perform.
Essentially, S could use its complete neighbor set to represent its radio area, but S
does not know its complete neighbor set either—only a partial known neighbor set
at a specific slot. Therefore, we employ S’s partial known neighbor set, i.e., n(S,S)

t0 , to
represent its radio area, i.e., the spatial coverage for S is the coverage of S’s known
neighbor set. This strategy performs best in the situation where the partial known
neighbor set is uniformly distributed in the complete neighbor set.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:12 D. Zhang et al.

Consequently, the denominator (t − t0) ×|n(S,S)
t0 | in the last term of Equation (3) is the

temporal-spatial coverage that should be provided for S to discover all of its neighbors
becoming active from slot t0 to t, whereas the numerator (|m(i,i)

t0→t|−|m(i,S)
t0→t|)×|n(i,S)

t0 | is the
temporal-spatial coverage that a known neighbor i can provide for S. Therefore, the
fraction represents, among the total temporal-spatial coverage of S, how much coverage
can be provided by i who becomes active in slot t. This is the physical meaning of slot
gains.

For example, with the schedule in Figure 6 and the neighbor table in Figure 7,
assuming that t0 is slot 1, a discovering device S calculates slot 6’s slot gain according
to the follow formula:

γ
(S)
1→6 = α

(A,S)
1→6 β

(A,S)
1 + α

(B,S)
1→6 β

(B,S)
1 + α

(C,S)
1→6 β

(C,S)
1 = 0

5
2
3

+ 1
5

3
3

+ 2
5

2
3

= 7
15

. (4)

5.3. Online Activation Scheduling

In the previous section, we presented the method to calculate the slot gains for all the
slots based on the neighbor table of a discovering device. According to the obtained
slot gains, in this section we first present our online scheduling algorithm, given a
fixed duty cycle budget B. This online algorithm outputs a slot sequence for additional
activations and updates this sequence consistently based on the latest yet incomplete
neighbor table. Then by comparing this online algorithm to its optimal Oracle version,
we theoretically analyze the proposed algorithm to show its performance via a concept
called competitive ratio.

5.3.1. Scheduling Algorithm. In our scheduling algorithm, a discovering device S decides
an additional active slot sequence AS, which includes several additional active slots,
according to three inputs as follows:

(i) Additional energy budget B. Given B in terms of additional duty cycles, e.g., 2
11

beyond what has already been consumed by an underlying discovery scheme,
S performs discoveries in some additional slots. B = 2

11 indicates that on average
every 11 slots, S can additionally become active in 2 slots besides the original active
slots.

(ii) Neighbor table n(S,S)
t0 in current slot t0. After every active slot, n(S,S)

t0 will be updated
based on latest neighbor information collected during this active slot. With this
updated n(S,S)

t0 , S continues to decide upon following additional active slots based
on the updated slot gains we defined in Equation (3).

(iii) Next original active slot tN. We take tN into consideration because S should not
select additional active slots after tN. This is because all slot gains may be changed
after tN, since S’s neighbor table may be changed after an active slot. Therefore,
selecting additional active slots after tN will lead to a suboptimal selection.

The preceding three inputs provide necessary information for S to decide AS with
Algorithm 1 after every active slot.

Figure 8 gives an example of this algorithm.
Suppose that t0 = 1, the original duty cycle is 1

11 , and B is 2
11 , which means that

in every 11 slots, S can activate approximately two additional active slots. Suppose
that slots 3 and 10 have the top two largest gains among all slots before tN = slot 11.
Therefore, in the first round, S selects slots 3 and 10, and puts them into AS. After the
activation in slot 3, S updates the slot gains of remaining slots via n(S,S)

3 . Suppose that
now slot 6 has the largest slot gain, instead of slot 10, so in the second round, S would
select slot 6 as the last additional slot to update AS.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:13

2nd Cycle

Original
Active Slots

Inactive
Slots

1st Cycle

Additional
Active Slots

1 2 3 4 5 6 7 8 9 100

11 12 13 14 15 16 17 18 19 20 21

Current
Slot

2nd Cycle

1st Cycle 0

11

Selection of 1
extra active
slot in Slot 3

1 2 3 4 5 6 7 8 9 10

12 13 14 15 16 17 18 19 20 21

Selection of 2
extra active
slot in Slot 1

Fig. 8. Example of activation scheduling.

ALGORITHM 1: Acc Activation Scheduling
Require: (i) B; (ii) n(S,S)

t0 ; (iii) tN;
Ensure: Additional active slot sequence AS;

1: Calculating the number, denoted as K, of additional active slots that S can have before tN,
based on B;

2: Updating the slot gains for all remaining slots before tN, according to S’s current neighbor
table n(S,S)

t0 and Equation (3);
3: Selecting top-K slots from all remaining slots before tN to update AS as the additional active

slots combined with original active slots;

5.3.2. Competitive Analysis of Scheduling Algorithm. We analyze the performance of our
online scheduling algorithm by comparing it to its optimal Oracle version. In our
online scheduling, S’s incomplete neighbor table in slot t0, n(S,S)

t0 , is processed piece by
piece in a serial fashion to decide AS, because it is consistently updated, whereas the
Oracle version will have the complete neighbor table N(S,S), not n(S,S)

t0 , to decide AS.
In the appendix, we prove that our online scheduling is competitive by showing that
the performance ratio between it and its Oracle version, denoted as ρ, is bounded by
a parameter R, which is the size ratio between n(S,S)

t0 and N(S,S). The rationale behind
this analysis is that our online scheduling performance is proportional to the size of
n(S,S)

t0 . For example, if R = 1, then our online algorithm is as effective as its Oracle
version, as R = 1 indicates that n(S,S)

t0 = N(S,S).

5.4. Neighbor Verification

In the previous section, we introduce how to use online activation scheduling to ac-
celerate the process of neighbor discovery by indirect discovery. In the scenario of
mobile multihop networks, for a discovering device, a neighbor’s neighbor may not be
its neighbor when the discovering device indirectly discovers it. This discovery would
be a false positive. Therefore, we propose a passive neighbor verification technique to
verify whether indirectly discovered neighbors are actually one-hop neighbors.

In this article, we define a neighbor of a device S as a device who is continuously in
the communication range of S at least a time period p, which is the discovery latency
bound of an underlying neighbor discovery scheme. Two devices just transitorily were
in communication ranges of each other cannot be seen as neighbors, as they cannot be
discovered by each other. Therefore, a neighbor will be discovered by Acc in advance or
by an underlying protocol eventually. If two devices discover each other and then move
out of communication ranges of each other within a time period p, then they are not
considered to be neighbors (false position) and will be removed.

During a discovery process, since every device would broadcast its neighbor table to
its neighbors during the discover process, a discovering device would have duty cycle

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:14 D. Zhang et al.

Neighbor Verification

S

Range of A

Range of S

A
B

C

Fig. 9. Neighbor verification.

patterns of indirectly discovered neighbors whether they are one-hop neighbors or two-
hop neighbors. Based on these duty cycle patterns, the discovering device would know
when an indirectly discovered neighbor will become active and broadcast messages to
its neighbors. Therefore, in our passive neighbor verification, the discovering device
would become active in the active slots of every indirectly discovered neighbor and
listen to the channel for its messages for a time period of p. If the discovering device
receives messages from this neighbor for a time period of p, then it indicates that
this indirectly discovered neighbor is an actual one-hop neighbor. In contrast, if the
discovering device does not receive messages from this neighbors for a time period of
p, then it indicates that this indirectly discovered neighbor is not an actual one-hop
neighbor.

Figure 9 gives an example of the neighbor verification process for indirectly dis-
covered neighbors. Assume that we have a discovering device S. Based on its direct
neighbor A, the discovering device S indirectly discovers two neighbors, i.e., B and C.
B is a one-hop neighbor of S, and C is a two-hop neighbor of S. Based on the duty
cycle patterns of B and C, S also becomes active during active slots of B and C, after
the initial indirect discovery of them. During these active slots of B and C, S tries to
receive their messages passively, in addition to its own active slots. Because B is within
S’s communication range and C is out of S’s communication range, S can receive the
message from B, but not from C. Therefore, S has verified that B is a one-hop neighbor
and that C is a two-hop neighbor.

5.5. Proactive Online Rendezvous Maintenance

Neighbor discovery is a process for identifying neighboring devices so that a device S
can send messages to other devices in its neighborhood, whereas rendezvous mainte-
nance is a process in which S makes contact with its discovered neighbors regularly to
verify and maintain the neighboring relationship by timely detecting if the neighbors
are still in the neighborhood. But such a discovered neighborhood relationship among
S and its neighbors is only temporal in mobile applications, because both the neigh-
bors and S are moving around and will leave the radio ranges of each other after a
period of time. The leaving of a known neighbor A is detected by S through a failure to
receive the discovering message from A in the slot where S and A both become active,
according to the schedule obtained when they first discover each other. After such a
failure, S just drops off A from its neighbor table. The preceding scheme is the normal
rendezvous for a device S to keep its neighbor table up-to-date in existing protocols
where the rendezvous is treated as a “rediscovery” during which a device and its known
neighbors are both in the active slots again.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:15

S

Range of A

First Common Active Slot

Range of S

A
S

Range of A

Range of S

A

Second Common Active Slot

Common
Neighbor

Regular
Neighbor

Fig. 10. Reduction of common neighbors.

In this work, we argue that this passive rediscovery-based rendezvous takes a long
time delay to detect the fact that a neighbor A has already left S’s ratio range, e.g.,
a detecting delay for two devices with 1% duty may take up to 101 × 101 slots. Such
a long delay may be acceptable for delay-tolerant applications, e.g., sensor networks,
but it is typically not acceptable in the interactive applications where the leaving of
a neighbor should be proactively detected as soon as possible, instead of passively
depending on the rediscovery. In our Acc, we proactively maintain the rendezvous to
reduce the detecting delay in an on-demand method if it is required by users.

The rationale of our online rendezvous maintenance mechanism is as follows. We
divide the rendezvous maintenance into two subobjectives: when to proactively main-
tain the rendezvous and how to proactively maintain the rendezvous. Since our Acc
is designed as a transparent middleware, we do not change the schedule of neighbor-
ing devices. Thus, a naive yet safe method is that right after the discovering device
S discovers a neighbor A, S becomes active in every slot where A becomes active to
verify whether A is still a neighbor of S. This naive method is the quickest method to
transparently detect the leaving of A without the cooperation from A, but this method
involves too much energy consumption for S, as S has to wake up at every active slot
of A.

To address this issue, in Acc, S first uses the reduction of the common neighbors of
S and A between two normal rendezvous as a hint to initiate a proactive rendezvous
maintenance regarding A. After the beginning of the maintenance, S utilizes a binary
selection to find the some active slots of A for the additional wake-ups to quickly detect
whether A leaves the range of S. If A is still in S’s range but the reduction of the
common neighbors continues, S continues to select additional wake-up slots until A
leaves the range of S or the reduction stops. In the following, we give details about
when and how to process the proactive rendezvous maintenance.

5.5.1. When to Initiate Proactive Online Rendezvous Maintenance. After the initial discovery
of A, if the proactive online rendezvous maintenance is required by users, S compares
the common neighbors between itself and A after every normal rediscovery about A. If
S detects a reduction of the common neighbors, S initiates the proactive rendezvous
maintenance regarding A. Figure 10 gives an example of the reduction of the common
neighbors for a discovering device S and its neighbor A.

In this figure, in the first common active slot, S and A have four common neighbors,
whereas in the second common active slot, S and A have only two common neighbors
(due to the movements of S and A). The reduction can be obtained by their neighbor
tables that they broadcasted in the common active slot. Such a reduction of the com-
mon neighbors indicates that A is leaving the range of S. Thus, S initiates the proac-
tive rendezvous maintenance regarding A after the second common active slot. The

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:16 D. Zhang et al.

A

Active SlotsInactive Slots

S

Additional Wakeup

Global
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

Fig. 11. Selection of additional wake-up for rendezvous maintenance.

rationale between method is that the fewer the common neighbors, the farther the
distance between S and A, and the more likely A is leaving the range of S.

5.5.2. How to Initiate Proactive Online Rendezvous Maintenance. In the rendezvous mainte-
nance regarding A, S selects some active slots of A for the additional wake-up (before
the next normal common active slot) to reduce the detecting delay for the fact that A
leaves the radio range of S. We utilize a binary selection to choose these slots. Figure 11
gives an example of S selecting additional wake-up slots to detect the leaving of A.

In this figure, S detects the reduction of common neighbors between S and A at slot
0, and initiates the proactive online rendezvous maintenance. Further, we assume a
situation where the reduction of common neighbors between S and A is continuously
detected:

—S calculates A’s active slots, i.e., slots 2, 4, 6, 8, 10, 12, and 14, before the next normal
rediscovery at slot 16;

—S utilizes a binary selection to obtain slot 8 as an additional wake-up, which is in
the middle of current slot 0 and the next normal rediscovery at slot 16;

—After waking up at slot 8, S continues to detect the reduction of the common neigh-
bors, so S utilizes the same binary selection again to obtain slot 12 as an additional
wake-up, which is in the middle of current slot 8 and the rediscovery slot 16;

—After waking up at slot 12, S selects slot 14 as an additional wake-up, which is in
the middle of current slot 12 and the normal rediscovery slot 16;

—Similarly, after waking up at slot 14, S selects slot 15 as an additional wake-up,
which is in the middle of current slot 14 and the normal rediscovery slot 16;

—This process continues until no reduction of common neighbors is detected or after A
leaves the radio range of S; and

—Finally, S drops off A from its neighbor table if A leaves the radio range of S.

In the preceding method, S is based on the online information about the reduction
of the common neighbors to proactively accelerate the rendezvous maintenance. The
rationale behind this method is that the fewer the common neighbors, the more likely
A leaves the radio range of S.

Note that even without the preceding proactive online rendezvous maintenance, our
regular accelerated discovering process by Acc implicitly expedites the delay of the
detection for the fact that a neighbor leaves the radio range of a discovering device.
This is because a discovering device will wake up more in the active slots of the known
neighbors for the indirect discovery, according to the design of Acc. Thus, if a known
neighbor of S is not broadcasting in the active slot when it is supposed to be, then
S removes this neighbor from the neighbor table, which enables S to more quickly
detect the leaving of its neighbors, although the introduced proactive online rendezvous
maintenance can further accelerate the detection.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:17

Fig. 12. Testbed setup.

Disco Used by
Disco

Used by
Disco

Base -Disco Used by
Baseline

Used by
Disco

Acc -Disco Used by
Acc

Used by
Disco

Additional
Duty Cycle

Original
Duty CycleName

Energy

Fig. 13. Compared schemes.

6. TESTBED EVALUATION

To evaluate Acc in a real-world setting, we integrate Acc with two state-of-the-art
discovery protocols: Disco [Dutta and Culler 2008] and WiFlock [Purohit et al. 2011].
To verify whether the accelerated neighbor discovery would perform well on resource-
constrained sensor nodes, we implement the preceding two schemes employing 11
TelosB sensor devices with a 10KB RAM size on the TinyOS/Mote platform. During
the testbed experiments, we deploy 10 TelosB sensor devices in a one-hop grid network
and utilize a mobile toy car attached with another TelosB as a discovering device,
with a mobility pattern of circling around the grid. This mobile node introduces the
relative mobility between a discovering device and its neighbors, which is to verify that
the mobility would not affect the neighbor discovery itself. The testbed is shown in
Figure 12.

For individual devices, we set the time slot length at 25ms for two reasons: (i) for
direct discovery, a smaller slot leads to a faster discovery, but a too-small slot (<5ms)
leads to the jitters introduced by the TinyOS timer library [Dutta and Culler 2008],
and (ii) for indirect discovery, a bigger slot reduces collisions of messages and enables
more exchanges of neighbor tables. Based on the preceding two reasons, we make
a trade-off about time slot length at 25ms. Note that WiFlock was implemented on
modified hardware to support an extremely small time slot of 80μs [Purohit et al.
2011], but in our work we implement WiFlock only on a standard hardware to examine
the principle of its collaborative beaconing mechanism. In our experiment, all schemes
have the same energy budget (both original and additional) for devices to ensure a fair
comparison. But different schemes use the same energy budget differently in terms of
selecting active slots. The additional duty cycle budget B for the acceleration is set to
be 5%, the same as the original duty cycle of 5% on every device. The 5% duty cycle is
extensively studied in Disco [Dutta and Culler 2008].

To evaluate the effectiveness of the slot gains we proposed, we also implemented a
baseline design. This design shares the same scheduling scheme as Acc, but it uses the
number of active devices in a slot t as the slot gain, not considering any temporal diver-
sity or spatial similarity. Thus, we implement three versions as shown in Figure 13. In
all three versions, the original duty cycle is controlled by Disco, and the additional duty
cycle is controlled by its own schemes. Similar versions are implemented for WiFlock.

We evaluate the preceding schemes by three metrics: (i) the percentage of discoveries
with respect to cumulative discovery time, (ii) the number of discovered devices in
different time intervals, and (iii) the average discovery latency in different duty cycles.
The first two metrics are to verify the effect of Acc’s assistance to the existing schemes

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:18 D. Zhang et al.

0 4 8 12 16 20 24 28 32 36 40
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (s)

Disco
Base-Disco
Acc-Disco

Fig. 14. Disco CDF.

0 4 8 12 16 20 24 28 32 36 40
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (s)

WiFlock
Base-WiFlock
Acc-WiFlock

Fig. 15. WiFlock CDF.

in the acceleration of discovery process in Section 6.1. The third metric is to verify the
effect of different duty cycles on the average discovery latency in Section 6.2.

In an experiment, after every 40 slots, i.e., about 1 second, the discovering device logs
the number of neighbors it discovered so far. All experiments are repeated 20 times,
and the average results are reported.

6.1. Effectiveness in Acceleration of Discovery

Figure 14 plots the acceleration effect of Disco. In this figure, we observe that the
curve of Acc-Disco is above all other curves in every percentage of discoveries. For
example, to discover 80% of neighbor devices, Acc-Disco, Base-Disco, and Disco spend
around 13, 22, and 27 seconds, respectively. Acc-Disco finishes the discovery process
faster than Disco by 51.8%, whereas both consume the same energy. This is because
Disco does not consider using known neighbors to discover unknown neighbors, which
leads to a longer discovery process in which a device has to find its neighbors one by
one. In addition, we observe that Base-Disco outperforms the original scheme by a
maximum of 18.9% when discovering more than 99% of neighbors on average. This is
because Base-Disco selects active slots with more known neighbors becoming active,
which proves the value of taking the known neighbors into consideration. But we also
observe that Acc-Disco still outperforms Base-Disco by nearly 36.6% when discovering
more than 99% of neighbors. This suggests that when selecting additional active slots,
considering only the quantity, not the quality, of devices becoming active in slots is
not enough to significantly accelerate discovery. This can also be shown by the fact
that Base-Disco discovers half of devices’ neighbors by 8 seconds but finishes the whole
discovery process at 32 seconds. The preceding results indicate that Acc-Disco exhibits
a significant acceleration when compared to other versions.

In Figure 15, we observe similar results as in Figure 14. Among the three versions,
Acc-WiFlock achieves the highest performance in the percentage of discovered devices
in most instances of the discovery process. But we also observe that the performance
gain between Acc-WiFlock and other versions of WiFlock is less than that between
Acc-Disco and other versions of Disco. This is because in the collaborative beaconing
mechanism of WiFlock, WiFlock has already taken neighbor tables into consideration.
Different from Acc-WiFlock and Base-WiFlock, however, the neighbor tables in WiFlock
are intended to maintain the membership of a device group to achieve synchronized lis-
tening. In Figure 15, we observe that Base-WiFlock outperforms WiFlock as well. This
demonstrates the effectiveness of considering known neighbors for unknown neighbor
discovery. But the fact that Acc-WiFlock outperforms Base-WiFlock indicates that con-
sidering temporal-spatial coverage, instead of only the number of neighbors, achieves
further improvement. This is because by simply measuring the slot gain as the number

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:19

-1

0

1

2

3

4

5

6

7

33-4025-3217-241-8

N
um

be
r

of
D

is
co

ve
re

d
D

ev
ic

es

Interval (s)

Disco
Base-Disco
Acc-Disco

9-16

Fig. 16. Disco distribution.

-1

0

1

2

3

4

5

6

7

33-4025-3217-241-8

N
um

be
r

of
D

is
co

ve
re

d
D

ev
ic

es

Interval (s)

WiFlock
Base-WiFlock
Acc-WiFlock

9-16

Fig. 17. WiFlock distribution.

of active neighbors, Base-WiFlock increases performance to a certain level but cannot
make a device become active at the most effective slots, as Acc-WiFlock does.

Figures 16 and 17 plot the number of neighbors discovered in every 8-second time
window under the versions of Disco and WiFlock. These two figures provide the dis-
tribution of discovered neighbor numbers in different phases of the discovery process.
From Figures 16 and 17, we observe that both Acc-Disco and Acc-WiFlock discover the
largest number of neighbor devices during the first 8 seconds. In contrast, the other ver-
sions discover relatively uniform numbers of devices over time. The reason for Disco’s
uniform discoveries is obvious, as Disco performs a pair-wise discovery where discov-
ering more neighbors is not helpful for the discovery of the next neighbor. But WiFlock
indeed considers a group-based strategy. One explanation for WiFlock’s uniform dis-
coveries is that WiFlock’s synchronized listening and one-way discovery mechanism
are efficient only for an existing group of devices to discover a new device, not for a new
device to discover all of its neighbors.

From the preceding four figures, we conclude that when an additional energy budget
is given for an acceleration of the discovery process, considering the number of devices
active in a slot (baseline) can assist current discovery schemes to a certain level, but
there still is room to improve. By taking different qualities of known neighbors into
consideration, i.e., the temporal diversity or spatial similarity of neighbors, Acc further
accelerates the discovery process.

6.2. Impact of Duty Cycle

Figures 18 and 19 plot the impact of two different original duty cycles on average
discovery latencies in both Disco and WiFlock. The average discovery latency is de-
fined as the time a device takes to discover all of its neighbors divided by the num-
ber of its neighbors. We observe that the versions with Acc outperform the versions
with Baseline and original schemes by a maximum of 42.1% and 53.8%, respectively.
We also observe that the performance gain between the Acc-assisted versions and
original versions increases as the duty cycle increases. In Disco, this gain increases
from 47.7% to 53.8%, whereas in WiFlock, it increases from 39% to 47.3%. This
indicates that as devices become active more frequently, a discovering device can obtain
more information from its known neighbors by considering the temporal diversity or
spatial similarity of neighbors. Again, the performance gain between the Acc-assisted
version and the original version in WiFlock is smaller than that in Disco, which is
also because of WiFlock’s collaboration beaconing scheme. We observe different trends
in the performance gain between Acc- and baseline-assisted versions in different pro-
tocols. The gain between Acc-Disco and Base-Disco decreases from 42.1% to 37.9%,
whereas that between Acc-WiFlock and Base-WiFlock increases from 29.4% to 33.3%.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:20 D. Zhang et al.

0

1

2

3

4

5

6

10%5%
Duty Cycle

A
ve

ra
ge

D
is

co
ve

ry
L

at
en

cy
(s

)

Disco
Base-Disco
Acc-Disco

Fig. 18. Disco latency.

0

1

2

3

4

5

6

10%5%
Duty Cycle

A
ve

ra
ge

D
is

co
ve

ry
L

at
en

cy
(s

)

WiFlock
Base-WiFlock
Acc-WiFlock

Fig. 19. WiFlock latency.

This indicates that the slot gains utilized by baseline and Acc have different effects in
different protocols.

It also shows that the performance gain between Acc- and Base-WiFlock, i.e., 29.4%, is
smaller than the gain in Disco-related comparisons, i.e., 42.1%. This result is consistent
with the observation that the performance gain between the Acc-assisted and the
original version in WiFlock, i.e., 39%, is smaller than that in Disco, i.e., 47.7%. Note that
even with double duty cycles, the average discovery latency does not reduce significantly
in all three protocols. This is because by increasing duty cycles, Disco guarantees the
proportionally reduced worst-case latency instead of the average latency.

From Figures 18 and 19, we conclude that when devices become more active, Acc
more effectively assists the discovering device in accelerating the discovery process by
leveraging the known neighbors to discover unknown neighbors.

7. SIMULATION EVALUATION

To evaluate Acc serving as an accelerating middleware to support different protocols
in larger-scale networks, we simulate Acc with four discovery protocols: Disco [Dutta
and Culler 2008], U-Connect [Kandhalu et al. 2010], WiFlock [Purohit et al. 2011], and
Searchlight [Bakht et al. 2012]. In our 30-minute simulation, 100 mobile devices are
uniformly deployed in a square area of 200m × 200m. The radio ranges of devices are
set from 20m to 100m, which lead to average device densities from 3.6 to 55.36. We use
a nontrivial pure random waypoint model as a mobility model [Alparslan and Sohraby
2007], with an average velocity of 1m/s. In addition to the metrics that we investigate
in the testbed experiment, we evaluate the rendezvous maintenance in Section 7.4.

Note that in a mobile multihop network, neighboring relations are consistently
changing, and it is extremely costly in terms of energy to keep neighbor tables up-
to-date, i.e., immediately discovering a device when it is in one device’s communication
range. In the evaluation, we define a neighbor of a device A as a device continuously
in the communication range of A at least for a time period p, which is the discovery la-
tency bound of an underlying neighbor discovery scheme. Two devices just transitorily
in communication ranges of each other cannot be seen as neighbors, as they cannot be
discovered by each other. Therefore, a neighbor will be discovered by Acc in advance
or by an underlying protocol eventually. If two devices discover each other and then
move out of communication ranges of each other within a time period p, then they are
not considered as neighbors (false position) and will be removed. In our experiment,
all schemes have the same energy budget (both original and additional) for devices to
ensure a fair comparison. But different schemes use the same energy budget differently
in terms of selecting active slots. We test Acc with two metrics, i.e., the percentage of
discoveries and discovery latency. For both of them, the discovery delay is calculated

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:21

0 300 600 900 1200 1500 1800
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (Slots)

Disco
Base-Disco
Acc-Disco

Fig. 20. Disco CDF.

0 300 600 900 1200 1500 1800
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (Slots)

U-Connect
Base-U-Connect
Acc-U-Connect

Fig. 21. U-Connect CDF.

0 300 600 900 1200 1500 1800
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (Slots)

WiFlock
Base-WiFlock
Acc-WiFlock

Fig. 22. WiFlock CDF.

0 300 600 900 1200 1500 1800
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 o

f D
is

co
ve

ri
es

 (%
)

Cumulative Discovery Time (Slots)

 Searchlight
 Base-Searchlight
 Acc-Searchlight

Fig. 23. Searchlight CDF.

from the point when a node is within a discovering node’s rage until it was discovered
by the discovering node.

7.1. Effectiveness in Acceleration of Discovery

In Figure 20, we plot the percentages of discoveries in terms of cumulative discovery
time. In this figure, we observe that with the increase of cumulative discovery time,
the percentage of discoveries also increases for all versions of Disco. Nevertheless,
Acc-Disco is able to discover neighbors faster than other versions under the same
duty cycle. For example, to discover more than 99% of neighbors, it takes Acc-Disco,
Base-Disco, and Disco around 1,000, 1,600, and 1,700 slots, respectively. If each slot
is about 10ms, then Acc-Disco takes a device about 10 seconds to discover more than
99% of neighbors. This is because some nodes are not neighbors at the beginning
of the experiment but become neighbors later. These results show a nearly 41.1%
performance gain between Acc-Disco and Disco, which proves the value of taking known
neighbors into consideration to discover unknown neighbors. Via a 37.5% performance
gain between Acc-Disco and Base-Disco, we verify the effectiveness of the temporal
diversity and spatial similarity as a slot gain.

For percentage of discoveries, some nodes are not neighbors in the first place but
become neighbors due to mobility. We use the cumulative time to track the percentage
of actual neighbors being discovered at a certain time.

Similarly, in Figures 21, 22, and 23, we plot the same sets of curves for U-Connect,
WiFlock, and Searchlight. We also observe similar performance trends as in Figure 20.
For example, in Figure 21, to discover more than 99% of neighbors, the cumulative dis-
covery time for Acc-U-Connect, Base-U-Connect, and U-Connect is around 850, 1,300,

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:22 D. Zhang et al.

0

300

600

900

1200

1500

Duty Cycle
13%9%5%1%A

ve
ra

ge
D

is
co

ve
ry

L
at

en
cy

(S
lo

ts
)

Disco
Base-Disco
Acc-Disco

Fig. 24. Disco latency.

0

300

600

900

1200

1500

Duty Cycle
13%9%5%1%A

ve
ra

ge
D

is
co

ve
ry

L
at

en
cy

(S
lo

ts
)

U-Connect
Base-U-Connect
Acc-U-Connect

Fig. 25. U-Connect latency.

0

300

600

900

1200

1500

Duty Cycle
13%9%5%1%A

ve
ra

ge
D

is
co

ve
ry

L
at

en
cy

(S
lo

ts
)

WiFlock
Base-WiFlock
Acc-WiFlock

Fig. 26. WiFlock latency.

0

300

600

900

1200

1500

Duty Cycle
13%9%5%1%A

ve
ra

ge
D

is
co

ve
ry

L
at

en
cy

(S
lo

ts
)

Searchlight
Base-Searchlight
Acc-Searchlight

Fig. 27. Searchlight latency.

and 1,500 slots, respectively. In Figure 22, we still find a performance gain between
Acc-WiFlock and other versions of WiFlock, although the performance gain of Acc in
WiFlock is smaller than those in Disco and U-Connect. This is also because in WiFlock’s
collaboration beaconing scheme, WiFlock already employs the neighbor table to log the
neighbors information, e.g., waking-up slots, duty cycle patterns, for further group
maintenance. In Figure 23, we find that a performance gain between Acc-Searchlight
and other versions of Searchlight becomes smaller because Searchlight significantly
reduces the worst-case discovery delay.

From results in Figures 20, 21, 22, and 23, we suggest that Acc serves as an acceler-
ating middleware for various schemes to accelerate the discovery process. Specifically,
the performance gain of Acc is bigger in the early stage of the discovery process.

7.2. Impact of Duty Cycle

In this section, we investigate the impact of a device’s original duty cycle on the average
discovery latency in Figures 24, 25, 26, and 27.

In all figures, we observe that with the increase of the duty cycle, the average latencies
of all versions for all schemes decrease. But at each duty cycle, the versions with Acc
in all four different schemes achieve the smallest latency. For example, when the duty
cycle is set to 5%, the average discovery latencies for Acc-Disco, Base-Disco, and Disco
are around 140, 200, and 380 slots, respectively. Thus, in Disco with Acc’s assistance,
the average latency to discover one neighbor drops from 3.8 seconds to 1.4 seconds (at
a 10ms slot), a difference of 63.1%. From Figures 24, 25, 26, and 27, we also observe
that in general, as the duty cycle increases, the performance gain between versions
with Acc and original versions also increases. For example, in Figure 24, at a 1% duty
cycle, the performance gain between Acc-Disco and Disco is 50.1%, whereas it increases

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:23

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Device Density

A
ve

ra
ge

D
is

co
ve

ry
L

at
en

cy
(S

lo
ts

)

Disco
Base-Disco
Acc-Disco

Fig. 28. Disco latency.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

D
is

co
ve

ry
L

at
en

cy
(S

lo
ts

)

Device Density

U-Connect
Base-U-Connect
Acc-U-Connect

Fig. 29. U-Connect latency.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

D
is

co
ve

ry
L

at
en

cy
(S

lo
ts

)

Device Density

WiFlock
Base-WiFlock
Acc-WiFlock

Fig. 30. WiFlock latency.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 D
is

co
ve

ry
 L

at
en

cy
 (S

lo
ts

)

 Device Density

 Searchlight
 Base-Searchlight
 Acc-Searchlight

Fig. 31. Searchlight latency.

to 63.1% when the duty cycle is 5%. This is because with a higher duty cycle, the
devices in the network become active more frequently, leading to more neighborhood
information sharing. Among other three schemes, we find that Searchlight has the best
performance, which affirms our observation in Section 7.1.

Based on the preceding results, we conclude that the higher the duty cycle, the better
the performance gain for Acc-assisted schemes. This is because with a higher duty cycle,
a device can have more active slots that can be used by Acc for acceleration. But such
acceleration effects are limited when the active slots are fewer in a lower duty cycle.

7.3. Impact of Device Density

In this section, we investigate the impact of the device density on the average discovery
latency of four discovery schemes. The impact of device density on the average discovery
latency is shown in Figures 28, 29, 30, and 31, respectively.

From all four figures, we find that as the device density increases, the average dis-
covery latency increases for all four neighbor discovery protocols. This is because at the
higher densities, the devices have more neighbors, leading to more collisions and thus
more time to find all of the neighbors. When the average number of neighbors increases
from 3.6 to 55.36, the performance gain between original versions and the versions as-
sisted with Acc also increases from 22.3% to 52.4% in Figure 28 with regard to Disco.
This is because more known neighbor devices are able to share neighborhood infor-
mation with discovering devices, thus accelerating the neighbor discovery process. We
also observe similar results in Figures 29, 30, and 31. For example, in Figure 31, when
the average number of neighbors increases from 3.6 to 55.36, the average discovery
latency in Acc-Searchlight and Searchlight increases to 290 and 310 slots, respectively.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:24 D. Zhang et al.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
(%

)

Delay for Detection of Leaving (Slots)

Disco
Base-Disco
Acc-Disco

Fig. 32. Disco latency.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

Delay for Detection of Leaving (Slots)

 U-Connect
 Base-Connect
 Acc-Connect

Fig. 33. U-Connect latency.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

Delay for Detection of Leaving (Slots)

 WiFlock
 Base-WiFlock
 Acc-WiFlock

Fig. 34. WiFlock latency.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

Delay for Detection of Leaving (Slots)

 Searchlight
 Base-Searchlight
 Acc-Searchlight

Fig. 35. Searchlight latency.

Based on the preceding results, we conclude that the higher the device density, the
higher the average discovery latency. Note that even though a bigger network density
can increase the collision among devices, a bigger network density also achieves a more
diverse neighborhood information sharing among already known devices.

7.4. Effectiveness in Proactive Online Rendezvous Maintenance

In this section, we investigate the detection delay in the rendezvous maintenance
mechanism in Figures 32, 33, 34, and 35. The legacy protocols, e.g., Disco [Dutta and
Culler 2008], utilize the rediscovery as the rendezvous maintenance. In contrast, Acc
provides an online rendezvous maintenance mechanism for them to make a discovery
device S to wake up at some additional slots to detect the neighbors who are believed
to be leaving the radio range of S. In this work, we use a metric called detection delay
to evaluate the performance of the online rendezvous maintenance mechanism. It is
given by the time difference from the slot when a neighbor leaves the radio range
of S to the slot when S detects that this neighbor leaves. We use a baseline design
called Base to show the effectiveness of Acc. The baseline selects additional wake-up
slots in random, whereas Acc utilizes the introduced binary selection. We assume that
a fast maintenance is required by users, and all protocols are under the same duty
cycle for a fair comparison. Due to its proactive online rendezvous maintenance, the
protocols assisted by Acc would have a better performance than the original protocols
and Base-assisted protocols.

The distributions of the detection delay regarding Acc on different protocols are given
in Figures 32, 33, 34, and 35, respectively. We find that the Acc-assisted protocols have
the lowest average detection delay, which indicates that with the help of Acc, a neighbor
discovery protocol can quickly detect the leaving of a neighbor, thanks to the common

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:25

neighbor–based maintenance mechanism. Further, Acc-assisted protocols have a bet-
ter performance than Base-assisted protocols, because Acc’s binary selection is more
effective than the random selection of Base. Based on the results, we conclude that
Acc’s proactive online rendezvous maintenance mechanism assists existing neighbor
discovery in reducing the detection delay of the leaving of neighbors.

8. CROWD-ALERT APPLICATION

In this section, to prove the real-world value of Acc, we propose and evaluate a Crowd-
Alert application with which taxi drivers can quickly navigate optimal directions to
travel to maximize the possibility of picking up passengers by an Acc-assisted neighbor
discovery after they drop off passengers, i.e., a faster neighbor discovery is demanded.

Based on the current setting of taxicab systems in metropolitan areas, every taxi
has a wireless communication interface (WiFi or WiMax) installed to send its locations
and status (with or without passengers) back to base stations for accounting purposes.
Thus, we envision that a taxicab would primarily use its radio in the infrastructure
mode, as it has to communicate with a base station frequently for accounting. Only
during gaps between communication with base stations can a taxi set its radio to the
ad hoc mode for peer-to-peer neighbor discovery. Thus, it leads to a duty cycle between
the infrastructure and ad hoc mode not for energy but for radio usage. Based on the
broadcast status of nearby taxis, a taxi driver can obtain the crowd levels both in terms
of the number of taxis and number of passengers in a given area. Taxi drivers who
install this application can form groups of common interest to optimize their profits.
Individual drivers using this application can quickly navigate to areas with a low
density of taxis (and presumably a high passenger density) to maximize pickups (and
thus profits).

Our proposed protocol, Acc, provides a mechanism for distributed discovery of neigh-
bors in an accelerated manner, which we will adapt to the application installed on the
taxi. We will describe our application in further detail and evaluate the efficiency of
this scheme in discovering neighbors in a timely fashion.

8.1. Application Background

In our application, each taxicab broadcasts its own status record, i.e., date and time,
availability, direction, GPS coordinates, to its neighboring taxis during the time it is
not communicating with base stations. The broadcast is performed based on a concrete
discovery scheme, e.g., Disco. According to the information collected, when a taxi be-
comes available and the driver wants to quickly pick up a passenger, i.e., an on-demand
acceleration is required, the taxi driver can navigate to the optimal directions, as deter-
mined by the number of nearby competing taxis and nearby potential passengers. These
two metrics can maximize the probability of picking up the next nearby passengers.

Generally, the fewer the competing taxis, the higher the probability of picking up
passengers. With distributedly collected status records about neighboring taxis, our
Crowd-Alert computes the location distribution of competing taxis that also aim to
pick up new passengers. Similarly, the more the potential passengers, the higher the
probability of picking up. Without the active participation of passengers, however, it is
unrealistic to expect to obtain such a distribution based on taxi status records alone. But
we can obtain a cumulative location distribution of passengers who have just entered
or exited taxis, i.e., served passengers, by observing the change of the availability bit
(from 0 to 1 or from 1 to 0) in two consecutive status records about the same taxi.
Further, we assume that a location distribution of served passengers is an indication of
that of potential passengers, but how to obtain a distribution based on the indication is
outside the scope of this article. To focus on system levels, we simply utilize the location
distribution of served passengers as that of potential passengers.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:26 D. Zhang et al.

Finding a Route Competing Taxicabs Potential Passengers

Fig. 36. App screenshots.

Collection Period 6 Months
Collection Date 01/01/12-06/30/12

Numbe of Taxicabs 14,453
Number of Passengers 98,472,628
Total Travel Distance 594,031,428 (KM)

 Total Fare 2,255,052,932 (CNY)
 Average Travel Distance 6.032 (KM)

Average Fare 22.9 (CNY)

Taxicab Network Summary

Fig. 37. Statistics.

Based on the distributions of competing taxis and served passengers, Crowd-Alert
can maximize the possibility of picking up passengers by guiding a taxi to a direction
with fewer competing taxis or more served passengers. A faster discovery achieved by
our Acc can assist a navigating scheme in making a timely decision.

8.2. Application Evaluation

We embed the Crowd-Alert function into one of our taxicab-booking apps for the taxicab
network in Shenzhen. In Figure 36, we show the app screenshots for finding a route,
checking nearby taxicabs, and potential passengers.

But due to privacy reasons and limited installations, we cannot evaluate Crowd-Alert
based on the data from the app in large scales. Instead, we evaluate the Crowd-Alert
application using a real-world dataset collected from taxis in Shenzhen over 6 months.
We first introduce the dataset and then present the evaluation results in terms of
reduction of discovery latency and accelerating the navigation.

8.2.1. Dataset. The dataset consists of 6 months of GPS traces from 14,453 taxis. The
data is used by the government for the urban transportation pattern search. Each
taxi uploads its records every 15 to 30 seconds, with each record consisting of the
following parameters: (i) plate number; (ii) date and time; (iii) GPS coordinates; and
(iv) availability, whether or not a passenger is in this taxi when the record is uploaded.
Figure 37 summarizes details of the used datasets. Based on the preceding GPS trace

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:27

Fig. 38. Distribution of competing taxis. Fig. 39. Distribution of served passengers.

records, we can obtain a location distribution of competing taxis or served passengers,
as shown in Figures 38 and 39.

Figure 38 shows a taxi distribution of an area about 1 square kilometer (GPS coor-
dinates XXX.538-XXX.547 × XXX.108-XXX.117) based on a 10s uploading window in
the rush hour of 1 day, i.e., 5PM. Red points indicate the taxis with passengers, and
blue points indicate the taxis without passengers. Figure 39 shows a served passenger
distribution in the same area as in Figure 38 in a 2-hour uploading time window in
1 day, i.e., from 4PM to 6PM. Red points indicate the locations of passengers entering
taxis, and blue points indicate the locations of passengers exiting taxis.

8.2.2. Reduction of Discovery Latency. Before we investigate the effects of Acc’s acceler-
ations on the navigation of taxis, we first perform a trace-driven simulation on the
dataset to verify how Acc accelerates discovery in this taxi network. With a total duty
cycle of 4

30 , we compare four schemes—Disco, U-connect, WiFlock, and Searchlight—
with and without the assistance of Acc. This duty cycle rate is decided by the fact that
a taxi has to communicate with base stations about accounting 26 seconds per 30 sec-
onds. The rest of the time can be used for peer-to-peer neighbor discovery based on
the ad hoc mode. We assume that the taxi is equipped with a radio that has a large
communication radius and that a communication range of 3km is used. A smaller com-
munication radius, e.g., 100m in a WiFi interface, does not allow our system to fully
exploit the quick discovery scheme in a taxi network. This is because a 100m communi-
cation radius is too small for vehicular networks where even the length of a static taxi
is about 5m. Therefore, navigation based on such a small communication radius will
lead to an extremely low density of taxis and may not have any obvious performance
difference under various discovery schemes.

From Figure 40, we observe that Acc-Disco is able to discover neighboring taxis faster
than Disco under the same duty cycle. For example, to discover all neighboring taxis, it
takes Acc-Disco and Disco around 7 minutes and 9 minutes, respectively. These results
show a 22.2% performance gain between Acc-Disco and Disco. We also observe that
the performance gain achieves the maximum in the first half of the discovery process,
where a taxi can detect more than half of its neighboring taxis within 3 minutes. This
suggests that Acc can enable Acc-Disco to quickly find the most neighbor taxis in a
very short period of time, which can assist a driver to more quickly drive in the optimal
directions. Similarly, in Figures 41, 42, and 43, we plot the same sets of curves for
U-Connect, WiFlock, and Searchlight. In Figures 41, 42, and 43, we observe similar

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:28 D. Zhang et al.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (mins)

Disco
Acc-Disco

Fig. 40. Disco latency.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (mins)

U-Connect
Acc-U-Connect

Fig. 41. U-Connect latency.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (mins)

WiFlock
Acc-WiFlock

Fig. 42. WiFlock latency.

0 2 4 6 8 10
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
of

D
is

co
ve

ri
es

(%
)

Cumulative Discovery Time (mins)

Searchlight
Acc-Searchlight

Fig. 43. Searchlight latency.

performance trends between Acc-assisted versions and original versions. For example,
in Figure 41, to discover all neighboring taxis, the cumulative discovery time for U-
Connect and Acc-U-Connect is around 6 minutes and 8 minutes, respectively, achieving
a 25% performance gain. In Figures 42 and 43, we still observe a performance gain
between Acc-WiFlock and WiFlock and between Acc-Searchlight and Searchlight.

From the results in Figures 40, 41, 42, and 43, we conclude that Acc can accelerate
various discovery schemes in this taxi network and may serve as an augmenting layer
to accelerate discovery to quickly navigate taxis to optimal directions.

8.2.3. Acceleration of Navigation. In this section, we evaluate the performance of Acc
in accelerating the navigation for taxis in Crowd-Alert. With a total duty cycle of 4

30 ,
we compare three navigating results based on different discovery results of discovery
schemes:

(i) Navigating with Disco: Navigating taxis with the results of Disco;
(ii) Navigating with Acc-Disco: Navigating taxis with the results of Acc-Disco; and

(iii) Navigating with Oracle: Navigating taxis with the results of an Oracle discovery
scheme where a taxi can instantly know these two distributions without delay.

Under all navigations, a taxi has the same preferable directions for fewer competing
taxis, more served passengers, or a ratio between them. But since the employed dis-
covery schemes are different, a navigation with a faster discovery scheme may achieve
better performance. The performance is characterized by three metrics: competing taxis
density, served passengers density, and a ratio between them. A faster discovery may
assist a navigation scheme in quickly navigating taxis to an area with fewer competing
taxis or more served passengers.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:29

0 2 4 6 8 10 12
500

550

600

650

700

750

800

850

900

950

1000

D
en

si
ty

of
C

om
pe

tin
g

T
ax

is

Cumulative Driving Time (mins)

Ground Truth
Navigating with Disco
Navigating with Acc-Disco
Navigating with Oracle

Fig. 44. Density in one smart taxi.

0 2 4 6 8 10 12
500

550

600

650

700

750

800

850

900

950

1000

Ground Truth
Navigating with Disco
Navigating with Acc-Disco
Navigating with Oracle

D
en

si
ty

of
C

om
pe

tin
g

T
ax

is

Cumulative Driving Time (mins)

Fig. 45. Density in 10% of smart taxis.

To show the difference with or without our application, we also compare the preceding
three schemes with Ground Truth without navigation, where the density is computed
based on original taxi traces without altering the routes of any taxis. Note that given
the density of competing taxis or served passengers, how to select the optimal route
to achieve the optimal density is outside the scope of this article. We simply let taxis
greedily select one out of four directions in an intersection according to densities in ev-
ery direction and then compute densities of competing taxis or served passengers in its
neighborhood every minute. We compare the performance of Acc under two conditions:
only one smart taxi using navigation strategies and 10% of total taxis using them.

(a) Density of Competing Taxis. We investigate the densities of competing taxis in three
different navigating strategies. We report the results of navigating only one taxi
or 10% of total taxis to select a direction with a lower density of competing taxis,
using a 3km communication radius in Figures 44 and 45, respectively.

Only one smart taxi. We show the situation where one smart driver uses our
app to find the optimal route. In Figure 44, as more driving time is allowed, there
exists a jitter in the density of competing taxis of Ground Truth, which has no
tendency toward consistent increases or decreases, whereas those of Disco, Acc-
Disco, and Oracle decrease. This is because the taxis with Disco, Acc-Disco, and
Oracle navigate to a direction with fewer competing taxis, so after 3 minutes the
density of competing taxis within its range drops. Compared to Ground Truth, after
12 minutes, under Disco the density decreases about 16% and under Acc-Disco the
density decreases about 25%, whereas Oracle outperforms Disco and Acc-Disco in
all cumulative driving times with a maximal performance gain of 5.1% and 10.1%,
respectively. From the preceding results, Oracle does not significantly outperform
Disco and Acc-Disco. One possible reason for this phenomenon is that the beginning
time and location for this one smart taxi is the rush hour in a downtown area.
Therefore, even though Oracle provides the local optimal direction to reduce the
density of competing taxis, the effect is limited.

10% smart taxis. We show the situation where taxi drivers from one company
(accounting for 10% of taxicabs) use our app to find the optimal route. Figure 45
plots results of 10% of total taxis using our application. Compared to the results in
Figure 44, all strategies have better performance, except for Ground Truth, which
remains the same. This is because the more the taxis use our applications, the
more the taxis will select the direction with lower taxi density, which in turn will
achieve a more uniform taxi distribution. Comparing Figures 44 and 45, we note
that the performance gain between navigating with Acc-Disco and Disco increases
from 25% to 29%, indicating that Acc-Disco is more efficient when more taxis use
our application.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:30 D. Zhang et al.

0 6 12 18 24 30 36

1000

1200

1400

1600

1800

2000

2200

D
en

si
ty

of
Se

rv
ed

Pa
ss

en
ge

rs

Cumulative Driving Time (mins)

Ground Truth
Navigating with Disco
Navigating with Acc-Disco
Navig ta ing with Oracle

Fig. 46. Density of passengers.

0 6 12 18 24 30 36
1

2

3

4

D
en

si
ty

of
Pa

ss
en

ge
rs

/T
ax

is

Cumulative Driving Time (mins)

Ground Truth
Navigating with Disco
Navigating with Acc-Disco
Navig ta ing with Oracle

Fig. 47. Density of passengers/taxis.

(b) Density of Served Passengers. We show the effectiveness of Acc in assisting the
navigating scheme to navigate taxis to a direction with more served passengers
in Figure 46. Since the percentage of taxis using our application is not directly
relevant to the density of already served passengers, we only show the results on
the 10% of smart taxis scenario. As in Figures 38 and 39, the density of served
passengers is denser than densities of competing taxis, so we use a 0.5km radius
to compute the density. Figure 46 plots the comparisons of cumulative densities
of the served passengers. With an increase in the cumulative driving time, the
cumulative density of served passengers in a taxi’s neighborhood also generally
increases for all schemes. The reason for the increases in navigation under Disco,
Acc-Disco, or Oracle is obvious, because that is the objective of our application.
But the reason for the increase in Ground Truth is not so obvious. A possible
explanation is that taxi drivers have rich experiences that help them select the area
to maximize the probability of picking up. The location of already-served passengers
offers a strong indication to the location of potential passengers. Therefore, even
without our application, experienced taxi drivers will still go to the area with more
served passengers. But compared to Ground Truth, Disco can assist taxi drivers
in finding the optimal direction more quickly via discovery. Therefore, there is a
performance gain between Disco and Ground Truth with a maximum of 10% after
36 minutes. In contrast, navigation with Acc-Disco is able to discover neighbors
even faster than that with Disco. For example, it outperforms those under Ground
Truth and Disco with maximal gains of 21% and 35%, respectively, but has a worse
performance than Oracle. Therefore, we conclude that with Acc-Disco, a navigation
scheme can more quickly guide the taxi to a direction with a high density of served
passengers.

(c) Density of Served Passengers and Competing Taxis. Built upon the two previous
sections, we investigate the effectiveness of Acc in assisting navigating schemes in
leading taxis to a direction with more served passengers and fewer competing taxis
at the same time. Thus, we use a ratio equal to the number of served passengers
and competing taxis as a new metric for the navigation instead of considering
served passengers and competing taxis separately. In Figure 47, with an increase
in the cumulative driving time, the ratio between the density of passengers and the
density of competing taxis in a taxi’s neighborhood also generally increases for all
schemes. Similar to Figure 46, we find that compared to Disco and Ground Truth,
Acc-Disco or Oracle always more quickly navigates the taxicabs to a direction with
both more passengers and fewer competing taxis. The performance gains among
all four schemes are similar to those in Figure 47.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:31

9. CONCLUSION

In this work, we analyze, design, implement, and evaluate Acc, an augmenting layer
for the acceleration of neighbor discovery in existing deterministic discovery schemes.
Our technical endeavors provide a few valuable insights, which are hoped to be useful
to realize Acc-based on-demand neighbor discovery applications in various domains.
Specifically, (i) we found that known neighbors can help a device learn unknown neigh-
bors indirectly, which is the key insight about our on-demand discovery; (ii) we designed
Acc as an independent middleware in the networking architecture without merging it
into existing neighbor discovery protocols, which makes Acc a transparent accelerator
without the dependence on the preceding applications or the following neighbor discov-
ery protocols; (iii) we characterized a slot with a novel concept called temporal-spatial
coverage to indicate the utility of a discovery device to wake up in the slot, and this
characterization is fully distributed and values the slots with neighbors having higher
temporal diversity and larger spatial similarity; and (iv) we designed a real-world taxi
application where Acc is used to accelerate the process of taxicab drivers finding effi-
cient routes, which serves as a real-world example to justify the motivation behind the
design of Acc.

APPENDIX: PROOF OF COMPETITIVE RATIO

We analyze the performance of our scheduling by comparing it to its Oracle version
with a complete neighbor table N(S,S). In our scheduling, a device S’s neighbor table
of in slot t0, denoted as n(S,S)

t0 , is processed piece by piece. This is a classic nature of an
online algorithm, which processes its incomplete input piece by piece from the start.
Because of this incomplete input, an online algorithm is forced to make suboptimal
decisions. To study this suboptimality, a competitive analysis is proposed to compare
the relative performance of an online algorithm to its Oracle version that has a complete
input. An online algorithm is competitive if its competitive ratio ρ, an performance
ratio between it and its Oracle version, is bounded. To obtain ρ, we utilize qualities
of selected active slots to represent algorithms’ performances, indicating how much
new neighbor information can be collected in these slots. The qualities of these slots
can be represented by slot gains. Therefore, we can analyze ρ by comparing the slot
gains under our online scheduling and its Oracle version, employing different neighbor
tables. In the following, we prove that ρ is bounded by a parameter R, which is the size
ratio between n(S,S)

t0 and N(S,S).
Assumptions are as follows: (i) in slot t0, a device S has already discovered a portion

of its neighbors in n(S,S)
t0 ; (ii) a parameter R = |n(S,S)

t0
|

|N(S,S)| < 1 is given, which is the ratio

between the number of neighbors in n(S,S)
t0 and N(S,S); (iii) all discovered neighbors are

uniformly distributed in N(S,S); and (iv) to minimize the effect of duty cycles, duty cycle
patterns for different devices are the same.

Via Equation (3) and assumption (i), ρ is given by

1
ρ

= γ
(S)
t0→t(Oracle)

γ
(S)
t0→t(Online)

=
∑

i∈N(S,S) α
(i,S)
t0→tβ

(i,S)
t0∑

j∈n(S,S)
t0

α
(j,S)
t0→t β̄

(j,S)
t0

, (5)

where α
(i,S)
t0→t and α

(j,S)
t0→t is temporal diversity for device i ∈ N(S,S) and j ∈ n(S,S)

t0 , re-
spectively, and β

(i,S)
t0 and β̄

(j,S)
t0 is spatial similarity for device i ∈ N(S,S) and j ∈ n(S,S)

t0 ,

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

63:32 D. Zhang et al.

respectively. Equation (5) can be reorganized as follows:

1
ρ

=
∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ

(j,S)
t0

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

+
∑

i∈n(S,S)
t0

α
(i,S)
t0→tβ

(i,S)
t0

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

, (6)

where n(S,S)
t0 is the complement of n(S,S)

t0 , given N(S,S).
The following analyzes the first term in Equation (6). According to Equation (2) and

assumption (ii), we have

β
(j,S)
t0

β̄
(j,S)
t0

= |N(j,S)
t0 |/|N(S,S)

t0 |
|n(j,S)

t0 |/|n(S,S)
t0 |

= |N(j,S)
t0 |

|n(j,S)
t0 |

|n(S,S)
t0 |

|N(S,S)
t0 |

= R
R′ , (7)

where R′ = |n(j,S)
t0

|
|N(j,S)

t0
| < 1. Therefore, the first term in Equation (6) can be represented as

follows:
∑

j∈n(S,S)
t0

α
(j,S)
t0→tβ

(j,S)
t0

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

=
R
R′

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

= R
R′ > 1, (8)

where R > R′ because, due to assumption (iii), not all i ∈ n(j,S)
t0 are neighbors of j.

The following analyzes the second term of Equation (6). Due to assumption (iv), ∀i,
j ∈ N(S,S), α

(i,S)
t0→t = α

(j,S)
t0→t . Thus, the second term in Equation (6) can be reorganized as

follows:
∑

i∈n(S,S)
t0

α
(i,S)
t0→tβ

(i,S)
t0

∑
j∈n(S,S)

t0
α

(j,S)
t0→t β̄

(j,S)
t0

=
α

(i,S)
t0→t

∑
i∈n(S,S)

t0

β
(i,S)
t0

α
(j,S)
t0→t

∑
j∈n(S,S)

t0
β̄

(j,S)
t0

=
∑

i∈n(S,S)
t0

β
(i,S)
t0

∑
j∈n(S,S)

t0
β̄

(j,S)
t0

. (9)

Based on assumption (iii), ∀ j ∈ n(S,S)
t0 and ∀i ∈ n(S,S)

t0 are randomly and uniformly
distributed in N(S,S). Therefore, ∀i, j ∈ N(S,S), β

(i,S)
t0 = β

(j,S)
t0 , and ∀i, j ∈ n(S,S)

t0 , β̄
(i,S)
t0 =

β̄
(j,S)
t0 . Thus,

∑
i∈n(S,S)

t0

β
(i,S)
t0

∑
j∈n(S,S)

t0
β̄

(j,S)
t0

= |n(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

. (10)

Because n(S,S)
t0 ∪ n(S,S)

t0 = N(S,S) and
|n(S,S)

t0
|

|N(S,S)| = R, we have |n(S,S)
t0 | = 1−R

R |n(S,S)
t0 |. Therefore,

Equation (10) can be rewritten as follows:

|n(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

=
1−R

R |n(S,S)
t0 |β(i,S)

t0

|n(S,S)
t0 |β̄(j,S)

t0

= 1 − R
R

β
(i,S)
t0

β̄
(j,S)
t0

. (11)

Since i and j are two arbitrary devices in the networks, based on the analysis of

Equation (7),
β

(i,S)
t0

β̄
(j,S)
t0

> 1. Therefore, we have

1 − R
R

β
(i,S)
t0

β̄
(j,S)
t0

>
1 − R

R
= 1

R
− 1. (12)

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

Generic Neighbor Discovery Accelerations in Mobile Applications 63:33

Based on Equation (8), we have the first term in Equation (6); based on Equations (9)
through (12), we have the second term in Equation (6). Therefore, Equation (6) can be
rewritten as follows:

1
ρ

= R
R′ + 1 − R

R
β

(i,S)
t0

β̄
(j,S)
t0

> 1 + 1
R

− 1 = 1
R

. (13)

Finally, we have the competitive ratio ρ:

ρ = γ
(S)
t0→t(Online)

γ
(S)
t0→t(Oracle)

< R. (14)

According to the preceding analysis, we have obtained the competitive ratio ρ of our
online scheduling algorithm.

REFERENCES

Denizhan N. Alparslan and Khosrow Sohraby. 2007. Two-dimensional modeling and analysis of generalized
random mobility models for wireless ad hoc networks. IEEE/ACM Transactions on Networking 15, 3,
616–629. DOI:http://dx.doi.org/10.1109/TNET.2007.893873

Mehedi Bakht, Matt Trower, and Robin Hilary Kravets. 2012. Searchlight: Won’t you be my neighbor?
In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking
(Mobicom’12). ACM, New York, NY, 185–196. DOI:http://dx.doi.org/10.1145/2348543.2348568

James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. 2011. EasyTracker: Automatic
transit tracking, mapping, and arrival time prediction using smartphones. In Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems (SenSys’11). ACM, New York, NY, 68–81.
DOI:http://dx.doi.org/10.1145/2070942.2070950

Prabal Dutta, Paul M. Aoki, Neil Kumar, Alan Mainwaring, Chris Myers, Wesley Willett, and Allison
Woodruff. 2009. Common sense: Participatory urban sensing using a network of handheld air quality
monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys’09). ACM, New York, NY, 349–350. DOI:http://dx.doi.org/10.1145/1644038.1644095

Prabal Dutta and David Culler. 2008. Practical asynchronous neighbor discovery and rendezvous for mobile
sensing applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems
(SenSys’08). ACM, New York, NY, 71–84. DOI:http://dx.doi.org/10.1145/1460412.1460420

Prabal Dutta and Lakshminarayanan Subramanian. 2010. Human-enabled microscopic environmental mo-
bile sensing and feedback. In Proceedings of the AAAI Spring Symposium: Artificial Intelligence for
Development. http://dblp.uni-trier.de/db/conf/aaaiss/aaaiss2010-1.html.

Jeremy Elson and Kay Römer. 2003. Wireless sensor networks: A new regime for time synchroniza-
tion. ACM SIGCOMM Computer Communication Review 33, 1, 149–154. DOI:http://dx.doi.org/10.
1145/774763.774787

Facebook. 2013. Facebook Places. Retrieved October 26, 2015, from https://www.facebook.com/places/.
Foursquare. 2013. Foursquare Home Page. Retrieved October 26, 2015, from http://www.foursquare.com.
Raghu K. Ganti, Fan Ye, and Hui Lei. 2011. Mobile crowdsensing: Current state and future challenges. IEEE

Communications Magazine 49, 11, 32–39.
Google. 2013. Google Latitude. Retrieved October 26, 2015, from http://www.google.com/latitude.
Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. 2005. CenWits: A sensor-based loosely coupled search

and rescue system using witnesses. In Proceedings of the 3rd ACM Conference on Embedded Networked
Sensor Systems (SenSys’05).

Hyewon Jun, Mostafa H. Ammar, Mark D. Corner, and Ellen W. Zegura. 2006. Hierarchical power manage-
ment in disruption tolerant networks with traffic-aware optimization. In Proceedings of the 2006 SIG-
COMM Workshop on Challenged Networks (CHANTS’06). ACM, New York, NY, 245–252. DOI:http://dx.
doi.org/10.1145/1162654.1162662

Arvind Kandhalu, Karthik Lakshmanan, and Ragunathan (Raj) Rajkumar. 2010. U-connect: A low-latency
energy-efficient asynchronous neighbor discovery protocol. In Proceedings of the 9th ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks (IPSN’10). ACM, New York, NY,
350–361. DOI:http://dx.doi.org/10.1145/1791212.1791253

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

http://dx.doi.org/10.1109/TNET.2007.893873
http://dx.doi.org/10.1145/2348543.2348568
http://dx.doi.org/10.1145/2070942.2070950
http://dx.doi.org/10.1145/1644038.1644095
http://dx.doi.org/10.1145/1460412.1460420
http://dblp.uni-trier.de/db/conf/aaaiss/aaaiss2010-1.html
http://dx.doi.org/10.1145/774763.774787
http://dx.doi.org/10.1145/774763.774787
https://www.facebook.com/places/
http://www.foursquare.com
http://www.google.com/latitude
http://dx.doi.org/10.1145/1162654.1162662
http://dx.doi.org/10.1145/1162654.1162662
http://dx.doi.org/10.1145/1791212.1791253

63:34 D. Zhang et al.

Shouwen Lai, B. Ravindran, and Hyeonjoong Cho. 2010. Heterogenous quorum-based wake-up scheduling
in wireless sensor networks. IEEE Transactions on Computers 59, 11, 1562–1575.

Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell.
2010. A survey of mobile phone sensing. IEEE Communications Magazine 48, 9, 140–150.

Hengchang Liu, Jingyuan Li, Zhiheng Xie, Shan Lin, Kamin Whitehouse, John A. Stankovic, and David Siu.
2010. Automatic and robust breadcrumb system deployment for indoor firefighter applications. In Pro-
ceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys’10).
ACM, New York, NY, 21–34. DOI:http://dx.doi.org/10.1145/1814433.1814438

Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi. 2004. Implementing software on
resource-constrained mobile sensors: Experiences with impala and zebranet. In Proceedings of the 2nd
International Conference on Mobile Systems, Applications, and Services (MobiSys’04). ACM, New York,
NY, 256–269. DOI:http://dx.doi.org/10.1145/990064.990095

Michael J. McGlynn and Steven A. Borbash. 2001. Birthday protocols for low energy deployment and flexible
neighbor discovery in ad hoc wireless networks. In Proceedings of the 2nd ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHoc’01). ACM, New York, NY, 137–145.
DOI:http://dx.doi.org/10.1145/501431.501435

Emiliano Miluzzo, Michela Papandrea, Nicholas D. Lane, Andy M. Sarroff, Silvia Giordano, and
Andrew T. Campbell. 2011. Tapping into the vibe of the city using VibN, a continuous sensing ap-
plication for smartphones. In Proceedings of the 1st International Symposium on From Digital Foot-
prints to Social and Community Intelligence (SCI’11). ACM, New York, NY, 13–18. DOI:http://dx.doi.
org/10.1145/2030066.2030071

M. Mitzenmacher and U. Upfal. 2007. Probability and Computing. Cambridge University Press.
Nintendo. 2012. Nintendo 3DS—Streetpass. (2012). Retrieved October 26, 2015, from http://www.nintendo.

com/3ds/hardware.
H. L. Ivan Niven and Herbert S. Zuckerman. 1991. An Introduction to the Theory of Numbers. Wiley.
Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. 2010. Energy-efficient rate-adaptive GPS-based

positioning for smartphones. In Proceedings of the 8th International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys’10). ACM, New York, NY, 299–314. DOI:http://dx.doi.org/10.
1145/1814433.1814463

Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and Christophe Diot. 2009. Mobi-
Clique: Middleware for mobile social networking. In Proceedings of the 2nd ACM Workshop on Online So-
cial Networks (WOSN’09). ACM, New York, NY, 49–54. DOI:http://dx.doi.org/10.1145/1592665.1592678

Aveek Purohit, Bodhi Priyantha, and Jie Liu. 2011. WiFlock: Collaborative group discovery and maintenance
in mobile sensor networks. In Proceedings of the 2011 10th International Conference on Information
Processing in Sensor Networks (IPSN’11). 37–48.

Jasmin Sasin. 2012. Shenzhen Ranks Fifth in the World in Terms of Population Density. Available at
http://www.shenzhen-standard.com/2014/03/25/.

Softonic. 2012. Bluehoo Home Page. Retrieved October 26, 2015, from http://www.bluehoo.com.
Sony. 2013. PlayStation Home Page. Retrieved October 26, 2015, from http://us.playstation.com/psvita.
Synerge. 2013. Who’s Near Me. Retrieved October 26, 2015, from http://www.windows7newsinfo.com/

smf/index.php?topic=9414.0;wap2.
Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. 2010. Cooperative transit tracking

using smart-phones. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys’10). ACM, New York, NY, 85–98. DOI:http://dx.doi.org/10.1145/1869983.1869993

Yu-Chee Tseng, Chih-Shun Hsu, and Ten-Yueng Hsieh. 2002. Power-saving protocols for IEEE 802.11-based
multi-hop ad hoc networks. In Proceedings of the Conference on Computer Communications (INFO-
COM’02).

Wikipedia. 2013. Location-Based Game. Retrieved October 26, 2015, from http://en.wikipedia.org/wiki/
Location-based_game.

Tingxin Yan, Vikas Kumar, and Deepak Ganesan. 2010. CrowdSearch: Exploiting crowds for accurate real-
time image search on mobile phones. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys’10). ACM, New York, NY, 77–90.

Tingxin Yan, Matt Marzilli, Ryan Holmes, Deepak Ganesan, and Mark Corner. 2009. mCrowd: A platform
for mobile crowdsourcing. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys’09). ACM, New York, NY, 347–348. DOI:http://dx.doi.org/10.1145/1644038.1644094

Desheng Zhang and Tian He. 2012. pCruise: Reducing cruising miles for taxicab networks. In Proceedings
of the Real-Time Systems Symposium (RTSS’12). 85–94.

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

http://dx.doi.org/10.1145/1814433.1814438
http://dx.doi.org/10.1145/990064.990095
http://dx.doi.org/10.1145/501431.501435
http://dx.doi.org/10.1145/2030066.2030071
http://dx.doi.org/10.1145/2030066.2030071
http://www.nintendo.com/3ds/hardware
http://www.nintendo.com/3ds/hardware
http://dx.doi.org/10.1145/1814433.1814463
http://dx.doi.org/10.1145/1814433.1814463
http://dx.doi.org/10.1145/1592665.1592678
http://www.shenzhen-standard.com/2014/03/25/
http://www.bluehoo.com
http://us.playstation.com/psvita
http://www.windows7newsinfo.com/smf/index.php?topic=9414.0;wap2
http://www.windows7newsinfo.com/smf/index.php?topic=9414.0;wap2
http://dx.doi.org/10.1145/1869983.1869993
http://en.wikipedia.org/wiki/Location-basedgame
http://en.wikipedia.org/wiki/Location-basedgame
http://dx.doi.org/10.1145/1644038.1644094

Generic Neighbor Discovery Accelerations in Mobile Applications 63:35

Desheng Zhang, Tian He, Yunhuai Liu, Yu Gu, Fan Ye, Raghu K. Ganti, and Hui Lei. 2012. Acc: Generic
on-demand accelerations for neighbor discovery in mobile applications. In Proceedings of the 10th
ACM Conference on Embedded Network Sensor Systems (SenSys’12). ACM, New York, NY, 169–182.
DOI:http://dx.doi.org/10.1145/2426656.2426674

Rong Zheng, Jennifer C. Hou, and Lui Sha. 2003. Asynchronous wakeup for ad hoc networks. In Proceedings
of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’03).
ACM, New York, NY, 35–45. DOI:http://dx.doi.org/10.1145/778415.778420

Received March 2014; revised April 2015; accepted September 2015

ACM Transactions on Sensor Networks, Vol. 11, No. 4, Article 63, Publication date: November 2015.

http://dx.doi.org/10.1145/2426656.2426674
http://dx.doi.org/10.1145/778415.778420

