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Abstract—An integrated urban transportation system usually
consists of multiple transport modes that have complementary
characteristics of capacities, speeds, and costs, facilitating smooth
passenger transfers according to planned schedules. However,
such an integration is not designed to operate under disruptive
events, e.g., a signal failure at a subway station or a breakdown
of a bus, which have rippling effects on passenger demand
and significantly increase delays. To address these disruptive
events, current solutions mainly rely on a substitute service to
transport passengers from and to affected areas using ad-hoc
schedules and static routes, e.g., sending shuttles to closed subway
stations. These solutions are highly inefficient and do not utilize
real-time data to estimate dynamic passenger demand. To fully
utilize heterogeneous transportation systems under disruptive
events, we design a service called eRoute based on a hierarchical
receding horizon control framework to automatically reroute,
reschedule, and reallocate multi-mode transportation systems
based on real-time and predicted demand and supply. Focusing
on an integration of subway and bus, we implement and evaluate
eRoute with large datasets including (i) a bus system with 13,000
buses, (ii) a subway system with 127 subway stations, (iii) an
automatic fare collection system with a total of 16,840 readers and
8 million card users from a metropolitan city. The data-driven
evaluation results show that our solution improves the ratio of
served passengers (RSP) by up to 11.5 times and reduces the
average traveling time by up to 82.1% compared with existing
solutions.

I. INTRODUCTION

With rapid population growth and urbanization, people in

the metropolitan area increasingly rely on public transportation

in their daily lives [14]. In the New York City, the public

transportation system serves 52.6% of all residents in the

city [14]; whereas in the Chinese city Shenzhen, it serves

more than 75% of all urban residents. An urban transportation

system consists of multiple transport modes, such as subway

and bus. These modes have complementary characteristics

to meet the different needs of passengers. For example, the

subway serves as the backbone of the urban transportation

network, providing high-speed high-capacity transport services

across major areas; while the bus is slower and cheaper,

spreading all over the entire city areas with a large number

of different lines and stations.

In an integrated transportation system, heterogeneous trans-

port modes are designed to connect with each other by closely-

located stations and synchronized schedules to facilitate pas-

senger transfer activities under normal operations. However,

under various disruptive events, e.g., a power failure or a signal

error, that can cause stations or vehicles to shut down for

an unpredictable period, the transportation system becomes

disconnected and inefficient, resulting in a surge of stranded

passenger and cascading delays in affected areas.
There are very limited solutions to serve stranded pas-

sengers in current transportation systems. Existing practices

typically provide substitute services using backup vehicles,

e.g., dispatching empty shuttles to the closed subway stations

[1] [15]. A few recent works have proposed solutions for sub-

way system disruptions, including robust train schedules [8],

timetable adjustment [25], taxi recovery services [29], and

simple integration between bus and subway systems [12].

However, these works employ localized solutions with static

routes or fixed schedules, without dynamic coordination of

multiple transport modes.
To achieve sufficient resilience under disruptive events, it

is critical to optimally control and coordinate all transport

subsystems according to real-time and predicted demand with

a global view. In this paper, we design a hierarchical receding

horizon control based dynamic integration framework called

eRoute for the urban transportation system, which solves the

optimization problem periodically and repeatedly during the

disruptive event. Focusing on the integration of subway and

bus, our control design has the following goal: maximizing

satisfied passenger demand under disruptive events while min-

imizing the cost regarding extra traveling time due to detour

and the number of extra vehicles.
The contributions of this work are listed as follows.

• To our knowledge, we conduct the first study on how

to address disruptive events in public transportation sys-

tems based on real-time multi-source data. Our datasets

advance the state-of-the-art in two aspects: (i) one of

the most comprehensive datasets, including bus GPS,

subway schedules, smart-card payments, from the same

city Shenzhen, and (ii) the largest passenger coverage

(i.e., 75% of 11 million permanent residents in Shen-

zhen). Our infrastructures and data are at least one or

two orders of magnitude larger than existing academic

systems (e.g., [8] [25] [29] [12]).

• Based on these real-world multi-source data, we design a

service called eRoute to dynamically reroute, reschedule

and reallocate integrated heterogeneous transportation

systems under disruptive events to maximally satisfy

passenger demand and minimize the corresponding costs.

In particular, we formulate a dynamic integration problem
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Fig. 1: Transportation system performances under disruptions

for the changing transportation network topology under

disruptions as an integral multi-commodity max flow

problem under dynamic edge capacity. We demonstrate

that it is feasible to calculate a solution for this problem

after applying practical constraints derived from real

scenarios, besides proving its NP-hardness.

• To solve this problem, we design a two-level Reced-

ing Horizon Control framework to adapt our solutions

according to both current and possible future demand.

At the higher level, we maximize satisfied passenger

demand by obtaining rerouting and reallocation decisions

for the overloaded transportation systems, meanwhile, at

the lower level, we minimize the cost associated with

these rerouting and reallocation decisions while meeting

the maximum passenger demand. The interactions be-

tween these two levels ensure our framework satisfies the

maximum passenger demand with the minimum cost.

• We implement and evaluate eRoute with our datasets

that consist of (i) a bus system with 13,000 buses, (ii)

a subway system with 127 subway stations. (iii) An

automatic fare collection system with a total of 14,270

onboard mobile readers capturing 168,000 bus passengers

per hour, and a total of 2,570 static readers capturing

60,000 subway passengers per hour. Compared to various

existing approaches with real-time data-driven features,

eRoute improves the ratio of served passengers (RSP) by

up to 11.5 times and reduces the average traveling time

by up to 82.1%.

II. MOTIVATION
A. Service Disruption

Service disruptions of public transportation systems have

significant impacts on public passengers. They not only in-

troduce travel delays, but also reshape mobility patterns,

generating high operation cost due to longer travel distance,

local congestion, and the resulting opportunity losses [1].

In this paper, we focus on the service disruptions of public

transportation system, i.e., subway and bus system. To fully

understand various types of disruptions that occur in urban

cities, we provide a taxonomy of disruptions in subway

and bus as shown in Table. I. We classify disruptive events

into two major categories: small and large. Small disruptive

events usually cause delays and cancellations of specific trains,

whereas large disruptive events lead to one or multiple lines

or stations to be shut down. We aim to address such disruptive

events in this work.
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Fig. 2: eRoute framework
Based on this taxonomy, we investigate an incident that

occurred in 2013 at Shenzhen, a metropolitan in China with

our datasets. A signal problem caused long delays for all

trains of a major subway line during the day. Both speeds

and frequency of all trains along this line were reduced

significantly due to safety concerns. No bus shuttles had been

used to address this incident in reality.

We use the smart card reader dataset from the city to

analyze the impacts of this disruption on passengers. Here the

ratio of served passengers (RSP) represents the ratio between

the amount of actually served passengers and the amount

of passenger demand, which is obtained by historical data

assuming a stable daily passenger demand. In Figure 1a, two

curves show the RSP over time on a regular day and on the

day with the disruption. We observe that the RSP during peak-

hours (6am-9am and 5pm-8pm) under disruption is 35% less

than that of the regular day. Meanwhile, as shown in Figure

1b, the average traveling time of passengers under disruption is

31% higher than that of the regular day. The average traveling

time increased from 18 minutes to 40 minutes in the morning

rush hours. These plots indicate that existing solutions do not

effectively handle such disruptions.

B. eRoute Framework

To address one or multiple simultaneous disruptive events

in urban cities, we design a service framework called eRoute,

which is one system that can be used by transportation author-

ities during disruptive events. Figure 2 shows an overview of

the eRoute architecture. Our main goal is to balance the supply

and demand by dynamically integrating multiple transportation

subsystems, e.g., subway, bus, taxi, bike sharing subsystems,

etc. In this paper, we focus on two specific transportation

systems, i.e., subway and bus, which are usually directly

controlled by city government. Given these two systems, dis-

ruptive events usually result in dramatically reduced supply at

certain locations, and our solution is to automatically compute

solutions to increase supply at these locations.

Typically, the supply of bus and subway systems is orga-

nized in lines: (i) each bus or subway line has a fixed number

of allocated vehicles; (ii) each line has a route where a few

bus stops or subway stations are organized in a specific order;

(iii) each line has a schedule with which the vehicles leave and

arrive at certain bus stops or subway stations. With these three

features, the key idea of eRoute is to conduct the following

three functions to deal with disruptive events:
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Subway System Bus System
Class Cause Impact Solution Cause Impact Solution

Small signal problem
reduced train speed,

delay of trains

passengers traffic
control, scheduling

larger capacity trains

Construction,
mechanical failure,

accident

service at substitute
stations, passengers
stuck on the road

substitute
service

Large

weather disaster,
power failure,

mechanical train
failure

service canceled
at affected subway

stations

emergency status
broadcast, scheduling

shuttles

weather disaster
(flooding, icy road

condition, etc),
traffic congestion

service shutdown
at a large region,
significant delays

Ad-hoc
routing

TABLE I: Taxonomy of disruptions to subway and bus systems

• Quantitative Reallocating. Many disruptive events lead

to failures of vehicles and result in a decrease of sup-

ply. Given the limited amount of vehicles available for

providing transport services, reallocation among lines is

critical to increasing supply with small overhead.

• Spatial Rerouting. This is an active traffic control strat-

egy that presents alternate routes for buses, trains, and

taxis. Rerouting is normally used when the regular route

is severely affected by congestion and incidents, here the

purpose of rerouting is to re-balance supply with prac-

tical constraints across different regions under disruptive

events. The alternate route information is disseminated to

drivers using control channels in real time.

• Temporal Rescheduling. Disruptive events directly af-

fect the schedules of some transportation lines. eRoute

reschedules the supply in other lines nearby and other

transportation modes, increasing the current supply to the

region in order to reinforce the service.

Different from existing works on transportation planning,

eRoute is driven by real-time multi-source data, which has rich

spatiotemporal information about passenger mobility patterns,

and the demand and supply in transportation systems. Existing

infrastructure in urban transportation systems has already

offered various data to the transportation center over the

network in real time. The smart card reader system records

the swiping in/out events of every smartcard and then uploads

them to the datasets in the database at the transportation

center. The format of these datasets is shown in Table II.

From these datasets, we extract historical, current, and future

passenger demand along every origin-destination (OD) pair.

The supply of every subsystem is obtained from GPS and

occupancy datasets collected from every vehicle. For example,

the GPS device in every bus reports the longitude, latitude,

speed, number of the bus and number of the bus line.

Under disruptions, the transportation network topology, and

passenger demand change dynamically, so eRoute employs a

receding horizon control (RHC) framework to adapt control

decisions based on both current and future demand. Our frame-

work allows transportation control center to specify multi-

objective optimization goals under the transportation system

requirements and constraints. eRoute solves an optimization

problem repeatedly at each iteration step of the RHC frame-

work and then updates routing commands, schedules, and

vehicle allocation periodically. eRoute can potentially deal

with both small and large classes of disruptions. We note

that the applicability of our solution is still limited by the

scale of disruptive event. eRoute can be applied to deal with

disruptive events that affect a single or multiple geographic

regions, e.g., a few stations or a city district. eRoute allocates

under-utilized transportation system supply nearby to serve

affected passengers. eRoute also requires extra buses and trains

to serve these affected passengers. Therefore, it is important

for cities to anticipate the amount of passengers affected and

have sufficient extra buses and trains in stock.

III. PROBLEM FORMULATION

Both subway and bus networks are main components of

the public transportation system, and they are complementary

to each other. Either of them has a high potential to offload

passengers from the other. Our design explores this poten-

tial to interconnect buses and subways dynamically to serve

passengers under disruptive events. Specifically, we design

one receding horizon control based solution which solves a

static optimization problem and sends the control decisions

to transportation subsystems once in every iteration. In this

section, we formulate the one-iteration optimization problem

of handling disruptions by controlling subway-bus integrated

network, including rerouting existing bus lines and reallocating

extra buses and trains. Our goal is to provide alternative

paths for influenced passengers that can meet a) dynamic

passenger demand as much as we can with b) minimized cost

including detour time due to rerouting and number of extra

vehicles needed. We show that our formulation is an integral

multi-commodity maximum flow problem under dynamic edge

capacity, and it is NP-hard.

A. Model Subway-Bus Integrated Network

We use Ns and N b to represent the numbers of subway lines

and bus lines. We define the subway-bus integrated network as

G = (V,E), where V = V s∪V b. Every vertex in V s denotes

one subway station and every vertex in V b represents one bus

stop. Here we call either one subway station or bus stop as a

Smartcard Reader data

Collection Period
2014/03/03∼2014/03/09

2014/02/19∼2014/02/20

Data Size 10.4 GB

Record number 17,568,574

Format

[Device ID, Smartcard ID, Time,

Transaction Type,

Metro Station or Bus Line]

Bus Boarding &

Subway Swiped-In

& Subway Swiped-Out;

TABLE II: Dataset of Smartcard Reader
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node in the subway-bus integrated transportation network. For

any two vertices vi, vj ∈ V , if they are visited by the same

subway or bus line consecutively, we add one directed edge,

e(vi, vj) from vi to vj . There are two attributes of for every

directed edge ek ∈ E: capacity and cost denoted as w(ek)
and p(ek). Disruptive events can happen at any locations on

the road. We incorporate them into the subway-bus integrated

network by adding nodes to represent them and edges to

connect them with adjacent stops or stations.

Suppose there are l nodes whose services are ceased

due to disruptions and let D = {vd1 , vd2 , .., vdl
} be the

set of influenced nodes. For example, the services of four

subway stations are ceased because of power failure. Then

the four corresponding nodes of the ceased subway stations

are regarded as the affected nodes. The passengers at these

impacted nodes need to find alternative ways to travel to their

destinations. We define the origin-destination (OD) pair as

(si, ti), representing that there are passengers traveling from

vsi ∈ D to vti ∈ V . The passengers demand of one OD pair

(si, ti) during one time slot, e.g., 20 mins, is represented as

Ci. The OD pair and corresponding demand indicate mobility

patterns of passengers, which can be learned from historical

data sets.

B. Problem Statement

Definition 1 (Dynamic integration problem (DIP)). In a
subway-bus integrated network, suppose there are l nodes
influenced due to disruptive events. Given the passenger
demand for every OD pair, the number of extra trains Ns

and the number of extra buses Nb, the problem is to decide
how to reroute existing N b bus lines, reallocate extra buses
and trains, and reschedule them such that the supply can meet
the passenger demand as much as possible under practical
constraints for every OD pair.

Xr ∈ {0, 1}Nb×l is the decision matrix for rerouting,

where Xr
k,i = 1 if kth bus line is rerouted to ith influenced

transportation node. Xb ∈ {0, 1}Nb×Nb

is the decision matrix

for reallocating extra Nb buses, where Xb
h,k = 1 if hth

extra bus is reallocated to kth bus line, otherwise, it is 0.

Xs ∈ {0, 1}Ns×Ns

is the decision matrix for reallocating extra

Ns trains, where Xs
h,k = 1 if hth extra train is reallocated to

kth subway line.

For every OD pair, we define a passenger flow from a source

node si to a sink node ti in the edge-capacitated directed graph

G: an si − ti flow is a function f : E → R
+ that assigns a

real number to each edge. Intuitively, f(e) ≥ 0 is the amount

of flow carried on the edge e, which represents the number

of passengers transported along the edge e. There are two

constraints: (1) capacity constraint: ∀e ∈ E, f(e) ≤ w(e); (2)

flow reservation on transit node: for each node v except s and

t, we have ∑

e into v

f(e) =
∑

e leaving v

f(e) (1)

Let Si be the number of passengers that the integrated

network can carry for an OD pair (si, ti), subjected to the

link capacity constraint and Si is called the supply for (si, ti).
When the passenger demand of an OD pair (si, ti) is less

or equal to Si, the integrated network can fully transport

all the passengers without delay. Under disruptive events,

there could be multiple OD pairs that need to be addressed

simultaneously and the supplies for these OD pairs are usually

significantly insufficient, so our goal is to maximize the

supplies J =
∑

i Si.

Then we have the following realistic constraints for DIP:

• Detour Constraint: if Xr
k,i = 1, f(k, i) ≤ α, where

f(k, i) is the function of extra detour time due to

rerouting kth bus line to vi, and α is the upper bound

threshold of such detour time. It ensures that the increase

of traveling time for regular bus passengers is not too

high. We will discuss how to calculate f(k, i) later.

• Allocation Constraint: Xb1Nb � 1Nb
and Xs1Ns �

1Ns , since every extra bus or train should be reallocated

to at most one line, where 1Nb
is a column vector of all

1s and the length of this vector is Nb.

• Schedule Constraint: (Xs)T 1Ns
� β, where β is a

length Ns column vector and Ns is the number of

subway lines considered in our problem. Let βk denote

the number of extra trains which can be reallocated to

kth subway line for 1 ≤ k ≤ Ns. We define such

constraint, since there exists limitation of the number of

trains operated along the same route for safety.

• Supply Constraint: To keep high utilization of our

limited resource, we constrain that ∀(si, ti), Si ≤ Ci,

which specifies that the supply of one OD pair is less

than or equal to its demand.

C. Problem Analysis and Transformation

There are some similarities and differences between our

problem and the classical max flow problem: we use the

source-sink pair to describe every OD pair in G. Considering

the subway-bus integrated network G, simultaneously moving

passengers for every OD pair means finding feasible integral

flows in G. Intuitively, the objective of DIP is maximizing

the sum of the size of every source-sink pair’s flow. However,

compared to the classical integral multi-commodity max-flow

problem, DIP has the following differences:

• Dynamic graph topology: in DIP, the network topology

is dynamic because the rerouting decision Xr affects

the edges in the network. For example, when one bus

line is rerouted to pass a subway station di between

two previously consecutive bus stops, two new edges are

added to connect the bus line with the subway station,

and the edge between these two previously consecutive

bus stops is removed.

• Dynamic edge capacity: due to the reallocation of extra

buses and trains, the capacity of some subway and bus

lines would increase dynamically. Therefore, the capacity

of corresponding edges in G also dynamically changes

based on the reallocation decision, Xs and Xb.

• Constrained capacity of flow: due to the supply constraint

stated previously: the supply of one OD pair is less
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than or equal to the demand, the size of one flow

of every source-sink pair should be no more than the

corresponding demand.

To address dynamic graph topology and constrained capac-

ity, we transform DIP to an Integral Multi-commodity Max-

Flow problem (IMCMF) under dynamic edge capacity. The

detail of this transform is described in the Appendix. Here we

introduce the basic idea briefly.

We first remove the dynamic topology by select all the bus

lines candidates near the influenced nodes that meet the detour

cost constraint, then tentatively reroute all of them to the

influenced nodes. So according to the detour cost constraint,

we add the corresponding edges into the integrated subway-bus

network and get a new graph G′. This allows us to compute

passenger flows for the next step, if some of these edges are

not used by any flow in the next step, they will be removed,

which means that corresponding bus lines do not need to be

rerouted. Then we modify G′ to satisfy the supply constraint:

for every source-sink pair (si, ti), 1 ≤ i ≤ M , we add one

virtual source node and one directed edge from the virtual

source node to the source node, and then we also add one

virtual sink node and one directed edge from the original sink

node to the virtual sink node. The edge capacities of both two

added edges are set to be equal to the corresponding source-

sink pair demand, Ci. The new graph is denoted as G′′. By this

modification, we make sure the supply constraint is satisfied in

G′′. One example is introduced in Figure 15 in the Appendix.

D. IMCMF under dynamic edge capacity

Let X ∈ N
M×N
0 denote the decision variable of the

IMCMF, where M and N are the numbers of source-sink

pairs and edges in G′′ separately. Xi,j represents the size of

ith source-sink pair’s flow along jth edge in G′′. Then the

objective is:

max

M∑

i=1

N∑

j=1

Xi,jRi,j (2)

where R ∈ {0, 1}M×N is the relation matrix for calculating

the size of flow of every source-sink pair. Ri,j = 1 if jth edge

connects with the source node of ith pair. According to Step 2

in the previous section, only one edge is calculated for every

OD pair,
∑N

j=1 Ri,j = 1 and Si =
∑N

j=1 Xi,jRi,j .

We define Rse ∈ {0, 1}Ns×N to represent the relation be-

tween subway lines and edges. Rse
j,k = 1, if kth edge is created

due to jth subway line, otherwise, it is 0. Rbe ∈ {0, 1}Nb×N

denotes the relation between bus lines and edges. Rbe
j,k = 1, if

kth edge is created due to jth bus line, otherwise, it is 0.

Let ws(ej) and wb(ej) denote the capacity increase of edge

ej due to reallocating extra trains and buses respectively. We

have the following equations:

ws(ej) =

Ns∑

i=1

Ns∑

k=1

I(Xs
i,k)× Cs ×Rse

k,j , 1 ≤ j ≤ N (3)

wb(ej) =

Nb∑

i=1

Nb∑

k=1

I(Xb
i,k)× Cb ×Rbe

k,j , 1 ≤ j ≤ N (4)

where the indicator function I(Xs
i,k) = 1 if and only if Xs

i,k >

0, otherwise, it is 0. Cs and Cb are the capacities of one train

and bus respectively. Considering the edge capacity constraint,

we have the constraint:

M∑

i=1

Xi,j ≤ w(ej) + ws(ej) + wb(ej), 1 ≤ j ≤ N (5)

where w(ej) is the original capacity of edge ej . We formulate

the flow conservation on transit nodes: the amount of a flow

entering an intermediate node is the same that exits the node.

Therefore, for ith source-sink pair and kth node satisfies

N∑

j=1

Xi,jR
ne
k,j = 0, 1 ≤ i ≤M, 1 ≤ k ≤ L (6)

where Rne ∈ {−1, 0, 1}L×N describes the node-edge relation.

L is the number of regular nodes in G′′. Rne
k,j = 1 if jth edge

points to kth node and it is -1 if jth edge emits from kth node.

Otherwise, it is 0. The IMCMF problem we consider is:

max
M∑

i=1

Si =
M∑

i=1

N∑

j=1

Xi,jRi,j

s.t. Si ≤ Ci

Xb1Nb � 1Nb
, Xs1Ns � 1Ns

(Xs)T 1Ns
� β

(3), (4), (5), (6)

(7)

Theorem 1. The DIP is NP-hard.
Proof. Compared with maximum integral multi-commodity

flow, our problem has dynamic edge capacity and the edge ca-

pacity is also one decision variable. In DIP, let Nb = Ns = 0,

then maximum integral multi-commodity flow problem is one

special case of DIP. [10] shows that maximum integral multi-

commodity flow is NP-hard. Therefore, DIP is also NP-hard.

Based on the literature [6] [10], integral maximum multi-

commodity flow problem is Max SNP-hard even in several

particular cases. This result implies that there exists no poly-

nomial time approximation scheme unless P=NP. In fact, [6]

proves that IMMF is not only strongly NP-hard but finding

an approximate solution within a fixed performance ratio for

it is still one NP-hard problem. [11] shows that it is NP-

hard to approximate within m
1
2−ε, where m is the number

of edges. Although there exist several works providing one

approximation algorithm or linear time algorithm, they require

that the graph is one tree [10]. Meanwhile, our problem is

still different from the existing dynamic graph problem, where

edge capacity changes with time, but it is not one decision

variable [9].

Although the DIP is hard to solve in nature, we argue that

the disruptions in urban transportation systems usually only

affect small numbers of stations and the subway lines and bus

lines around them. Therefore, the input size of DIP is not large.

Based on our linear integer programming (LIP) formulation

of the problem, existing solvers in Matlab can solve them

relatively quickly. In our evaluation with large-scale datasets,

the optimal solution of the problem can be obtained in 1 ∼ 2
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minutes, which is fast enough for transportation system control

in reality.
IV. RHC ALGORITHM DESIGN

The transportation control center receives real-time stream-

ing data including smart card records, vehicles’ GPS locations,

and occupancy status with timestamps periodically. These real-

time data streams are then processed to predict the spatiotem-

poral patterns of passenger demand. Based on the prediction,

the control center can utilize a receding horizon control (RHC)

algorithm to calculate a control solution periodically and

repeatedly in real-time, to match predicted passenger demands.

To obtain optimal bus/train line rerouting and extra bus/train

reallocation decisions, we consider two main objectives: 1)

maximize the passenger transport for the overloaded trans-

portation systems under disruptive events; 2) minimize the

rerouting and reallocation cost while achieving the maximum

passenger transport. When disruptive events happen, the trans-

portation network topology and passenger demand change

dynamically, and the system should address these challenges

and adapt the solutions according to both current and pos-

sible future demand. Hence, we design a hierarchical RHC

algorithm. The higher level problem is based on our problem

formulation in Section III, which suggests the passenger flows

and their paths (rerouting decisions), and the reallocation of

buses and trains. The lower level problem is to minimize the

rerouting cost and reallocation cost regarding extra detour time

and the number of additional buses or trains reallocated.

A. Variables, constraints and objective functions

We assume that the optimization time horizon is T , indexed

by t = 1, ..., T . We first reformulate the variables in the

optimization time horizon. Let w(ek, t) be the capacity of ek
during time slot t. Ci(t) represents the passengers demand

of ith source-sink pair (si, ti) during time slot t, which

can be predicted based on the historical dataset and real-

time sensor information. We define Xi,j(t) ∈ N
M×N
0 as the

decision variable of the integral multi-commodity max-flow

during time slot t. Meanwhile, Xb(t) ∈ {0, 1}Nb×Nb

and

Xs(t) ∈ {0, 1}Ns×Ns

represent the reallocation decision of

extra buses and trains during time slot t.
Modeling Circulating Supply: The routing and alloca-

tion in subway-bus network have to meet spatiotemporal

constraints, due to operating schedules and road conditions.

For example, a bus may become available for reallocation

after transporting all passengers at its final stop in a finite

optimization horizon. We define W b ∈ N
Nb

+ , one column

vector to denote the number of time slots needed to complete

one end-to-end trip of all bus lines. For instance, W b
i is the

number of time slot needed to finish one trip of ith bus line. Let

U b(t) ∈ N
Nb
+ be one column vector to represent the number of

time slot needed to finish current bus line trip at the beginning

of time slot t. We note that U b(t) may change over time due to

congestion and road conditions. More importantly, it is directly

affected by the rerouting decision. For instance, it costs 4 time

slots to finish one trip of the first bus line, and the first extra

bus reallocated to the first bus line at time slot 1. So at the

time slot 2, we have the following values: U b
1(2) = 3. Then

the relation between U b
i (t) and U b

i (t− 1) is:

U b
i (t) = max{0,max{

Nb∑

j=1

Xb
i,j(t−1)W b

i , U
b
i (t−1)}−1} (8)

where t ≥ 2 and U b
i (1) = 0 for 1 ≤ i ≤ Nb. Based on U b(t),

γb(t) ∈ {0, 1}Nb is one vector column to describe whether

every extra bus can be reallocated during time slot t. It is

clear that if U b
i (t) > 0, ith extra bus is still operating for one

existing bus line and it cannot be reallocated, otherwise, it can

be reallocated. We have the following equation:
γb
i (t) = I1(U

b
i (t)) (9)

where I1(U
b
i (t)) is an indicator function, and it is equal to

1 if U b
i (t) = 0, otherwise, it is 0. Then for ith bus, during

time slot t, it cannot be reallocated to more than γb
i (t) bus

lines:

Xb(t)1Nb � γb(t) (10)

We remark that it’s possible that
∑Nb

j=1 X
b
i,j(t) = 0,

however, ith bus also contributes to one existing bus line,

because of operating for one existing bus line. Hence, we

define Ob(t) ∈ {0, 1}Nb×Nb

to denote which bus line that

every extra bus contributes to during time slot t. Ob
i,j(t) = 1

if ith bus is operated for jth bus line during time slot t,
otherwise, it is 0. Then, we have the following relation:

Ob
i·(t) = Ob

i·(t− 1)I2(U
b
i (t)) +Xb

i·(t) (11)
where Ob

i· is the ith row of Ob(t) and I2(U
b
i (t)) is also one

indicator function. I2(U
b
i (t)) = 1 if U b

i (t) > 0, otherwise, it

is 0. Finally, we describe the capacity increase of ej during

time slot t due to Nb extra buses:

wb(ej , t) =

Nb∑

i=1

Nb∑

k=1

I(Ob
i,k(t))× Cb ×Rbe

k,j (12)

where Cb is the capacity that one extra can provide. The

circulating supply model and constraint of subway trains are

similar to that of buses. We also define the notations: Us(t),
W s, γs(t), Os(t) and ws(ej , t). Due to the space limitation,

we skip the details of definitions. The circulating supply model

and constraints of trains is described in the Appendix B. The

equations for extra trains’ reallocation is:

Us
i (t) = max{0,max{

Ns∑

j=1

Xs
i,j(t− 1)W s

i , U
s
i (t− 1)} − 1}

(13)γs
i (t) = I1(U

s
i (t))

Xs(t)1Ns � γs(t) (14)

Os
i·(t) = Os

i·(t− 1)I2(U
s
i (t)) +Xs

i·(t) (15)

ws(ej , t) =

Ns∑

i=1

Ns∑

k=1

I(Os
i,k(t))× Cs ×Rse

k,j (16)

The edge capacity constraint of flow during every time slot

1 ≤ t ≤ T is defined as:
M∑

i

Xi,j(t) ≤ w(ej , t) + ws(ej , t) + wb(ej , t), 1 ≤ j ≤ N.

(17)

Considering the flow conservation on transit nodes, we define:
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Algorithm 1: RHC algorithm for real-time transporta-
tion system control

Input: Time horizon T minutes, period of updating control

solution t1 minutes; number of time slots to finish one

bus or subway line trip W b,W s; train and bus capacity

Cs, Cb; geometrical information of transportation nodes;

parameter θ
Output: Control decision: Xr, Xs, Xb

1: while At the beginning of every update period t1
minutes do

2: Update the number of available buses, Nb and trains,

Ns; update the passengers demand of every OD pair

based on the historical dataset and real-time sensor

information; update prediction of Ci(t) for the time

horizon T ; update the edge capacity during the time

horizon T , w(ej , t); update the parameter β
3: Solve the max-flow problem (19) and get the optimal

solution set {X̂(t), X̂s(t), X̂b(t)} of problem (19)

4: Solve the min-cost problem (22) to get the control

decision, which achieves the minimum cost.

5: Send the control decision of according to solution: X ,

Xs, Xb.

6: end while
7: return Control decision

N∑

j=1

Xi,j(t)R
ne
k,j = 0, 1 ≤ i ≤M, 1 ≤ k ≤ L. (18)

B. A Hierarchical RHC Algorithm

Our goal of the higher level RHC problem formulation is

to seek the dynamic rerouting and reallocation decision based

on predicted passenger demand. This formulation is based on

the problem transformation in the previous section:

max
X(t),Xb(t),Xs(t)

T∑

t=1

M∑

i=1

N∑

j=1

Xi,j(t)Ri,j

s.t.
M∑

i=1

N∑

j=1

Xi,j(t)Ri,j ≤ Ci(t)

(Xs)T 1Ns
� β, (8) ∼ (18)

(19)

After solving the above problem, we obtain the maximum

demand that the system can support, which is equal to the

amount of the supply that the system needs to provide.

In General, the problem (19) has multiple optimal solutions,

i.e., different flow and reallocation assignments can achieve the

same supply in the integrated network. Assume the optimal

solutions of (19) is a set {X̂(t), X̂s(t), X̂b(t)}. They provide

the maximum value of supply. Therefore, we introduce the

lower level which is formulated to choose the optimal flow and

reallocation assignments with the minimum cost. In this level,

the goal is rerouting existing bus lines and reallocating the

extra vehicle supplies along different lines with the minimal

cost. We minimize the cost to satisfy the supply achieved

in (19), which consists of the rerouting cost and the number

of extra buses or trains.

The rerouting cost is defined as:

Jr =

N∑

j=1

I(

M∑

i=1

Xi,j(t))p(ej) (20)

where p(ej) is the cost of traveling along edge ej . The number

of extra buses and trains used is modeled as:

Jn =

Nb∑

k=1

Nb∑

j=1

Xb
i,j(t) +

Ns∑

k=1

Ns∑

j=1

Xs
i,j(t) (21)

We define a weight parameter θ when summing up the costs

related to both objectives. The formulation of minimizing cost

is shown as follows:
min

X(t),Xb(t),Xs(t)∈{X̂(t),X̂b(t),X̂s(t)}
J =

T∑

t=1

(Jr + θJn) (22)

C. RHC Framework Implementation

We adopt basic linear regression technique to predict pas-

senger demand of different OD pairs based on historical and

real-time datasets. We define the time horizon is T minutes

and the length of every time slot is t1 minutes. The previous

proposed RHC based problem formulation is embedded in one

iteration of our RHC algorithm, and we update the control

decision every time slot, t1 minutes. The pseudo-code of RHC

algorithm is shown as Algorithm. 1. For simplicity, we assume

that the two-level RHCs have the same timescale.

This RHC algorithm is triggered when one or multiple

disruptive events occur in the transportation systems, which

cause subway stations or bus stops to close. This algorithm

periodically makes control decisions every t1 minutes until

the transportation system recovers from the disruption. At the

beginning of every t1 minutes, it updates the locations and

occupancy status of all the available extra buses and trains,

and predicted passengers demand of every OD pairs till the

future T time horizon. Then it solves the problem (19) to

the optimal solution set to transport the maximum number of

passengers, solves the problem (22) to obtain the rerouting

decision of existing bus lines, extra bus and train assignments

that minimizes the control cost.

V. EVALUATION

A. Methodology

To evaluate eRoute in a real-world scenario, we use the

dataset described in Table II to conduct a data-driven analysis.

We can see that a smartcard record contains the location,

time, and transport mode that one passenger swipes the smart

card. Based on this dataset, we can extract the origin and

Fig. 3: Passengers demand density over the city (the lighter
the icon, the higher the demand density)
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destination of a trip for each passenger. Figure 3 shows the

passenger demand density of the subway and bus system over

one city. Then we can estimate the demand for each OD pair,

and predict the future demand for each OD pair using linear

regression.

We also use a dataset of GPS traces of all buses along 800

different bus lines in the same city. Every bus has networked

GPS that can upload real-time location information every 30

seconds. One record in this dataset contains a plate number, a

bus line number, a time stamp in seconds, GPS Coordinates,

and a real-time speed. Based on this dataset, we can estimate

the schedules of every bus line and the trip time at the different

time of the day. We can also estimate the real-time passenger

demand and available capacity of one bus by combining

smartcard reader data and bus GPS data, as all buses use the

smartcard system. The locations of subway stations and bus

stops are obtained from online digital map service provider.

The typical capacity of a city bus is 60 passengers. We assume

25 extra buses can be reallocated.

This dataset contains one disruptive event: a signal problem

starting from 7 am to the end of the day that causes significant

delays on all trains of a subway line. Both the train speed and

the frequency of trains were reduced due to safety concerns.

No bus shuttles had been used to address this incident in reality

based on an analysis of our data.

To show the effectiveness of eRoute, we compare it with

the following existing solutions to handle disruptions: (i)

Periodical W/: transportation center makes control decision

of rerouting and reallocating available vehicles once every

time slot without looking forward to the future several time

slots; (ii) Periodical W/O: control center only reroutes existing

bus lines once every time slot; (iii) Static: transportation

center makes control decision only once at the beginning of

the disruptions; (iv) Shuttle: control center utilizes dedicated

shuttles running along the influenced subway line to provide
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Fig. 8: RSP over time

substitute services; (v) Nearest: for every influenced subway

stations, only a fixed number (10) of geographically close bus

lines are considered, such as rerouting and reallocating extra

vehicles to these bus lines.

The performance metrics considered include: (i) the ratio

of served passengers (RSP): the ratio between the number of

served passengers and the number of passenger demand; (ii)

average traveling time; (iii) response time: time to serve fixed

percentage of passengers. In the experiment, for our eRoute,

the length of every time slot is 20 minutes and then the time

horizon is 6 time slots.

B. Results

1) Prediction error: In eRoute, we use one linear model to

predict the passengers demand of different OD pairs during

each time slot (20 minutes), then use them to run our RHC

algorithm. We evaluate the accuracy of our prediction method

by using one-day data as the testing set and five-days data as

the training set. Figure 4 and 5 show the CDF of prediction

error and prediction error ratio respectively. Here, we have 72

OD pairs. 80.0% passenger demand of one OD pair during

one time slot is no more than 30 and 50.0% of that is fewer

than 10 passengers. The prediction error of nearly 90% of

OD pairs is less than ten passengers, which demonstrates

that simple linear model can predict passengers demand fairly

accurately. In Figure 5, prediction error ratio of some OD pairs

is large since the actual passengers demand is very small (<5)

resulting large prediction error ratio.

2) Comparison of five solutions: Figure 8 plots the RSP

of five solutions over the day. The performance of eRoute

decreases from 6 am to 9 am and then it increases with reduced

passengers demand, but it still significantly outperforms the

other solutions. Compared to the widely used Static solution,

eRoute achieves up to 2.82 times higher RSP during rush

hours. This is because that eRoute benefits from our RHC by

considering the passengers demand in the future several time

slots. Even compared to the second best solution periodically

control with extra buses, eRoute achieves 64.1% higher RSP

during 19:00-19:59. In the off-peak hours, e.g., 12:00-15:59,

with the decrease of passengers demand, eRoute can serve all

the passengers.

There are also several observations: the first one is updating

the control decision dynamically can improve the performance.

Comparing static solution to eRoute and periodical with extra

buses, although all of the three solutions reallocate the same

number of extra buses, static solution has a lower RSP than
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Fig. 14: eRoute under a Bus Disruption
the other two solutions do during most time of the day, such as

only 50.0% of periodical with extra buses and 20.1% of eRoute

during 10:00-10:59. The second observation is rerouting the

existing bus lines can provide part of substitute supply, but

more extra buses are needed to move most of the passengers.

The last one is when comparing the performance of nearest bus

lines solution and eRoute, more bus lines which are considered

in the subway-bus integrated network would provide more

alternative paths and higher supply. However, sometimes, more

bus lines would increase the traveling time of passengers due

to multi-hop transfer. Therefore, in eRoute, we only consider

the bus lines that are around the influenced subway line.

Figure 6 plots the average passenger traveling time of five

solutions over time. The traveling time of a passenger includes

the waiting time for the transport service and the actual

traveling time. From this Figure 6, we can see that the average

traveling time of eRoute increases from 7:00 to 9:00 because

the surge of passenger demand results in the growth of waiting

time at the influenced stations. eRoute still outperforms all the

other solutions. For example, compared to periodical control

with extra buses, the passenger traveling time with eRoute

is still 20.8% less at 9 am. We see the traveling time of all

solutions except eRoute decrease at the end of the day, and this

is because many passengers arrived at the influenced station

after 19:00 do not receive any transport service due to the

limited supply, so it only counts their waiting time. We see

Here we did not plot the curve of the Nearest solution since

its average traveling time is much higher than the others.

We also evaluate the performances of eRoute with a differ-

ent number of total available buses. As shown in Figure 9, the

more vehicles we use, the higher RSP we can achieve. When

the number of total available extra buses is 25, the RSP can

reach 100% during off-peak hours. When 50 buses are used,

the RSP is almost 100% in the whole day.

3) Response Time: Once disruptions occur, eRoute reroutes

the nearby buses to pick up passengers strained at the influ-

enced subway stations, which has a very short response time.

Other solutions like Shuttle need to dispatch extra buses from

the distant terminals, which usually takes a long time to reach

the influenced stations. Figure 7 shows how long each solution

takes to pick up a certain percentage of passengers during

the first two-hours after disruptions. We can see that it takes

eRoute 88 minutes and Shuttle 101 minutes to move 40%

of the passengers, which suggests eRoute has 12.9% faster

response time to move 40% of all the passengers.

4) Time Horizon: Figure 10 plots the performance of

eRoute with different prediction time horizon: 2, 6 and 8

time slots. The observation is that during off-peak hours,

the percentage of served passengers of 8 time slots horizon

outperforms that of 2 and 6 time slots horizon with average

gains of 36.2% and 12.3% respectively. The reason for this

observation is that a shorter time horizon means that only the

demand in the very recent future is considered, which misses

opportunities to achieve better control. During the other hours

of the day, the percentage of served passengers with time

horizon 6 and 8 is similar.

5) Control Update Period: Figure 11 plots the performance

of eRoute with different control update periods: 20, 40 and 60

minutes. The prediction time horizon is set to be 120 mins.

We can see that shorter control update period can increase

the performance of eRoute, as it allows more frequent control

decisions for passenger demand changes: when the time slot

length is 20 minutes, it improves the performance by up to

2.4 and 2.7 times compared with time slot lengths of 40 and
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60 minutes respectively at 8:00.
6) Detour constraint: Figure 12 plots the ratio of served

passengers of eRoute with different detour constraints: 2, 4,

and 6 minutes. The observation is that higher detour constraint

can increase the ratio of served passengers, since it allows

more bus lines are detoured to influenced nodes, and then

provides higher supply for delivering passengers.
7) Overhead of eRoute: The overhead of eRoute is mea-

sured by the average number of transfers. Since passengers are

delivered by rerouted bus lines, which cannot connect origin

and destination directly and increases the number of transfers

they make. Figure 13 plots the average number of transfers

during the day. We can see that passengers need to transfer

more than twice to reach their destinations. Specifically, during

rush hours, three or more transfers are needed due to higher

passenger demand making passengers find the longer alterna-

tive path to their destinations.
8) Disruption to bus system: To demonstrate the flexibility

of our design, we conduct another simulation to evaluate the

performance of eRoute under a disruptive failure of the bus

system. Here we simulate the transportation network when

the bus service is shut down at a few stops in one region

of the city due to accidents, and then we apply eRoute to

transport strained bus passengers. The simulated disruption

to bus system influences six stations, 48 bus lines and 4456

affected passengers from 6:00 to 23:00. Under the real-world

scenario, the disruption may not last for one day. To evaluate

eRoute for a long period, we assume it lasts for one day. The

nearby subway lines are also utilized in our solution to provide

transfers. Figure 14 shows the RSP of five solutions under such

a scenario. From Figure 14, we can see that the RSP of eRoute

decreases during rush hour, e.g., from 7:00 to 9:00 and from

16:00 to 19:00 due to the higher passengers demand. eRoute

outperforms all the other solutions. For instance, compared

with periodical control with buses, the RSP with eRoute is

still 6.8% higher during off-peak hours.

VI. DISCUSSION
Our work only considers the maximum number of passen-

gers that can be delivered by the integrated subway-bus system

simultaneously, but our framework can be extended with the

model of passengers’ behaviors, e.g., tolerance in traveling

time and number of transfers, willingness to switch to other

means of transportation, and choices of traveling paths. There

are multiple models describing passengers’ behaviors, such

as multinomial logit model [4], 0−1 integer linear program-

ming model [26], and dynamic Markov models [24]. We can

incorporate the passenger behaviors model in our framework

by using it to calculate the number of passengers that can be

served of the different OD pairs and the cost of decisions when

given the subway-bus integrated network.

Meanwhile, because of the dynamic change of the integrated

transportation system, searching for an alternative path also

incurs the overhead of passengers. Under the disruptions,

transportation authorities can broadcast the paths information

at the stations or stops or provide one mobile app for trans-

portation map so that passengers can search their paths easily.

VII. RELATED WORK

Two types of works are related to our eRoute: (i) urban data-

driven applications and analysis and (ii) solutions to handle

disruptive events on urban train system.

Urban data-driven applications and analysis. There exist

some prior works, which either propose data-driven applica-

tions or formulate generic models to capture urban phenomena

by data analysis. The increasing of availability of urban

transportation sensors has encouraged a surge of work focusing

on design data-driven applications. Many novel applications

are proposed to improve the efficiency of urban transportation

system, e.g., providing last-mile transit service to deliver

passengers [34], designing a win-win taxi carpool services

for both passengers and drivers [32] [21], helping taxi drivers

find next passengers efficiently [30] [27] [28]. Based on the

collected large-scale data, some works focus on data-driven

analysis to formulate generic models to understand urban

features, e.g., inferring real-time traffic speeds [33], inferring

human mobility patterns across the city [31], investigating spa-

tiotemporal segmentation information of trips inside a metro

system [35], predicting traffic in a bike sharing system [18],

calculating traffic volume on road segments [22], and inferring

traffic cascading patterns [19].

Solution to handle disruptive events: They are classified

into two directions [12]: pre-disruption preparedness and post-

disruption response. While the former focuses on improving

robustness of the transportation network, including schedules,

frequencies and routes, and the latter seeks to respond to

occurred disruptions.

Pre-disruption preparedness is to prepare certain measures

before disruption happens. An alternative direction is design-

ing a robust schedule to enhance potential recovery actions.

[37] [36] [5] [20] and [8] consider robust train scheduling.

Specifically, [5] computes robust routing schedules to improve

robustness by either increasing the delay absorption capacity

or explicitly providing potential recovery possibilities. [12]

studies that metro network resilience to disruptions can be

enhanced by localized integration between bus services and

subway stations to achieve the desired resilience to potential

disruptions. However, their design relies on manual and local

incremental adjustments on bus routes, and it generates static

and fixed routes. Differently, our solution dynamically adjusts

bus routes and based on the passenger demand.

Post-disruption response focuses on coming up with re-

sponsive measures for subway system disruptions to alleviate

consequences. [7] and [17] state that in the case of a disruption,

the first task is keeping subway system running, including

timetable adjustment [25], and re-scheduling rolling stock and

crew [3] [23] [2] [4]. [13] and [15] introduce shuttle bus

services in the disrupted area intelligently which requires extra

shuttle buses rather than detouring existing bus lines. [29] has

taxis instead of buses as the recovery service for on-board

passengers in a public tram system. [16] responds to serious

disruptions by redesigning the lines in a particular region

around the disruption. Thereby, it removes part of existing

lines and establishes new lines. However, these work does
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not consider the dynamic integration between heterogeneous

transportation systems. In contrast, our solution utilizes data-

driven insights to perform this integration in real time under

disruptive events.

VIII. CONCLUSIONS

In this work, we design, implement and evaluate eRoute

for dynamic public transportation integration under disruptive

events based on real-world multi-source data from the Chinese

city Shenzhen including a 13 thousand bus system, a subway

system with 127 subway stations, and an automatic fare

collection system with a total of 16,840 card readers and 8

million card users. Our endeavors offer a few valuable insights

for fellow researchers to conduct the similar investigations: (i)

under disruptive events, the existing effort for transfers within

public transportation provides an opportunity to dynamically

integrate them without requiring ad-hoc efforts, e.g., extra

bus lines; (ii) given spatial temporal partitions of public

transportation systems and natures of disruptive events, we

can deliver strained passengers with a hierarchical receding

horizon control framework to reduce their affected travel time

with minimal overheads; (iii) our work only focused on the

technical frontier on the modeling and resource allocation

framework, and it is more challenging to establish right

policies that would make large-scale deployment feasible to

reduce impacts of disruptive events and increase transportation

resilience.
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APPENDIX

A. Transformation

Step 1: removing dynamic graph topology by rerouting

every bus line to all the influenced nodes without conflict with

the detour cost constraint. Firstly, we introduce how to calcu-

late the detour cost function f(k, i). Suppose vk1
is the nearest

node to vdi that the kth bus line visits, and vk2 is the next

node which the kth bus line visits after vk1 . Then f(k, i) =
travelling time(vk1

, vdi
) + travelling time(vdi

, vk2
) −

travelling time(vk1
, vk2

), where travelling time(vk1
, vdi

)
is a function computing the travelling time from vk1

to

vdi
. Without losing generality, we use the euclidean distance

between two locations to estimate the traveling time for this

function in this paper. When road congestion information is

available, this function can be generalized to include real-time

traveling time. If f(k, i) ≤ α, we add two virtual directed

edges e(vk1
, vdi

) and e(vdi
, vk2

) and remove the existing

edge e(vk1 , vk2). We call all the edges added based on the

existing transportation network as regular edges and all the

edges added on the basis of rerouting as virtual edges. It is

noted that the cost of every regular edge is 0, as they don’t

introduce any extra detour. The cost of every virtual edge is

equal to the corresponding distance between two transportation

nodes. After the above procedure, we have a topology with

all possible reroutes. We may not reroute every bus line and

therefore need every virtual edge, so some of the virtual edges

will be eliminated after rerouting if there is no passenger flow

using it. The graph generated after adding virtual edges is

denoted as G′.
Step 2: was modifying G′ to satisfy the supply constraint.

For every source-sink pair, we add one virtual source and one

virtual sink node, and two directed edges to connect them: one

edge is from the virtual source node to the node of origin, the

other is from the sink node to the virtual sink node. The edge

capacity of both two added edges is set to be equal to the

corresponding source-sink pair demand, and its cost is set to

be 0. Figure. 15 provides one example to illustrate the basic

idea to modify G′ into G′′. After this modification, we only

need to find the flow from the virtual source node to virtual

sink node in G′′ for every source-sink pair, and it is clear that

such flow satisfies the supply constraint. After the above two

steps, DIP is changed to find the IMCMF with dynamic edge

capacity in G′′.

B. Circulating supply of trains

We define W s ∈ N
Ns

+ , one column vector to denote the

number of time slots needed to complete one end-to-end trip

of all subway lines. For instance, W s
i is the number of time slot

needed to finish one trip of ith subway line. Let Us(t) ∈ N
Ns
+

be one column vector to represent the number of time slot

needed to finish current subway line trip at the beginning of

time slot t. For instance, it costs 4 time slots to finish one trip

of the first subway line, and the first extra train reallocated to

the first subway line at time slot 1. So at the time slot 2, we
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Fig. 15: An example of Problem Transformation Step 2.

have the follow values: Us
1 (2) = 3. Then the relation between

Us
i (t) and Us

i (t− 1) is:

Us
i (t) = max{0,max{

Ns∑

j=1

Xs
i,j(t− 1)W s

i , U
s
i (t− 1)} − 1}

(23)

where t ≥ 2 and Us
i (1) = 0 for 1 ≤ i ≤ Ns. Based on Us(t),

γs(t) ∈ {0, 1}Ns is one vector column to describe whether

every extra train can be reallocated during time slot t. It is

clear that if Us
i (t) > 0, ith extra train is still operating for one

existing subway line and it cannot be reallocated, otherwise,

it can be reallocated. We have the following equation:

γs
i (t) = I1(U

s
i (t)) (24)

where I1(U
s
i (t)) is an indicator function, and it is equal to

1 if Us
i (t) = 0, otherwise, it is 0. Then for ith train, during

time slot t, it cannot be reallocated to more than γs
i (t) subway

lines:

Xs(t)1Ns � γs(t) (25)

We remark that it’s possible that
∑Ns

j=1 X
s
i,j(t) = 0, however,

ith train also contributes to one existing subway line, because

of operating for one existing subway line. Hence, we define

Os(t) ∈ {0, 1}Ns×Ns

to denote which subway line that every

extra train contributes to during time slot t. Os
i,j(t) = 1 if

ith train is operated for jth subway line during time slot t,
otherwise, it is 0. Then, we have the following relation:

Os
i·(t) = Os

i·(t− 1)I2(U
s
i (t)) +Xs

i·(t) (26)

where Os
i· is the ith row of Os(t) and I2(U

s
i (t)) is also one

indicator function. I2(U
s
i (t)) = 1 if Us

i (t) > 0, otherwise, it

is 0. Finally, we describe the capacity increase of ej during

time slot t due to Ns extra trains:

ws(ej , t) =

Ns∑

i=1

Ns∑

k=1

I(Os
i,k(t))× Cs ×Rse

k,j (27)

where Cs is the capacity that one extra train can provide.
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