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Abstract— Bus services play a crucial role in urban transit. It
is significant to achieve the fine-grained service-level passenger
flow prediction (SPFP), namely to predict the total number of
passengers for each service of each bus line passing through
each station during the next short-term interval. However,
it faces great challenges due to complex factors including
inter-station and inter-line spatial dependencies, intra-station
and inter-service temporal dependencies, and internal/external
influences. To address these challenges, we propose a multitask
deep-learning (MDL) approach, called MDL-SPFP, to jointly
predict the arriving bus service flow, line-level on-board pas-
senger flow and line-level boarding/alighting passenger flow by
leveraging well-designed deep neural networks called ARM. The
MDL framework can mutually reinforce the prediction of each
type of flow, and finally integrate the outputs to achieve the
fine-grained service-level prediction. The ARM network combines
three modules, Attention mechanism, Residual block and Multi-
scale convolution, to well capture various complex non-linear
spatio-temporal dependencies and influence factors. Extensive
experiments based on a large-scale realistic bus operation dataset
are conducted to confirm that our MDL-SPFP approach out-
performs 10 state-of-the-art baselines, and improves 22.39%
accuracy than the best baseline.

Index Terms— Traffic passenger flows prediction, bus transit
systems, multitask learning, deep learning.

I. INTRODUCTION

BUS services are the most common way to move people
over short and medium distances in almost every city

around the world. It is reported that buses account for about
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55% of public transport in Europe, 751 million passenger trips
annually in the USA, and 250 million passenger trips per day
in China [1], [2]. To improve the service quality of Bus
Transit Systems (BTS), it is of great significance to accurately
predict passenger flows for each running bus. From the bus
operators’ perspective, it can assist in optimizing resource
scheduling, e.g., dynamically adjusting the service frequency
and vehicle size in fine granularity. From the passengers’ per-
spective, it can help to obtain a comfortable travel experience
by avoiding crowded lines. From the government’s perspec-
tive, it is useful for risk assessment and guaranteeing public
safety.

In this paper, we focus on the fine-grained Service-level
Passenger Flow Prediction (SPFP) for BTS. Specifically, many
different bus services (i.e., individual round trips) belonging
to the same bus line always depart from the starting station
one by one at different times in one day and pass through
many stations of the line. Our objective is to predict the total
number of on-board passengers for each service of each bus
line passing through each station during the next short-term
interval (e.g., 5 minutes) in fine granularity. Please note that it
is different from the station-level passenger flow prediction,
which concerns the total number of on-board passengers
passing through each station during a time interval, while not
distinguishing passengers from different bus lines; it is also
different from the line-level passenger flow prediction, which
concerns the total number of on-board passengers passing
through each station/region from each individual bus line
during a time interval, while not distinguishing passengers
from different bus services that may belong to the same bus
line.

The fine-grained SPFP is the key to realize transit crowd-
edness predictions for individual bus services, based on which
Google Maps introduced a new crowdedness prediction service
in June 2019 [3]. Nevertheless, the Google’s service relies
heavily on crowdsourcing data, i.e., asking Map users to
share information about their experience and count how many
seats are available or if riders have to stand. Nowadays,
with the widespread use of Automatic Fare Collection (AFC)
devices that can record passengers’ payments using smart
cards, and GPS embedded On Board Units (OBUs) that can
track the bus, it offers us a new and promising alterna-
tive way to achieve this goal. However, we still face great
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challenges, as the fine-grained SPFP is affected by many
complex factors:

• Spatial dependencies. It contains not only inter-station
dependencies similar to inter-region dependencies in the
traditional traffic flow prediction [4], but also unique
and complex inter-line dependencies. The inter-station
dependencies exist not only between adjacent stations,
but also between stations that are far away from each
other (e.g., between home and work place, or between
one tourist attraction and another). The inter-line depen-
dencies are affected by the transfers between two lines,
which obviously reflect passenger flows from one line to
another.

• Temporal dependencies. The current passenger flows
are always correlated with the historical flows [4], which
essentially belongs to the intra-station temporal depen-
dencies. Meanwhile, the inter-service temporal depen-
dencies exist in different services of the same line.
For example, two successive services may have similar
passenger flows.

• Internal and external influences. Besides some external
factors, such as weather conditions and events [4], some
internal features of bus lines and stations, including
the accessibility, connectivity, and surrounding functional
zones, also have significant influences on passenger flows.

Therefore, it is necessary to design a novel fine-grained
model to simultaneously capture complex spatio-temporal
dependencies and internal/external influences from line-level
and station-level to service-level. Most existing studies on pas-
senger flow prediction [5]–[11] are based on traditional time
series models or machine learning models, failing to capture
such complex non-linear dependencies and influences. Several
most recent studies [12], [13] have exploited deep learning
models to capture complex non-linear dependencies and influ-
ences for BTS, but are still limited to the line-level [12] or
station-level [13] instead of service-level.

To the best of our knowledge, this is the first work that
investigates the fine-grained SPFP using the off-the-shelf bus
operation data based on deep learning. To address the above
challenges, we mainly make the following contributions:

• We identify diverse spatiotemporal dependencies, and
heterogeneous flow dependencies among arriving bus
service flow, line-level on-board passenger flow, line-level
boarding/alighting passenger flow and inter-line trans-
fer passenger flow (see Table I). A multitask deep
learning (MDL) approach, MDL-SPFP, is proposed to
simultaneously predict different types of flows by ade-
quately capturing our identified dependencies. Finally,
we integrate the outputs of arriving bus service flow and
line-level on-board passenger flow predictions to achieve
the fine-grained SPFP.

• We propose a novel deep neural network (DNN) model
called ARM in the MDL framework, which consists of
three modules: (i) Attention mechanism to automatically
capture different weights of temporal influences, (ii)
Residual block to efficiently capture both near and far
inter-station spatial dependencies, and (iii) Multi-scale

convolution to further enhance the learning ability of spa-
tial dependencies. Moreover, we integrate the inter-line
transfer passenger flow to improve the prediction perfor-
mance of the line-level boarding/alighting passenger flow
by leveraging the ARM network, which can capture the
inter-line spatial dependencies very well.

• We evaluate our MDL-SPFP approach using over
16.6-million AFC transaction records and the correspond-
ing over 9.9-million bus arrival time records collected
during 3 months in Jinan City, China. The results verify
that our MDL-SPFP achieves the best prediction perfor-
mance compared to 10 baselines, and improves 22.39%
accuracy than the best baseline. We have released the
code and data for public use.1

II. MOTIVATION

In this section, we explain why it is significant to capture
the dependencies among three types of flows (i.e., arriving bus
service flow, line-level on-board passenger flow, and line-level
B/A passenger flow), which is also our main motivation to
design a MDL approach.

To achieve SPFP, one direct method is to use the
service-level historical passenger flow to predict the number of
on-board passengers during the next time interval, as achieved
in [11]. However, this method loses much information from
the inter-station spatial dependencies and inter-line transfers.
Another alternative method is to first predict the line-level on-
board passenger flow, which may aggregate passenger flows
from multiple services during a time interval, as achieved
in [12]. Generally, different services belonging to the same
bus line always depart from the starting station one by one at
different times. If each service arrives at a certain station on
time and we could achieve sufficiently short-term prediction
so that there is only one service during that interval, then we
could directly get the service-level passenger flow. However,
it is very common to see that multiple bus services belonging
to the same line arrive at the same station almost at the same
time due to various uncertain factors such as traffic congestions
and accidents (see Sect. III-B), not to mention the difficulty of
achieving ultra-short-term prediction. Thus, it is very difficult
to accurately predict how many passengers will get on different
bus services belonging to the same line at a specific time. To
cope with this difficulty, it is necessary to simultaneously
model the arriving bus service flow, namely to predict the
number of bus services arriving at each station during
each time interval.

On the other hand, the on-board passenger flow can only be
derived from the boarding/alighting (B/A) pairs of passengers
(i.e., AFC transaction records). We can easily extract the
line-level B/A passenger flow. However, it is impossible to
infer the number of on-board passengers during a specific time
interval directly from the historical line-level B/A passenger
flow, as there are different numbers of bus services arriving
at various stations during different time intervals. Let us take
Fig. 1 as an example: at time t3, the line-level B/A passenger

1https://github.com/DanLuo-work/keras-MDL-SPFP
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Fig. 1. Illustration of three bus services belonging to the same bus line,
which depart from the starting station in the order (A, B, C). The information
above each bus, t : (n1, n2), means that the bus arrives at a station during the
time interval t , and the numbers of boarding and alighting passengers are n1
and n2 respectively.

TABLE I

VARIOUS DEPENDENCIES REQUIRED TO CAPTURE

flow at station 2 is (9+5, 1+4) = (14, 5); at time t5, the line-
level B/A passenger flow at station 3 is (2 + 7, 5 + 0) =
(9, 5); while at time t5, as service C catches up with B,
the line-level on-board passenger flow at station 3 includes
passengers from both services B and C, and is calculated as
(5+5−4+2−5)+(2+10−1+7)= 21, which is different from
the sum of line-level B/A passenger flows. Thus, it implies that
the line-level on-board passenger flow and the line-level
B/A passenger flow are complementary to each other, both
of which are needed to be modeled explicitly.

Different types of flows contain complex dependencies.
Intuitively, the on-board passenger flow should coincide with
the bus service flow, since more bus services naturally bring in
more passengers. Second, the B/A passenger flows have direct
influences on the on-board passenger flow, since the on-board
passenger flow is obtained according to a set of B/A pairs.
Third, the transfer passenger flow has correlations with the
B/A passenger flow, since, in essence, the former is a part
of the latter. In summary, the key to achieve find-grained
SPFP is to well capture various complex spatio-temporal
dependencies as listed in Table I.

III. DATA DESCRIPTION AND PRELIMINARY ANALYSIS

A. Dataset

This work is based on a large-scale bus operation dataset
collected from approximately 3 million smart card holders
and 327141 bus services in Jinan City, China from Novem-
ber 2018 to January 2019. This dataset cosists of two parts:

TABLE II

SOME IMPORTANT STATISTICS FOR OUR USED DATA

Fig. 2. Inter-station spatial dependencies between on-board passenger flows
at adjacent stations from one bus line during 12 : 00− 12 : 05 for 3 months.

over 16.6-million AFC transaction records, and the corre-
sponding over 9.9-million bus arrival time records. AFC
transaction records include items of card ID, line ID, boarding
station, boarding time, orientation (i.e., two opposite directions
of the same bus line) and trip ID (representing different bus
services). Bus arrival time records include items of trip ID,
arrival station with its longitude and latitude, and arrival time.
In addition, several other open data sources are used in this
study for extracting internal/external features: holiday events,
weather, temperature, road networks and points of interest
(PoI). Some important statistics for our used data are shown
in Table II.

B. Preliminary Data Analyses

Before formally introduce our problem and approach, it is
significant to first conduct preliminary data analyses for
directly verifying various spatio-temporal dependencies and
heterogeneous flow dependencies. We use Pearson correlation
analysis to evaluate various dependencies. The time interval
length is 5 minutes by default.

1) Spatio-Temporal Dependencies:
a) Inter-station spatial dependencies: Intuitively, the pas-

senger flows from adjacent bus stations should have strong
spatial correlation. We analyze on-board passenger flows in
a pair of adjacent stations from one bus line in a certain
time interval for three months, which presents a strong spatial
correlation, as shown in Fig. 2.

b) Inter-line spatial dependencies: Different bus lines
may meet at the same station in BTS, which provides chances
for passenger transfer. In general, the more lines a certain bus
station contains, the more urban settlements exist around this
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Fig. 3. Inter-line spatial dependencies between the transfer passenger flow
and the number of bus lines at all individual stations during all of time intervals
for 3 months.

Fig. 4. Intra-station recent temporal dependencies for on-board passenger
flows at one node (p.f. is short for “passenger flow”).

station, and the more passengers will be attracted to transfer at
this station. After data preprocessing, we observe that there are
over 600-thousand transfer records in the dataset. The average
number of daily travel records is approximately 96 thousands,
and the number of transfer records is nearly 7 thousands,
i.e., over 14.7% of all travel records. We plot the relationship
of the transfer passenger flow and the number of bus lines at
all individual stations during all of time intervals for 3 months
in Fig. 3, which presents an obvious correlation.

c) Intra-station temporal dependencies: We analyze
intra-station temporal dependencies with different types
(recent, daily-periodic and weekly-periodic) of time fragments,
respectively. Take recent type as an example. The horizontal
axe of Fig. 4 represents the on-board passenger flow at a
certain node (i.e., a certain station of a certain bus line)
during each time interval for 3 months, and the vertical
axe represents that during each of the last 3 time intervals,
which shows a strong correlation value, 0.8193. Meanwhile,
both the daily-periodic and weekly-periodic types show a
strong correlation, although with diminishing correlation val-
ues, 0.7647 and 0.7409, respectively.

d) Inter-service temporal dependencies: BTS are usually
affected by a variety of factors (e.g., weather conditions, traffic
accidents), resulting in random bus arrival times. Figure 5
shows the standard deviations of arrival times for one bus line
at a certain station during different time intervals in all of days
for 3 months. It is observed that the arrival times vary greatly,
and the maximum standard deviation can reach 137 seconds.
Table III shows the occurrence number and percentage for
different numbers of bus services belonging to the same line
arriving at the same station during the same time interval for

Fig. 5. The standard deviation of bus services’ arrival times in all of days
for 3 months.

TABLE III

DISTRIBUTION OF BUS SERVICES

Fig. 6. Inter-service temporal dependencies in successive services #5 and #6
in one day.

3 months. It is observed that there are nearly 10% cases where
more than two bus services arrive at the same station during
the same interval. In fact, at most 9 bus services arrive at the
same station during the same time interval in Jinan dataset.
It implies a great challenge but significance for accurately
predicting the bus service flow during a short-term interval. We
further analyze the on-board passenger flow for two successive
bus services of one bus line arriving at the same station in one
day, which presents a strong correlation, as shown in Fig. 6.

2) Heterogenous Flow Dependencies:
a) Dependencies between on-board passenger flow and

bus service flow: It is well known that, individual passenger
always moves with much randomness, and thus the passenger
flows during the same periods of different days may vary
very dynamically. Nevertheless, the on-board passenger flow
heavily depends on the bus service flow. Figure 7 shows
the relationship between the on-board passenger flow and the
bus service flow at all individual stations during all of time
intervals for 3 months, which presents a strong correlation.

b) Dependencies between on-board passenger flow and
B/A passenger flows: We randomly select a node (i.e., a certain
station of a certain bus line) and analyze the relationships
between the on-board passenger flow and B/A passenger
flows at this node during all of time intervals for 3 months.
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Fig. 7. Relationship between the on-board passenger flow and the bus service
flow at all individual stations during all of time intervals for 3 months.

Fig. 8. Relationship between the on-board passenger flow and the alighting
passenger flow at one node during all of time intervals for 3 months.

They present strong correlations, as shown in Fig. 8 (only
alighting flow is presented due to similar results for boarding
flow).

c) Dependencies between B/A passenger flows and trans-
fer passenger flow: We randomly select a node and analyze
the relationships between the B/A passenger flows and transfer
flow at this node during all of time intervals for 3 months. As
an example, Fig. 9 plots the alighting passenger flow and the
number of transfer passengers alighting from this node and
boarding to other lines, presenting strong correlation.

C. Trajectory Estimation

The AFC transaction data in the Jinan bus operation dataset
only provides boarding records (corresponding to the start-
ing station of a passenger’s trajectory) but without alighting
records. In fact, the lack of alighting records is very common
in urban BTS with flat rate fare. To obtain passengers’ com-
plete trajectories, we utilize the boarding data to estimate the
alighting station for different passengers using the probabilistic
estimation method [11]. Considering that the alighting station
from regular historical trajectories always produce a com-
pletely opposite orientation with boarding station, we perform
an additional operation before using the probabilistic model,
namely using passengers’ next start stations to estimate their
alighting stations.

IV. PROBLEM FORMULATION

In this section, we formally define several important con-
cepts and various types of flows, and formulate the SPFP
problem.

Fig. 9. Relationship between the alighting passenger flow and the transfer
passenger flow at one node during all of time intervals for 3 months.

Fig. 10. Illustration of converting a bus route network to a set of nodes.

A. Concepts and Models

Definition 1 (Node V ): Given a bus route network with I
bus lines and at most J stations for each line, all lines are
stretched and merged to form a set of nodes, denoted by V =
{ri j }, 1 ≤ i ≤ I, 1 ≤ j ≤ J , each of which is arranged in
order and represents the j -th station of the i -th line. Note that
all the stations in one direction are always placed after all
the stations in the opposite directions of the same line, in a
reverse order, as shown in Fig. 10. For the line with less than
J stations in reality, we add virtual nodes to keep consistent
with the longest line.

Let (τ, l, s, ϕ) be a spatio-temporal point, of which τ
denotes a timestamp, (l, s) denotes the station s of the bus
line l, and ϕ denotes a specific bus service belonging to line
l. Let ar = (τar , lar , sar , ϕar ) denote a bus arrival time record,
i.e., a bus, which belongs to the service ϕar of line lar , arrives
at station sar at time τar . Let A be all bus arrival time records,
and � be all bus services appearing in A. For convenience,
we use (l, s) ∈ ri j to represent that the station s of the bus
line l lies within the node ri j , and τ ∈ t to represent that the
timestamp τ is in the time interval t .

Definition 2 (Arriving Bus Service Sets and Flows X):
Given a set of bus arrival time records A and a sequence of
time intervals T , the set of bus services arriving at node ri j

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2020 at 21:55:10 UTC from IEEE Xplore.  Restrictions apply. 
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during the interval t is defined as

�t,i, j = {ϕar ∈ � : (lar , sar ) ∈ ri j ∧ τar ∈ t}, (1)

and the corresponding number of bus services is defined as

X t (i, j) = |�t,i, j |, (2)

where X t (:, :) means arriving bus service flow matrix.
The movement of a passenger can be recorded as a

time-ordered spatial trajectory, among which the boarding
point and alighting point (i.e., B/A pair), denoted by pb =
(τpb , l p, spb , ϕp) and pa = (τpa , l p, spa , ϕp), respectively. Let
P be all B/A (i.e., (pb, pa)) pairs. From these B/A pairs
together with bus arrival time records, we can model the
passenger flows from different perspectives.

Definition 3 (B/A Passenger Flows Y ): Given a set of B/A
pairs P and a sequence of time intervals T , the service-
level boarding and alighting (B/A) passenger flows belonging
to service ϕk at node ri j during the interval t are defined
respectively as

Y S
t,k(1, i, j) = | {(pb, pa) ∈ P : (l p, spb) ∈ ri j

∧ϕp = ϕk ∧ τpb ∈ t
} |, (3)

Y S
t,k(0, i, j) = | {(pb, pa) ∈ P : (l p, spa ) ∈ ri j

∧ϕp = ϕk ∧ τpa ∈ t
} |, (4)

where ∀ϕk ∈ �t,i, j , and Y S
t,k(1, :, :) and Y S

t,k(0, :, :) mean
service-level B/A passenger flow matrices, respectively. Fur-
thermore, the line-level B/A passenger flows at node ri j during
the interval t are defined respectively as

Y L
t (1, i, j) =

∑

∀ϕk∈�t,i, j

Y S
t,k(1, i, j), (5)

Y L
t (0, i, j) =

∑

∀ϕk∈�t,i, j

Y S
t,k(0, i, j), (6)

where Y L
t (1, :, :) and Y L

t (0, :, :) mean line-level B/A passen-
ger flow matrices, respectively.

Definition 4 (On-board Passenger Flows Z): Given a set
of boarding-alighting pairs P and a sequence of time intervals
T , the service-level on-board passenger flow at node ri j during
the interval t are defined as

ZS
t,k(i, j) =

t∑

t ′=t1

(Y S
t ′,k(1, i, j)− Y S

t ′,k(0, i, j)), (7)

where ∀ϕk ∈ �t,i, j , and ZS
t,k(:, :) mean service-level on-board

passenger flow matrix. Furthermore, the line-level on-board
passenger flow at node ri j during the interval t are defined as

ZL
t (i, j) =

∑

∀ϕk∈�t,i, j

ZS
t,k(i, j), (8)

where ZL
t (:, :) mean line-level on-board passenger flow

matrix.
Definition 5 (Inter-Line Transfer Passenger Flows M):

Given a set of B/A pairs P and a sequence of time intervals
T , let (pb, pa, p′b, p′a) denote two continuous B/A pairs
belonging to the same individual passenger, and {p, p′} denote
the set of such continuous B/A pairs, where p = (pb, pa) ∈ P

Fig. 11. Inter-line transfer passenger flow with I line channels.

and p′ = (p′b, p′a) ∈ P, then the inter-line transfer passenger
flow from line li to li ′ at node ri j are defined as

M t (i, j, i ′) = |{(pb, pa, p′b, p′a) ∈ {p, p′} : (l p, spa ) ∈ ri j

∧(l p′ , sp′b ) ∈ ri j ∧ τp ∈ t ∧ τp′ ∈ t}|, (9)

where M t (:, :, i ′) mean inter-line transfer passenger flow
matrix at any node ri j that is transferred to a specific line
li ′ , as shown in Fig. 11.

Considering all four types of flows (i.e., X t , Y L
t , ZL

t , M t ),
a time-varying bus route network is conventionally repre-
sented as a time-ordered sequence of matrixes/tensors, with
each matrix/tensor corresponding to a snapshot of the bus
route network during a certain time interval. These flow
matrixes/tensors have complex influence and interaction with
each other. In addition, we identify and integrate both internal
and external features that have influences on passenger flows.
External features include holidays information, weather condi-
tions and events. Internal features mainly concern geographical
attributes of bus lines and stations, which will be elaborated
in Sect. V-D.

B. Service-Level Flow Prediction Problem

Generally, passenger flow prediction is a time series pre-
diction problem, which aims to predict the passenger flow for
each bus line at time interval T + 1 with observing historical
flow data until time T . However, it is difficult for traditional
approaches to capture complex spatio-temporal dependencies
and influences. To achieve the fine-grained SPFP, in this paper
we integrate four types of flows from various perspectives,
i.e., arriving bus service flow, line-level B/A passenger flows,
line-level on-board passenger flow, and inter-line transfer
passenger flow, as defined above. Our goal is to first predict
all these flows simultaneously, and then integrate the results to
finally achieve the SPFP. In addition, we integrate both internal
and external features defined above for improving prediction
performance.

Definition 6 (Service-Level Passenger Flow Prediction
Problem): Given the historical flow observations{

X t , Y L
t , ZL

t , M t |t = t1, . . . , tT
}

and internal/external
features Ft , the objective of this paper is to collectively
predict X tT+1 , Y L

tT+1
and ZL

tT+1
, and integrate the results to

finally predict ZS
tT+1

in the future.
Unless explicitly stated, in the rest of paper we respectively

use “bus service flow”, “B/A passenger flow”, “on-board
passenger flow”, and “transfer passenger flow” to represent
“arriving bus service flow”, “line-level B/A passenger flow”,
“line-level on-board passenger flow” and “inter-line transfer
passenger flow” by default for convenience. Table IV lists
frequently used notations in this paper.
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Fig. 12. The overall framework of MDL-SPFP.

TABLE IV

FREQUENTLY USED NOTATIONS

V. MDL-BASED SERVICE-LEVEL PASSENGER

FLOW PREDICTION

As shown in Fig. 12, our MDL-SPFP framework consists
of four main components: flow modeling, multi-task fusion,
context fusion and service-level computation. The flow model-
ing component uses four types of streaming data as input:
(i) bus service flow, which is a time-ordered sequence of
two dimensional matrices {X t |t = t1, . . . , tT }; (ii) on-board
passenger flow, which is a time-ordered sequence of two
dimensional matrices

{
ZL

t |t = t1, . . . , tT
}
; (iii) B/A passenger

flow, which is a time-ordered sequence of three dimensional
tensors

{
Y L

t |t = t1, . . . , tT
}
; (iv) transfer passenger flow,

which is a time-ordered sequence of three dimensional tensors
{M t |t = t1, . . . , tT }. These different types of video-like data
are then fed into four networks, i.e., SERNET, PASNET,
B/ANET and TRANET, respectively. Each network extracts
three types of time fragments, including recent, daily-periodic
and weekly-periodic fragments, for modeling the temporal
correlations of the historical data. Then three types of stream
data are respectively fed into an ARM network component

Fig. 13. The structure of ARM-Net.

with the same structure, including three modules, Attention
mechanism, Residual networks and Multi-scale convolution,
for capturing complex spatio-temporal dependencies, as shown
in Fig. 13. Meanwhile, we integrate TRANET into B/ANET to
improve the prediction performance of B/ANET, since transfer
passengers belong to a part of B/A passengers. The latent rep-
resentations of middle layers of SERNET, PASNET, B/ANET

and internal influence factors are coupled by the multi-task
fusion component, and trained together. In addition, we use
the context fusion component to integrate the internal/external
influence factors, and then obtain three types of prediction
results, X̂ t , Ŷ

L
t and Ẑ

L
t . Finally, we utilize the service-level

computation component to integrate the outputs of SERNET

and PASNET (X̂ t and Ẑ
L
t ) to predict the service-level passen-

ger flow Ẑ
S
t .

A. SERNET and PASNET

The bus service flow and passenger flow, like the general
crowd flow in a city [14], always have strong spatio-temporal
dependencies. To capture different levels of temporal depen-
dencies, Zhang et al. [4] proposed a deep spatio-temporal
residual network to select different time fragments along
the time. Inspired by this, we select similar types of tem-
poral channels to express temporal dependencies. Specifi-
cally, we utilize three independent components, which share
the same network structure, to model the recent, daily-
periodic and weekly-periodic dependencies of the historical
data, respectively.

Let d and w denote the number of time intervals contained
in one day and one week, respectively. Let lr , ld , and lw
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denote the lengths of three types of time series fragments,
respectively. Taking SERNET as an example, the three time
series fragments are expressed as X t =

{
Xr

t , Xd
t , Xw

t

}
,

detailed as follows:
(1) The recent fragments: Xr

t ={
X t−lr , X t−lr+1, . . . , X t−1

}
, which is a segment of time

series directly adjacent to the predicting interval.
(2) The daily-periodic fragments: Xd

t ={
X t−ld ·d, X t−(ld−1)·d, . . . , X t−d

}
, which consists of the

time fragments on the past ld days during the same time
interval (t).

(3) The weekly-periodic fragments: Xw
t ={

X t−lw ·w, X t−(lw−1)·w, . . . , X t−w

}
, which consists of

the time fragments in the past lw weeks with the same week
attributes (i.e., weekday or weekend) during the same time
interval (t).

We are now in a position to elaborate the three modules of
the ARM network.

1) Attention Mechanism: After modeling the three levels of
temporal dependencies, the correlations exist between the bus
service or on-board passenger flows in different time slices for
each level, and the mutual influences are highly dynamic under
different situations. To automatically capture different weights
of such influences, we introduce an attention mechanism [15]
into ARM, so that some certain time intervals that are more
critical to the current task could be emphasized. Meanwhile,
both the efficiency and effectiveness of task processing could
be improved.

Suppose a sequence of time intervals and X t ∈ R
I×J ,

we use X t (:, j) to denote the value of all the features of station
s j at time t , and the pipeline of attention mechanism is defined
as follows:

ut = Fpool(X t ) = 1

J

J∑

j=1

X t (:, j), (10)

ft = Fratio(ut ) = W1ut + b1, (11)

gt = Fatt ( ft ) = W2 ft + b2. (12)

The global average pooling Fpool is leveraged among all
stations to produce a scalar summary ut of each time interval.
Then, a squeeze function Fratio with attention operation Fatt

is conducted to generate adaptive weights gt by applying
non-linear transformations on ut .

With obtained measurement gt from the attention mecha-
nism, we weigh each temporal data as:

X ′t = gt � X t , (13)

where � represents the Hadamard product, i.e., the multipli-
cation of the corresponding elements of two vectors. X ′

t is
used for reweighing measurements during each time interval
in the current channel.

2) Residual Block: According to the characteristic of con-
volution, spatial near dependencies (e.g., neighbouring bus
stations of the same line) could be captured by one convo-
lution layer. However, obvious spatial dependencies also exist
between bus stations that are far away from each other. For
example, humans always have regular commuting patterns,
e.g., from home to work place. For another, travellers always

like to leave one tourist attraction to another one. In order
to capture such farther spatial dependencies, we need to
increase the number of convolutional layers. However, when
the network hierarchy increases to a certain large number,
such deep convolution network becomes very hard to train.
To accelerate the learning speed and address the gradient
vanishing problem, we employ residual blocks [4], which
consist of Batch Normalization (BN, [16]), Rectified Linear
Unit (ReLU, [17]), and Convolution (Conv), to assist in the
training.

3) Multi-Scale Convolution: A network with only
single-scale convolution kernel has limited ability to extract
different levels of features. Therefore, there is still room
to improve the feature learning ability. In order to further
capture spatial correlations of different regions (i.e. functional
similar stations with strong correlations may not be close in
space), we utilize a multi-scale CNN module to extract more
comprehensive spatial correlation, including global and local
details. For each time channel, the matrix is recognized as
one dimension stations I with one dimension feature J . The
multi-scale CNN utilizes three different convolution kernel
sizes on the input tensor, and then we use bitwise addition to
fuse different tensors. For each single CNN, the formula of
each convolutional layer k is defined as follows:

X
′(k)
t = W (k) ∗ X

′(k−1)
t + b(k), (14)

where ∗ denotes the convolution, W (k) and b(k) are the
learnable parameters in the layer.

4) PM Fusion: So far, we obtain the outputs of recent-,
daily-periodic, and week-periodic data streams from the bus
service flow (i.e., X ′r , X ′d , X ′w) and on-board passenger flow
(i.e., ZL ′

r , ZL ′
d , ZL ′

w ), respectively. Then the three channels
can be combined using a parametric-matrix (PM) based fusion
function:

Xarm = Wr � X ′r +Wd � X ′d +Ww � X ′w, (15)

where Wr , Wd , Ww are the learnable parameters, representing
the weights of different channels in Xarm .

B. B/ANET and TRANET

As described before, both B/ANET and TRANET utilize
the ARM network. The difference is that the B/A passenger
flow and transfer passenger flow tensors have one additional
dimension. We use two dimensional convolution to explore the
spatio-temporal correlation of the tensors. The output tensors
from residual blocks in different temporal channels are Y L ′

t ∈
R

I×J×2 and M ′t ∈ R
I×J×I . In order to leverage the transfer

information to improve the B/A flow prediction performance,
M ′t ∈ R

I×J×I is converted into M ′t ∈ R
I×J×2 through

multi-scale convolution, and then combined with B/ANET

using PM based fusion as follows:
Y arm = Wr

Y � Y L ′
r + W d

Y � Y L ′
d + Ww

Y � Y L ′
w

+Wr
M � M ′r +W d

M � M ′d +Ww
M � M ′w, (16)

where WY , WM are the learnable parameters, representing the
weights of B/A passenger flow and transfer passenger flow
with different channels, respectively.
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C. Multi-Task Fusion

Considering the correlations between the bus service,
on-board passenger and B/A passenger flow, the represen-
tations learned from SERNET, PASNET and B/ANET can
be combined to improve the prediction performance. How-
ever, the three measurements Xarm , Y arm , Zarm from dif-
ferent prediction tasks have different tensor sizes. There-
fore, we concatenate the three latent representation maps
of Xarm , Y arm and Zarm . Compared with the sum-based
fusion, the concatenation-based fusion can better integrate the
correlations among three tasks by the mutual reinforcement.
The concatenation of three latent representation maps Xarm ,
Y arm and Zarm at the same spatial node ri j across channel c
is defined as follows:

H(c, :, :)=Wx Xarm(c, :, :), c=0, . . . , Cx − 1, (17)

H(Cx + c, :, :)=WyY arm(c, :, :), c=0, . . . , Cy − 1, (18)

H(Cx + Cy + c, :, :)
= Wz Zarm(c, :, :), c = 0, . . . , Cz − 1, (19)

where Cx , Cy and Cz are the numbers of channels of Xarm ,
Y arm and Zarm , and H ∈ R

(cx+cy+cz )×I×J .
In order to make different tensors have geographical infor-

mation, we propose some internal features (will be elaborated
later in Sect. V-D) of bus lines and stations to add geographic
information to tensors. Because of internal features are time
invariant, we regard them as a constant tensor, and input to
H via Residual Block. The final concatenation of three latent
representation maps and internal features εinternal at the same
spatial node ri j should be H ∈ R

(cx+cy+cz+cinternal )×I×J .
After the concatenation, we append a convolutional layer

into the three individual networks (i.e.SERNET, PASNET

and B/ANET). The convolution is used to map combined
latent feature maps H into different-size-channel outputs,
i.e., Xarm ∈ R

1×I×J , Y arm ∈ R
2×I×J , Zarm ∈ R

1×I×J .

D. Context Fusion

Internal and external features can affect various flows.
Besides common external features, such as weather conditions
and holiday events, we add some internal features of bus
lines and stations, i.e., using geographic information to explore
passengers movement patterns in different lines and stations,
including the accessibility, connectivity, and surrounding func-
tional zones, detailed as follows:

1) Accessibility: When passengers choose a transit station,
accessibility is an important factor, representing whether more
places can be conveniently reached from a station through the
transportation network. Specifically, we extract the accessibil-
ity feature, denoted by Ra(s j ), by counting how many trans-
portation hubs (according to the PoI categories that belong
to transportation infrastructure services such as airports and
railway stations) that a station s j can reach.

2) Connectivity: The more bus lines that a station con-
nects, the more passengers may travel through this station.
Thus, we extract the connectivity feature, denoted by Rc(s j ),
by counting the number of bus lines across each station s j ,
which reflects the attractiveness and convenience of station s j .

3) Functional Zones: Surrounding functional zones reflect
geographic features of different stations, and affect the
types of passengers. We extract the functional zones feature,
denoted by R f (s j ), by utilizing the entropy of surrounding
PoI categories for each station s j , which is computed as
follows:

R f (s j ) = −
∑

p

F Z p(s j )

F Z(s j )
× log(

F Z p(s j )

F Z(s j )
), (20)

where F Z p(s j ) denote the number of PoIs belonging to
category p, and F Z(s j ) denote the total number of PoIs
within a certain region (e.g., a kilometer in diameter.) around
station s j .

The above three types of features constitute the internal
features εinternal and are integrated to the multi-task fusion
component as described in Section V-C.

Meanwhile, the external features include holidays (using a
binary number to represent non-holiday or holiday), weather
(using an integer [0, 3] to represent four types of weather
conditions) and temperature (using an integer [−10, 21] to
represent temperature values), as shown in Table II. To extract
the relationship between each node and external features,
inspired by the embedding method for natural language
processing [18], we first use an embedding layer for each
external feature, in which the integer values (corresponding
to each type of feature) are converted to fixed-length dense
vectors using the Word2vec embedding method provided by
Keras [19]. Then, we utilize a full-connected layer to extract
three types of relationships between each node and corre-
sponding external feature for each task, and obtain exter-
nal feature matrix for each node during each time interval
Fexternal

t ∈ R
I×J . Then we utilize a bitwise addition between

Fexternal
t and the output from the multitask fusion compo-

nent to obtain the final predictions for different tasks during
interval t :

X̂ t (1, :, :) = ReLU(Fexternal
t + Xarm(1, :, :)), (21)

Ẑ
L
t (1, :, :) = ReLU(Fexternal

t + Zarm(1, :, :)), (22)

Ŷ
L
t (2, :, :) = ReLU(Fexternal

t + Y arm(2, :, :)). (23)

E. Loss Function

Let θ1 be the learnable parameters in SERNET. The loss
function for SERNET is defined as follows:

argmin
θ1

J SERNET = 1

I

1

J

∑

t∈T

I∑

i=1

J∑

j=1

(Qc
t �|X̂ t (i, j)−X t (i, j)|

+ β1(
X̂ t (i, j)− X t (i, j)

X t (i, j)
)2), (24)

where Qc
t is an indication matrix for all the non-zero entries

in X t (i, j), β1 is a proper weight decay as regularization,
which can smooth the large prediction differences. τ is a set
of available time intervals.

Let θ2 and θ3 be the learnable parameters in PASNET and
B/ANET. The loss functions for PASNET and B/ANET are
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defined using the similar formula as follows:

argmin
θ2

J PASNET= 1

I

1

J

∑

t∈T

I∑

i=1

J∑

j=1

(Qc
t �|Ẑ

L
t (i, j)−ZL

t (i, j)|

+ β2(
Ẑ

L
t (i, j)− ZL

t (i, j)

ZL
t (i, j)

)2), (25)

argmin
θ3

J B/ANET= 1

I

1

J

∑

t∈T

I∑

i=1

J∑

j=1

(Qd
t �|Ŷ

L
t (i, j)−Y L

t (i, j)|

+ β3(
Ŷ

L
t (i, j)− Y L

t (i, j)

Y L
t (i, j)

)2), (26)

where d in Qd
t equals to 2c.

Finally, we use a weighted sum of the three loss functions
as the final loss for the multi-task fusion:
argmin
θ1,θ2,θ3

J MULTITASK = λ1 J SERNET+λ2 J PASNET+ λ3 J B/ANET,

(27)

where λ1, λ2 and λ3 are adjustable hyper parameters.

F. Optimation Algorithm

Algorithm 1 Training of MDL-SPFP Algorithm
Input: Historical observations:{

X t , Y L
t , ZL

t , M t |t = t1, . . . , tT
}
;

External and internal features:
{
εt1, . . . , εtT

}

Output: MDL-SPFP Model
// construct training instances
Initialization Dtrain ← Ø;
for t ∈ T do

Put a training instance X t , Y L
t , ZL

t , M t , εt into Dtrain ;
end
// train the model
Initialize the parameters θ1, θ2, θ3, β1, β2, β3;
repeat

Randomly select a batch of instances Dbatch from
Dtrain ;
Optimize θ1, θ2, θ3, β1, β2, β3 by minimizing the
loss (27) with Dbatch;

until stopping criteria is met;
Output the learned MDL-SPFP model;

Algorithm 1 outlines the training process of MDL-SPFP.
First, training instances are constructed from the historical
data. Second, the objective (27) is optimized on the selected
batch of training instances during each iteration.

G. Service-Level Computation

With the outputs of three tasks, we now could integrate
the prediction results from SERNET and PASNET to predict
the service-level passenger flows. Since passengers always
move with buses, the position changes of passenger flows are
always corresponding to that of bus service flows. Given a
specific time interval tT+1 and a specific station s j of the

bus line li , the number of service-level on-board passengers
could be computed as follows: if there is only one service,
i.e., X tT+1(i, j) = 1, then we can directly obtain the result,
ZS

tT+1
(i, j) = ZL

tT+1
(i, j); if there are more than one service,

then we can generally compute the result by averaging the
line-level on-board passenger number by the arriving bus
service number:

ZS
tT+1,k(i, j) = ZL

tT+1
(i, j)

X tT+1(i, j)
, ∀ϕk ∈ �t,i, j , ∀(li , s j ) ∈ ri j .

(28)

VI. EXPERIMENTS

In this section, we evaluate our proposed MDL-SPFP
approach and compare it with 10 baseline approaches based on
the Jinan bus operation dataset. The data from 11/01/2018 to
01/16/2019 is used for training (77 days), and the data
from 01/17/2019 to 01/31/2019 (15 days) is used for testing.
The Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) are used as evaluation metrics.

A. Baselines

• HA: Historical Average model. Here, we use the average
value of the last 5 time intervals to predict the next value.

• ARIMA: Autoregressive Integrated Moving Average
model. It is a well-known time series analysis model for
predicting the future values.

• EKF: 2-step real-time prediction model based on
Extended Kalman Filter [11]. It is one state-of-the-art
work used for achieving the SPFP during a short-term
time interval. Here, we set two main parameters, history
sequence length as 10, and input sequence length as 5.

• RNN: Recurrent Neural Network [20].
• LSTM: Long-Short-Term-Memory network [21], a spe-

cial RNN model.
• GRU: Gate-Recurrent-Unit network [22]. It is also a

special RNN model.
• ConvLSTM: Convolutional LSTM [23]. It is a model

originally used for precipitation nowcasting using radar
echo dataset. Here, different types of flow data can be
regarded as sequences of images. The previous 5 time
intervals are used to predict the next time interval. The
model consists of two ConvLSTM layers with two BN
layers.

• ST-ResNet: Spatio-Temporal Residual Convolutional
Network [4]. It is a state-of-the-art model for flow pre-
diction. The lengths of the three types of time series
fragments are set as 3, 1 and 1, respectively. Here we
use 1-D convolution in SERNET and PASNET, and 2-
D convolution in B/ANET and TRANET. ST-ResNet
utilizes Residual Network to model temporal dependency
and spatial dependency, and utilizes a full-connected
neural network to extract external features.

• DST-ICRL: Deep Spatio-Temporal traffic passenger
flows feature learning model, which combines the Irreg-
ular Convolutional Residual Network and the LSTM
Recurrent Neural Network for accurately predicting
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TABLE V

CHARACTERISTICS OF 10 BASELINES AND OUR MDL-SPFP APPROACH
IN TERMS OF VARIOUS CAPABILITIES

line-level urban traffic passenger flows [12]. Here, we use
2-D convolution in each network, and each bus line is
treated as a channel. The lengths of the three types of
time series fragments are set as 3, 1 and 1, respectively.
The DST-ICRL utilizes a parameter-shared convolutional
module to learn temporal and spatial features among
multiple channels of traffic passenger flows, and utilizes
residual neural network and LSTM units to learn the
high-level temporal and spatial features.

• DMVST-Net: Deep Multi-View Spatial-Temporal Net-
work [24]. It is a model for taxi demand forecast using
multi-view spatial-temporal network. A local CNN is
used to capture spatial dependency, a LSTM model is
used to capture temporal dependency, and a weighted
graph of regions is used to capture semantic dependency.

The characteristics of the above baselines and our
MDL-SPFP approach are summarized in Table V, in terms
of the capabilities of capturing spatial-temporal dependencies
and external/internal influences, and the multi-task learning.

B. Experimental Settings

1) Preprocessing: In the output of the MDL-SPFP, we use
ReLU as our final activation, whose range is between 0 and
+∞. The Min-Max normalization method is used to scale the
data into the range [0, 1]. For the feature extraction, we use
an embedding layer to encode the internal and external data.
Then, we apply the inverse of the Min–Max transformation
obtained by the training set to recover the flow value and use
it for the evaluations.

2) Hyperparameters: To evaluate the MDL-SPFP approach,
all the experiments are compiled and tested on a Linux cluster
(CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, GPU:
NVIDIA Tesla P100). The python library, Keras 2.2 is used to
build our models. The detailed hyperparameter configurations
for the baselines are listed in Table VI. In the multi-task
part of MDL-SPFP, we set λ1 = 1, λ2 = 1 and λ3 = 1
by default. The lengths of the three types of time series
fragments are set as lr = 3, ld = 1 and lw = 1, respectively.
The number of convolutions for ARM are set as 12. During
model training, we select 90% of the training data, and
the remaining 10% as the validation set to early-stop our
training algorithm. Afterwards, we train the model on the full

training data for a fixed number of epochs (10 epochs). All
the network parameters are trained from a random start. The
batch size is set as 32. The learning rate is set as one of
{0.01, 0.005, 0.0025, 0.00125}.
C. Experimental Results

In the following, we first compare the performance for each
of three types of flow predictions, and then compare the final
SPFP results among our MDL-SPFP and all of 10 baselines.
For a fair comparison, all approaches do not utilize any internal
or external feature. Table VII summarizes the experimental
results in terms of MAE and RMSE. For convenience, we use
SERNET, PASNET, B/ANET to represent the corresponding
types of flow predictions for the baselines.

1) Bus Service Flow Prediction: From Table VII, we can
observe that our MDL-SPFP performs apparently better than
other baselines for SERNET. Specifically, the results of
RMSE demonstrate that MDL-SPFP is 48.6% better than HA,
53.4% better than ARIMA, 46.1% better than EKF, 41.0%
better than RNN, 39.3% better than LSTM, 40.6% better
than GRU, 7.4% better than ConvLSTM, 27.9% better than
ST-ResNet, 33.9% better than DMVST-Net, and 26.3% better
than DST-ICRL. Generally, the three traditional shallow pre-
diction models (i.e., HA, ARIMA and EKF) perform worse
than other deep learning based prediction models, owing to
lack of the ability of capturing complex non-linear spatial-
temporal dependencies.

2) On-Board Passenger Flow Prediction: Similar to SER-
NET, it can be observed that our MDL-SPFP performs appar-
ently better than other baselines for PASNET. Specifically,
the results of RMSE demonstrate that MDL-SPFP is 25.8%
better than ST-ResNet, 35.8% better than DMVST-Net, and
28.7% better than DST-ICRL.

3) Boarding/Alighting Passenger Flow Prediction: It can
be observed that our MDL-SPFP achieve better performance
than the baseline approaches except DMVST-Net. Specifically,
the MAE and RMSE of MDL-SPFP are very close to the best
results achieved by DMVST-Net, i.e., with just 1.58% and
5.78% differences respectively.

4) Service-level On-Board Passenger Flow Prediction:
It can be observed that our MDL-SPFP outperforms all of
other baselines. Specifically, the results of MAE demonstrate
that MDL-SPFP is 65.96% better than HA, 58.88% better
than ARIMA, 51.92% better than EKF, 51.34% better than
RNN, 50.69% better than LSTM, 49.61% better than GRU,
22.39% better than ConvLSTM, 53.42% better than ST-
ResNet, 39.16% better than DMVST-Net, and 35.70% better
than DST-ICRL. Meanwhile, the results of RMSE demon-
strate that MDL-SPFP is 55.04% better than HA, 62.19%
better than ARIMA, 47.52% better than EKF, 44.40% better
than RNN, 42.29% better than LSTM, 42.78% better than
GRU, 15.66% better than ConvLSTM, 30.39% better than ST-
ResNet, 32.26% better than DMVST-Net, and 25.40% better
than DST-ICRL.

D. Evaluation on Model Hyper-Parameters

1) Effect of Filter Number: Figure 14 presents the effect
of filter number on MDL-SPFP. As the filter number become
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TABLE VI

NETWORK CONFIGURATION OF DIFFERENT BASELINES

TABLE VII

COMPARISONS WITH BASELINES FOR THREE TYPES OF FLOW PREDICTIONS AND THE FINAL SPFP RESULTS

larger, the MAE of the model decreases, and the computation
consumption becomes higher, which verifies that more filters
can be utilized to capture more useful information.

2) Effect of Network Depth: Figure 15 presents the effect
of network depth on MDL-SPFP. As the network becomes
deeper (i.e. the number of residual units increases), the MAE
of the model first decreases, verifying that deeper network
can capture more complicated spatial dependencies. However,
when the network becomes much deeper, the MAE starts to
increase, implying that the training process becomes more
difficult.

E. Evaluation on Different Components/Modules

To evaluate the effects of different components/modules,
we remove each component/module (including attention mech-
anism, multi-scale convolution, SERNET, PASNET, B/ANET,
and TRANET) one by one from MDL-SPFP. Recall that
we directly integrate TRANET into B/ANET to improve the
performance of B/ANET, so we now also evaluate its effect
by comparing an alternative policy, i.e. regarding TRANET

as an independent task. For convenience, all the approaches
for evaluations do not utilize the context fusion component by
default. Finally, we specially add the context fusion component
to MDL-SPFP for comparison. The detailed evaluation results
for each individual task, the overall loss and the final SPFP
are listed in Table VIII.

From Table VIII, it can be observed that both two modules
of attention mechanism and multi-scale convolution have

TABLE VIII

EVALUATION ON DIFFERENT COMPONENTS/MODULES (C.F. IS

SHORT FOR “CONTEXT FUSION”)

great influences to all the results. Specifically, these two
modules reduce the final SPFP result of MAE by 31.87%
and 6.95% respectively, and that of RMSE by 23.31% and
3.32% respectively. Second, it is interesting to observe that,
if either one of SERNET and PASNET is removed, a severe
performance degradation will be brought about for the other.
It implies strong dependencies between the bus service flow
and the on-board passenger flow. By contrast, B/ANET has
less impact, but it can still reduce the SPFP result of MAE
by 6.39%, and that of RMSE by 2.86%, respectively. Third,
the performance becomes worse when we either remove
TRANET or regard it as an independent task, although
the latter is slightly better than the former. In short, our
entire MDL-SPFP approach achieves the best performance,

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2020 at 21:55:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: FINE-GRAINED SERVICE-LEVEL PASSENGER FLOW PREDICTION FOR BUS TRANSIT SYSTEMS 13

Fig. 14. Effect of filter number.

Fig. 15. Effect of network depth.

Fig. 16. Prediction results of MDL-SPFP against the ground truths.

confirming the effectiveness of each component/module and
the entire MDL framework. In addition, the results also verify
the effectiveness of the context fusion component, which
reduces the SPFP result of MAE by 5.27% and that of RMSE
by 1.55%, respectively.

F. Service-Level Passenger Flow Prediction

Figure 16 presents the SPFP results achieved by our
MDL-SPFP approach for two randomly selected bus services
from one bus line, against the ground truth in Jinan City. It
can be visually observed that our MDL-SPFP approach is very
accurate in tracing the ground truth curves (including sudden

changes), which demonstrates the superior performance of our
proposed approach.

VII. RELATED WORK

Traffic flow prediction has been extensively investigated due
to its importance to people’s daily life. We summarize existing
work in Table IX with a three-dimension taxonomy: (i) pre-
diction models, i.e., traditional shallow prediction models or
deep learning based prediction models; (ii) traffic flows types,
i.e., general traffic flows, which mainly focuses on the total
number of individual objects such as taxis and bicycles passing
through a region during a period [25], or passenger flows,
which mainly focus on the total number of passengers passing
through a bus or subway station; (iii) spatial granularity,
i.e., region-level, which is mainly applicable to general traffic
flow prediction, line/station-level, which is mainly applicable
to bus/subway passenger flow prediction, or service-level,
which is mainly applicable to bus passenger flow prediction.
Note that, if we can predict passenger flows for any subway
line at any station, then the service-level passenger flow
prediction can be achieved directly, but which cannot apply
to bus passenger flow prediction.

A. General Traffic Flow Prediction

1) Traditional Shallow Prediction Models: Traffic flow
prediction can be treated as a time series prediction prob-
lem. Many approaches, such as ARIMA and Kalman filter-
ing, could be used to capture temporal dependencies very
well [26]–[28], but failed to capture spatial dependencies.
Recent work was conducted to utilize spatial information
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TABLE IX

TRAFFIC FLOW PREDICTION SURVEY

(e.g., adding regularizations on model similarity for nearby
positions [29]–[31]) and external data (e.g., adding features of
weather condition and local events [32]–[34]) to improve the
prediction performance. However, these approaches heavily
relied on feature engineering and were difficult to capture
complex non-linear spatial-temporal dependencies.

2) Deep Learning Based Prediction Models: Recently, deep
learning has been utilized for traffic flow prediction by virtue
of its remarkable capability to capture non-linear spatiotempo-
ral dependencies [25]. Zhang et al. [4], [35] treated the traffic
flow within the whole city as an image and utilized CNN
to capture spatial dependencies. Meanwhile, they proposed to
select different time fragments to model temporal dependen-
cies. Several researchers proposed to utilize RNN-based mod-
els to better capture temporal dependencies, especially under
extreme conditions [36], [37]. Some work further integrated
both temporal and spatial dependencies by combining CNN
and LSTM [24], [38].

B. Passenger Flow Prediction

1) Traditional Shallow Prediction Models: In recent years,
many models have been utilized for passenger flow prediction,
including ARIMA model [5], Seasonal ARIMA (SARIMA)
model [7], [8], Kalman filtering model [6], [11], support vector
machine (SVM) model [9], [10], etc. As described before,
these models failed to capture complex non-linear spatial-
temporal dependencies. In addition, most of them [5]–[9]
focused on station-level subway passenger flow prediction.

2) Deep Learning Based Prediction Models: More recently,
a few studies started to leverage deep learning for passen-
ger flow prediction. Liu et al. [13] proposed to combine
pre-trained unsupervised stacked autoencoders with the super-
vised DNN to predict the passenger flow for any specified
hour. However, it was only limited to the station-level pre-
diction for bus rapid transit (BRT) and subway systems.
Du et al. [12] proposed a deep irregular convolutional residual
LSTM network model called DST-ICRL for urban traffic
passenger flow prediction. However, it was only limited to
predicting line-level passenger flows in each region (i.e., grid
cell) instead of distinguishing different bus stations or services.

VIII. CONCLUSION

We investigate the fine-grained service-level passenger flow
prediction problem for bus transit systems. We propose a novel
multitask deep learning (MDL) approach, MDL-SPFP, for
simultaneously predicting arriving bus service flow, line-level

on-board passenger flow and line-level boarding/alighting pas-
senger flow, which can mutually reinforce the prediction of
each type of flow, and finally integrate the outputs to achieve
the fine-grained service-level prediction. For each flow predic-
tion task, a novel deep neural network, ARM, is designed to
combine attention mechanism, residual block and multi-scale
convolution for well capturing various complex non-linear
spatio-temporal dependencies and influence factors. Extensive
experiments based on a large-scale realistic bus operation
dataset verify the superior performance of MDL-SPFP over
10 baselines. We hope our approach could be used for
other passenger flow predictions such as subway systems
and the entire public transit systems. It is also significant
to utilize passenger flow prediction results for implementing
various applications, such as transit resource scheduling and
crowdedness-aware route recommendations.
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