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Abstract—Investigating passenger demand is essential for the
taxicab business. Existing solutions are typically based on dated
and inaccurate offline data collected by manual investigations.
To address this issue, we propose Dmodel, using roving taxi-
cabs as real-time mobile sensors to (i) infer passenger arriving
moments by interactions of vacant taxicabs, and (ii) infer pas-
senger demand by a customized online training with both
historical and real-time data. Such huge taxicab data (almost
1TB per year) pose a big data challenge. To address this chal-
lenge, Dmodel employs a novel parameter called pickup
pattern (accounts for various real-world logical information,
e.g., bad weather) to increase the inference accuracy. We evalu-
ate Dmodel with a real-world 450 GB dataset of 14, 000
taxicabs, and results show that compared to the ground truth,
Dmodel achieves a 76% accuracy on the demand inference and
outperforms a statistical model by 39%.

I. INTRODUCTION

Understanding and predicting passenger demand are essen-

tial for the taxicab business [1]. With accurate knowledge of

demand, taxicab companies can schedule their fleet and dis-

patch individual taxicabs to minimize idle driving time and

maximize profit. Historically, such demand has been investi-

gated by manual procedures (e.g., creating surveys).

However, these manual studies are often dated, incomplete,

and difficult to use in real time. In particular, passenger de-

mand experiences irregular spatio-temporal dynamics due to

real-world phenomena, e.g., bad weather or special events.
To create an accurate demand model we provide a two

part solution. First, we mine a large dataset of historical in-

formation regarding passenger demand and taxicabs trips.

This results in the basis of our method, from which we iden-

tify what aspects should be used to infer specific real-time

demand. In this work, the historical dataset used is from

14,000 taxicabs for 6 months (450 GB) in a Chinese city,

Shenzhen. While this historical model is more accurate than

sample-based surveys, it cannot handle many real-time issues

and thus has major limitations if used alone.
Second, to address the short term, real-time dynamics, we

consider the thousands of roving taxicabs as real-time mobile

sensors and collect current information from them. This is

possible because taxicabs in dense urban areas are equipped

with GPS as location sensors and fare meters as passenger

sensors, and thus their locations and occupancy status can be

periodically uploaded to a dispatching center. These taxicabs

form a real-time “roving sensor network”. The streaming data

used are from a live data feed in the Shenzhen taxicab network

with an average rate of 450 taxicab status records per second.
Admittedly, several systems have proposed to use taxicab

GPS traces to infer passenger demand, but they typically have

two simplifying assumptions [2] [3] [4]: (i) they assume that

the previous demand is given by the picked up passengers, but

overlook the waiting passengers who did not get picked up;

and (ii) they assume that the current demand can be inferred

by the long-term historical demand, but overlook the fact that

the passenger demand is highly dynamic. For example, after a

major concert, due to the high demand, there are few picked

up passengers yet numerous waiting passengers, and further

the average historical demand cannot indicate the suddenly

increased demand due to the concert.

In this paper, to improve these simplifying assumptions, we

propose Dmodel, which observes online hidden contexts to

infer passenger demand based on both historical and real-time

data. The contributions of this paper are as follows.

• We identify taxicab passenger demand with a combined

offline big data analysis and a real-time roving sensor

network, where taxicabs detect passenger counts and ar-

riving moments. It is important to note that taxicab

passenger arriving moments are, in general, unknown.

However, a major contribution of Dmodel is how the

roving sensor network infers them by utilizing taxicabs’

interactions.

• We present a novel parameter, called a pickup pattern,
to quantify taxicab operational similarity (i.e., how soon

a taxicab can pick up a passenger after entering a road

segment at a time slot) among different days using big

data, e.g., 450 GB in Shenzhen. We show that naively

using more data from such a big dataset results in not

only an unnecessarily large workload, but also inaccurate

inferences. A key novelty of Dmodel is to utilize the
real-time pickup pattern to select customized yet compact
training data to increase inference accuracy. This pickup
pattern implicitly accounts for spatio-temporal dynamics

in real-world phenomena, e.g., bad weather.
• We test Dmodel on a 450 GB dataset created by 6
months of status records from 14, 000 taxicabs in Shen-
zhen. The evaluations show that compared to ground

truth, Dmodel achieves a 76% inference accuracy of

demand in terms of the passenger counts, and

outperforms a statistical model by 39%.

The organization of the paper is as follows. Section II

shows motivations. Section III introduces the sensor net-

works. Sections IV and V describe Dmodel’s design and

evaluation, followed by the related work and the conclusion

in Sections VI and VII.
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Fig 2: Demand Dynamics for the Same Hourly Slot in Three Different Days

II. MOTIVATIONS

In this section, based on empirical data (introduced in

Section III) from a real-world taxicab network with 14,000

taxicabs in Shenzhen, we present our motivations to improve

upon two legacy assumptions for passenger demand analysis.

A. Assumption on Inference for Previous Demand

Legacy Assumption One: Given a previous time slot, the

passenger demand (i.e., total counts of all passengers requiring
taxicab services) equals to the number of picked up passengers

(i.e., pickup counts) [2] [3] [4].
In this work, we argue that though all passengers get

picked up eventually, for a previous time slot the passenger

demand should include not only the picked up passengers,

but also the waiting passengers who had arrived, but did not

get picked up. Thus, the passenger demand should equal the

total passenger count (i.e., the pickup passenger count plus

the waiting passenger count), instead of the pickup passenger

count alone. Figure 1 gives the difference between pickup

counts (i.e., the demand in the legacy assumption) and total
passenger counts (i.e., the demand in our improved

assumption) for Shenzhen area in 5 minute time slots.
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Fig 1: Pickup and Total Counts

We found that the pickup and total passenger counts are usu-

ally different especially in the slots during the rush hour.

Note that a passenger who arrived at one slot and got picked

up at the next slot is individually counted in the two slots,

i.e., counted as a waiting passenger in the first slot, and

counted as a pickup passenger in the second slot.
The key reason for this legacy assumption is that arriving

moments for picked up passengers cannot be obtained by ex-

isting infrastructures. Thus, the waiting passenger count of a

time slot is unknown. To address this issue, in this paper, we

present a novel method based on the interactions of vacant

taxicabs to infer the arriving moments, which are used to ob-

tain the waiting passenger counts for a more accurate

demand analysis. The details are given in Section III-B2.

B. Assumption on Inference for Current Demand

Legacy Assumption Two: Given a current time slot, the

passenger demand can be accurately inferred by the

historical average passenger demand for the same slot [4].

For this assumption, we argue that for the same area and

time slot, the passenger demand experiences irregular temporal

dynamics on different days due to various real-world factors,

and cannot be accurately inferred without considering more

contexts. Figure 2 gives the passenger demand for the same

hourly slot in three different weekdays, which is shown by

total passenger counts in different administrative regions of

Shenzhen. Suppose we want to infer the passenger demand of

Region A and B on Day 3 given in the middle figure, and the

historical demand for the same two regions and the same time

slot on Days 1 and 2 as given by the left and right figures. If

we infer Region A’s demand on Day 3 based on the Region
A’s demand on Day 1, we only have a 279−|147−279|

279 ≈ 53%
accuracy; similarly, if we infer Region B’s demand on Day 3
based on the Region B’s demand on Day 2, we only have a
608−|462−608|

608 ≈ 76% accuracy. Thus, this legacy assumption

leads to an inaccurate inference.

The key reason for this assumption in the past is lacking

an effective parameter to select the related historical data as

training data for the inference. Thus, in this paper, to improve

upon this assumption, we propose a novel parameter called

the pickup pattern to select a customized training dataset for a
particular demand inference. For example, based on the pickup

pattern, if we find that Region A’s demand on Day 2 is more
related to Region A’s demand on Day 3, then we can infer

Region A’s demand on Day 3 based on Region A’s demand on
Day 2. As a result, we can improve the accuracy for Region A
on Day 3 from

279−|147−279|
279 ≈ 53% to

279−|285−279|
279 ≈ 98%.

Note that the above example only gives a straightforward

intuition, and the real inference is more complicated. But we

found that finding highly related data (instead of all historical

data) for the inference can significantly increase the inference

accuracy, and reduce the workload by not having to process the

entire taxicab dataset. The details are given in Section IV-B1.
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III. THE ROVING SENSOR NETWORK

Recently, taxicab infrastructures in large cities are up-

graded with onboard GPS and communication devices and

dispatch centers [5]. Built on such infrastructures, a roving
sensor network consists of (i) numerous roving taxicabs in

the frontend as mobile sensors to detect passengers, and (ii)

a dispatching center in the backend to receive sensing

records (i.e., taxicab status) to analyze passenger demand.

Figure 3 gives a dataset of such sensing records from Shen-

zhen, the most crowded city in China (17, 150 people per

square KM). This half-year dataset contains almost 4 billion

sensing records with a total size of 450 GB.

Collection Period 6 Months 
Collection Date 01/01-06/30
# of Taxicabs 14,453

# of Pickup Events 98,472,628
# of Sensing Records 3.9 Billion

Data Size 450 GB

Sensing Dataset Summary

Fig 3: Dataset Summary
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 With Passengers
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Dropoffl1
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l4

Fig 5: Cruising Events

A. Detected Events
Based on sensing records, we observe two kinds of events

related to passenger demand by tracking taxicabs’ status.
1) Pickup Event: For the same taxicab, if its status turns

from “unoccupied” to “occupied” in two consecutive records,

then it indicates that this taxicab just picked up a passenger

in the location indicated by the corresponding GPS signal,

which is associated to a pickup event; similarly, a dropoff event
can also be detected. Figure 4 gives a graph representing the

corresponding pickup and dropoff events in 245 urban regions

in Shenzhen (including the airport, train stations, residential

areas, etc) from 7AM to 9AM of a Monday. The size of a

vertex indicates the number of events in the region; the color

of a vertex indicates one of six districts. We remove links with

trips fewer than 30 to make the figure clear.
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Fig 4: Corresponding Pickup and Dropoff Events

2) Cruising Event: A cruising event begins with a dropoff

event and ends with a pickup event. Figure 5 gives a cruising

event where a taxicab first drops off a passenger between l1
and l2, and then cruises from l2 to l3, and finally picks up

a new passenger between l3 and l4. By this cruising event,

we infer an absence of passengers on segment from l2 to l3
during the time when this taxi cruises this segment.

B. Inferred Phenomena
We study two phenomena inferred by the above two events.
1) Passengers in a Temporal and Spatial Area: Phe-

nomenon 1 in Figure 6 gives a pickup event pi where a

vacant taxicab Ti cruised a particular road segment sj con-

necting two intersections and picked up one passenger Pi.

Thus, we infer that there is only one passenger (i.e., Pi) in

the dashed temporal and spatial area. This is because if there

is another passenger Pj , Ti would pick Pj up, which contra-

dicts to the fact that Ti picked up Pi in the pickup event pi.

Phenomenon 2 in Figure 6 shows a cruising event where a

vacant taxicab Tj cruised the segment sj and did not pick up

any passenger. Based on this observation, we infer that there

is no passenger in the dashed temporal and spatial area. This

is because if there is a passenger Pj , Tj would pick Pj up,

which contradicts the fact that Tj did not pick up passengers

when it cruised sj . Note that there may be passengers

outside the dashed area yet inside the rectangle, since pas-

sengers (e.g., Pk) can arrive at a location on segment sj ,

after vacant taxicabs passed this location.

Space sj

Time
li

Tj

tupper

pi

ti

Ti

t0

 Space sj 

Time

Tj

tjt0

 Space sj 

Time

Ti

tit0

pi

Phenomenon 1 Phenomenon 2 Phenomenon 3

Pj

Pj

Pk

Pi

Fig 6: Inferred Phenomena

2) Arriving Moments of Picked Up Passengers: An arriv-

ing moment indicates the time when a passenger starts to

wait for a taxicab, which can be used to obtain the ground

truth of the total passenger counts for a segment during a

time slot. Accurately obtaining such arriving moments is al-

most impossible under current infrastructures. But we present

a method to obtain the upper bound of an arriving moment

tupper, i.e., the earliest possible moment of a passenger start-
ing to wait for a taxicab. As in Phenomenon 3 of Figure 6,

assuming passengers do not move significantly when waiting

for taxicabs, given a pickup event pi in terms of pickup mo-

ment ti and location li, we find the latest cruising event

where another vacant taxicab Tj passed the same location li
(shown as the star). Thus, the moment tupper when Tj passed

li is the upper bound of the arriving moment of the passen-
ger Pi in the pickup event pi. This is because if the moment

that Pi starts to wait for a taxicab is earlier than this bound

tupper, then Pi would be picked up by Tj at tupper, which con-
tradicts the fact that Pi was picked up by Ti at ti. We use

this upper bound as the arrival moment, which leads to a

lower bound of the arrival count in the latest slot, enabling a

conservative inference. Note that waiting passengers’ arriving

moments cannot be inferred until they are picked up.
Inferred by such a sensor network, the above phenomena

provide abundant information with high resolutions, used by

Dmodel to infer the passenger demand shown as follows.
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IV. Dmodel DESIGN

The Dmodel is a dynamic inference model for generic

passenger demand at road segment levels on a hourly basis.

Conceptually, for a segment sj , at the end of a time slot τi,

Dmodel takes both real-time data uploaded in τi and histori-

cal data uploaded before τi as input, and produces inferred

demand in terms of total passenger count for the next slot

τi+1, by summing up two kinds of passengers as follows.

Previous Left-behind Passengers who had arrived at seg-
ment sj before the end of τi, and yet were not picked up in

τi. To obtain this count, Dmodel first aggregates real-time
pickup events to obtain the pickup count for picked up pas-
sengers in τi. Next, Dmodel employs a novel parameter

called pickup pattern to obtain customized training data to

infer the total passenger count (either picked up or not) in τi

by corresponding pickup counts. Finally, Dmodel obtains

the left-behind passenger count by subtracting the pickup

count of τi from the total passenger count of τi.

Future Arriving Passengers who have not arrived yet,

but will arrive during τi+1 at segment sj , i.e., future arrivals.
Dmodel infers the future arrivals by maintaining a probabil-
ity distribution of a passenger arrival rate for every road

segment. At the end of a time slot τi, based on the pickup

count in τi, Dmodel first infers the corresponding passenger
arrival in τi, and then updates the distribution of arrival rates

accordingly, and finally infers the future arrival by this

updated distribution.

In what follows, we first present demand modeling, and then

elaborate how to obtain these two kinds of passengers.

A. Passenger Demand Modeling

Key notations for a slot τi and a segment sj are as follows.

• P
sj
τi : Pickup Count: The total number of picked up pas-

sengers during τi at sj .

• L
sj
τi : Left-behind Count: The total number of waiting yet

not picked up passengers during τi at sj .

• A
sj
τi : Arrival Count: The total number of arriving

passengers during τi at sj .

• T
sj
τi : Total Passenger Count: The total number of

passengers who wait for taxicabs during τi at sj .

In the following, we omit all same superscripts for a concise

notation. Figure 7 shows examples of the notation. The x-axis
is the time, and the y-axis is the space, i.e., segment sj . A total

of three passengers are picked up, indicated by three pickup

events p1, p2 and p3, and the arriving events when they start

to wait for taxicabs are given by a1, a2 and a3. As a result,

for the time slot τ0, Aτ0 = 1, Pτ0 = 0, Lτ0 = 1, Tτ0 = 1;
for the time slot τ1, Aτ1 = 2, Pτ1 = 2, Lτ1 = 1, Tτ1 = 3;
for the time slot τ2, Aτ2 = 0, Pτ2 = 1, Lτ2 = 0, Tτ2 = 1.

 Space sj

Time

p1

Slot �1

p3
p2

t2
Slot �2

t1

a1

a2 a3

t3

 Pickup Event
Arriving Event

Waiting Period
Trace with Passengers
Trace without Passengers

Slot �0

t0

Fig 7: Notation Example

Total Passenger Count T�i T�i+1 T�x

A�i A�i+1

P�i P�i+1Pickup Count

Arrival Count

L�i-1 L�i L�i+1
Left-Behind Count

1)

3)

2)

Fig 8: Passenger Demand in a Hidden Markov Model

1) Demand Modeling: In Figure 8, we analyze passenger

demand as an unobservable state in a Hidden Markov Model.

1) At the end of a time slot τi, the key system state that

needs to be inferred is the total passenger count Tτi+1 of

the next slot τi+1, which takes the left-behind count Lτi

of τi and the arrival count Aτi+1 of τi+1 as two inputs

(shown by arrows with solid lines). Thus, we have

Tτi+1 = Lτi + Aτi+1 .

2) As one input for Tτi+1 , the left-behind count Lτi of

τi is also one of two outputs (shown by arrows with

dashed lines) of the previous system state, i.e., the total
passenger count Tτi of τi. The other output of Tτi is

the observable pickup count Pτi of τi. Thus, we have

Lτi = Tτi − Pτi .

3) As the other input for Tτi+1 , the arrival count Aτi+1 of

τi+1 can be inferred by a stochastic process, supposing

passengers arrive according to a generic Poisson process.

4) Thus, combining the two equations, we have our key

inference equation in Dmodel as follows.

Tτi+1 = (Tτi − Pτi) + Aτi+1 . (1)

2) Inference Overview: As in Figure 9, at the end of every
time slot, e.g., current time ti+1, Dmodel infers Tτi+1 for a

segment sj by Eq.(1) using four steps as follows.

Time

Slot �i
ti+1 Slot �i+1

P�i

T�i

A�i+1Real Time &
Historical
Sensing
Dataset

Current Time

Previous Slot Future Slot

1)

2)

3)

4)

T�i+1

Fig 9: Dmodel Inference Overview

1) It infers pickup count Pτi by aggregating pickup events

in the latest slot τi from real-time data;
2) It infers total passenger count Tτi based on the corre-

sponding pickup count Pτi and a customized corrective

model trained by both historical and real-time data.
3) It infers arrival count Aτi+1 for the next time slot τi+1 by

a probability distribution D of passenger arrival rate λ
at segment sj , which is periodically maintained through

a Bayesian updating based on pickup count Pτi .

4) It infers total passenger count Tτi+1 for the next slot

τi+1 with Eq.(1), based on inferred Pτi , Tτi and Aτi+1 .

In the above steps, steps 1) and 4) are straightforward, so we

elaborate steps 2) and 3) in Subsections B and C, respectively.
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B. Inferring Total Passenger Count Tτi

In this subsection, we first introduce our key novelty

regarding pickup patterns, and then propose how to infer Tτi .

1) Pickup Pattern: In this work, we infer the total passen-

ger count by four factors, which include (i) time in terms of
a time slot of a day (e.g., slot τi), (ii) location in terms of a

road segment (e.g., segment sj), (iii) pickup count in terms

of how many passengers have been picked on a segment dur-

ing a slot, and (iv) pickup pattern in terms of how fast the

passengers were picked up, which may include hidden con-

text, e.g., extreme weather or major events. Existing work in
the field has considered the first three factors, but the pickup

pattern has not been considered by others. In this work, we

argue that pickup count is inherently limited by taxicab sup-

ply, and cannot provide enough context information to

support a good inference. However, our pickup patterns pro-

vide extra information about hidden context which increases

inference accuracy.

Figure 10 presents the same slot τi for two different days

with the same pickup count yet with different pickup patterns.

ti+1t1

 Space sj 

ti+1ti

p1

Day dx Day dy

p2

Slot �i Slot �i

 Space sj p1

p2

Fig 10: Pickup Patterns
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In Figure 10, the key difference of the same slot τi for day

dx and dy is how long it takes for vacant taxicabs to pick up

passengers during τi, which is associated to the pickup pat-
tern, i.e., the taxicabs on dx pick up two passengers very

quickly; whereas the taxicabs on dy cruise for a long time

before picking up two passengers. The pickup pattern pro-

vides an extra hidden online context, and cannot be replaced

by other contexts already used by existing work, i.e., slot τi,

segment sj , and pickup count Pτi∈dz of a particular day dz ,

since in Figure 10, all other contexts are the same, but two

slots τi on dx and dy have different pickup patterns. For ex-

ample, the hidden online context in the pickup pattern during

τi ∈ dx may indicate suddenly increased passenger demand

due to extreme weather, train arrival or other events, since all

taxicabs pick up passengers very quickly. Whereas the

pickup pattern for τi ∈ dy may indicate a normal scenario

without increased demand. Intuitively, though dx and dy

have same pickup count Pτi∈dx = Pτi∈dy = 2 (may result

from limited taxicab supply), τi ∈ dx shall have a larger total

passenger count Tτi∈dx than τi ∈ dy .

To quantify the pickup pattern as a formal parameter, as in

Figure 10, we use the area ratio between the dashed tempo-

ral and spatial area (i.e., the union of two dashed triangles)

and the total temporal and spatial area (i.e., rectangle) as a
measuring ratio ρ to show different pickup patterns. The

physical meaning of ρ is the ratio between known temporal

and spatial inference area detected by taxicabs and the entire

inference area. As shown in evaluations, ρ accounts for

many real-world scenarios that cannot be captured with

pickup counts due to the limited taxicab supply.
2) Customized Online Training: In what follows, we dis-

cuss how to infer the total passenger count based on the new

online pickup pattern factor and the other three factors.

Given a segment sj and a slot τi, the pickup count Pτi

and the total passenger count Tτi have a logical relationship:

Pτi is the lower bound of Tτi , since all picked up passengers

are included in the total passenger count. Thus, we quantita-

tively investigate their relationship. Given the historical

dataset, for particular slots and segments, we obtain the

ground truth of Pτi by aggregated pickup events, and infer

the ground truth of Tτi based on the inference of arriving

moments (introduced in Section III-B2), e.g., in Figure 7,

after inferring arriving moments (shown by stars), Tτi is ob-

tained by counting dashed lines linking dots and stars in a

slot (e.g., Tτ1 = 3). Figure 11 gives the relationship between
P and T for 10 randomly selected road segments in five τ8

slots from 8AM to 9AM during five weekdays. It indicates

an approximate linear relationship between Pτ8 and Tτ8 for

the same segment sj .

Based on the above observation, we propose a customized

online training model based on the linear regression. Suppos-

ing that (i) we have a historical dataset consisting of the

taxicab GPS data for K − 1 different days, i.e., day d1 to

day dK−1, and (ii) the current time is the end of slot τi on

day dK , Dmodel infers the total passenger count Tτi∈dK as

follows.

1) It calculates both pickup count Pτi∈dK and the corre-

sponding measuring ratio ρτi∈dK , based on the

real-time data about the latest slot τi ∈ dK .

2) It selects the data of days whose τi have similar mea-

suring ratio ρ̄ to ρτi∈dK as a customized training

dataset with M pairs of (Pτi∈dm ,Tτi∈dm) where

1 ≤ m ≤ M (one pair for every day).

3) It trains the following model by the M pairs of

(Pτi∈dm ,Tτi∈dm) to learn ατi∈dK and βτi∈dK .

Tτi∈dm = ατi∈dK + βτi∈dK × Pτi∈dm . (2)

4) It utilizes ατi∈dK , βτi∈dK and pickup count Pτi∈dK to

obtain total passenger count Tτi∈dK with Eq.(2).

A similar measuring ratio ρ̄ to ρτi∈dK is defined by

ρ̄ ∈ [ρτi∈dK −Δρ, ρτi∈dK + Δρ] where Δρ is a data-driven

parameter and carefully evaluated in Section V.

C. Inferring Arrival Count Aτi+1

The Dmodel infers passenger arrivals with a stochastic

process where an arrival rate λ of a Poisson Process varies

in Brownian motion, which is widely used to model passen-

ger arrival or network packet arrivals [6]. Thus,

Aτi+1 = λτi+1 × |τi+1|. Note that we did not use customized
training to infer the arrival count Aτi+1 based on given

pickup count Pτi as in the last subsection, since there is no

potentially logical relationship between Pτi and Aτi+1 .
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1) Passenger Arrival Rate Modeling: The Dmodel main-
tains a probability distribution D of λ for a segment sj by

discretizing the space of passible λ, and assumes that (i) λ is

one of a set of discrete values from 0 to the maximum λ
(obtained by the dataset) and (ii) the initial probability for all

possible λ are uniformly distributed. Therefore, at the end of

the slot τi, Dmodel updates D with three steps.

1) It evolves D to the current time by applying Brownian

motion to every possible rate.

2) It infers the arrival count Aτi in τi based on observed

Pτi , and calculates probabilities that this arrival count
Aτi is associated to every one of arrival rates as follows.

F (x) ← Dold(λτi = x)× e−x·|τi| (x · |τi|)Aτi

Aτi !
.

3) It normalizes these probabilities, so they sum to unity.

Dnew(λτi = x) ← F (x)
∑

k F (k)
.

These three steps constitute Bayesian updating for D. Given
D, we infer λτi+1 with a cautious estimate to bound a risk

of overinferring. So, we employ the ωth percentile of D to

calculate the inferred λτi+1 , e.g., 40th percentile. In Dmodel,
ω is a data driven parameter, and is evaluated in Section V.
A key unresolved question is how to infer the arrival count

Aτi by the pickup count Pτi , which is introduced as follows.
2) Inferring Previous Arrival Count Aτi: We introduce how

to infer Aτi in Figure 12 where we classify all passengers

associated to the total passenger count Tτi of a slot τi into

four parts, based on when they arrived and whether they get

picked up at the end of slot τi. Thus, the sum of passengers

in Part 1 and Part 2 is the arrival count Aτi we try to infer.

The sum of passengers in Part 2 and Part 3 is the pickup

count Pτi ; the sum of passengers in all four parts is the total

passenger count Tτi ; we have already obtained both of them

in the previous subsection.

Part 2:
Arrived in �i 

Picked up in �i 

Part 3:
Arrived before �i 

Picked up in �i 

Part 1:
Arrived in �i 

Left-Behind after �i 

Part 4:
Arrived before �i 

Left-Behind after �i 

Total Passenger Count of Slot �i

Pickup Count of Slot �i

Arrival Count of Slot �i

(P   )�i

(T  )�i

(A   )�i

Fig 12: Inferring Previous Arrival Count Aτi

We add the following two kinds of passengers to infer Aτi .

1) Passengers in Part 1: Since we have already inferred the
total passenger count Tτi based on Pτi in Section IV-B,

we have the total number of passengers in Part 1 and

4 together, i.e., Tτi − Pτi . Further, since an inference

slot (e.g., one hour) is typically longer than a passenger
waiting period, the number of passengers in Part 4 is 0.

Thus, we have the number of passengers in Part 1 alone.

2) Passengers in Part 2: We can differentiate the passen-
gers in Parts 2 and 3 by inferring arriving moments of

these picked up passengers in Pτi , based the method in

Section III-B2, and then we obtain the number of

passengers in Part 2 alone.

V. Dmodel EVALUATION

We evaluate Dmodel based on the dataset in Section III.

We mainly find two kinds of data errors. (i) Missing Records:

a fair amount of sensing records are missing. (ii) Location

Errors: GPS coordinates indicate that a taxicab is off the road.

Different reasons, e.g., device malfunctions, can lead to such
errors. We perform a preprocessing to clean this dataset to rule

out taxicabs with more than 10% of errant records.

A. Evaluation Methodology

We divide the entire 182 day dataset into two subsets.

Testing Dataset: it contains the data about a particular day,
e.g., day d1, serving as the real-time streaming data in the

evaluation. Training Dataset: it contains the data about the
rest of days, serving as the historical training data. For this

particular day d1, if we use one hour slots, at the end of the

first slot, i.e., 01:00, we use Dmodel to infer the total pas-

senger count for the next slot from 01:00 to 02:00, based on

both the “real-time” data from 00:00 to 01:00 in the testing

dataset, and all data in the historical training data. We let the

testing dataset rotate among all 182 days of the data, leading

to 182 sets of experiments. The average results are reported.

We compare Dmodel with two models: SDD and Basic.

SDD is one of the state-of-the-art taxicab demand and sup-

ply models, which maintains a distribution for passenger

demand based on the previous average demand [3]. SDD

serves as a statistical model and is suitable for the real-world

scenario where the real-time data collection is not possible,

and we can only use the historical data to infer passenger

demand. Basic model first uses a generic offline training to

train the entire dataset to obtain parameters (α and β) offline
without considering the pickup pattern. Basic serves as a

baseline for Dmodel to show the effects of the ignorance of

logical contexts shown by the pickup patterns (e.g., extreme
weather or events) on the model performance. Dmodel
performs similarly with Basic except that it uses logical con-

texts (pickup and cruising events) in the testing dataset to

calculate a measuring ratio for a particular slot, and selects

the data of slots with similar pickup patterns (shown by

measuring ratios) as a customized training dataset to perform

an online training as introduced in Section IV-B2.

We process the entire dataset to infer passenger arrival

moments with the method in Section III-B2 and thus to infer

the ground truth of the total passenger count. We test models

with Inference Accuracy. It is defined as a ratio equal to

= T̄−|T̄−T|
T̄

where T is the inferred total passenger count of a

particular model and T̄ is the total passenger count obtained

from the inferred ground truth. We update the entire dataset

for customized training offline on a daily basis, and process

the real-time data with a Hadoop cluster with 10 nodes.

Thus, in the real-time mode, the processing time is

negligible compared to the default two hour slot.

We first test models on 1000 road segments about

accuracy with different slot lengths. Then, we show the sen-

sitivity of Dmodel to two key parameters: Δρ and ω used in

Sections IV-B2 and IV-C1 to obtain their default values.
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Fig 13: Accuracy under One Hour Slot for 24 Hours of a Day in Four Road Segments

B. Inference Accuracy

In this subsection, we compare three models’ inference ac-

curacy in different lengths of slots. We show low level

comparisons on 4 particular road segments, and high level

comparisons on 1000 road segments. All road segments are

randomly selected in the downtown area of Shenzhen.

1) Low Level Comparisons: Figure 13 plots the accuracy

of three models on 4 road segments under one hour slots.

Dmodel has better performance than Basic and SDD, espe-
cially at the non-rush hour, e.g., 18:00 to 06:00. Basic

outperforms SDD in the early morning, e.g., 00:00 to 06:00,
and the late night, e.g., 18:00 to 00:00. SDD has a good ac-

curacy during the morning rush hour, e.g., 08:00 to 12:00,

and we believe that this is because during the rush hour,

passenger demand is relative stable compared to other time.
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Fig 14: Accuracy under Two Hour Slots for 24 Hours of a Day

Figure 14 shows comparisons in segments 1 and 2 under

two hour slots. With a longer slot, the accuracy generally in-

creases for all three models. This is because (i) passenger

demand is more stable in a longer slot, and thus SDD model

becomes more effective; (ii) a longer slot increases accuracy

of passenger arrival predictions in Dmodel and Basic, which
leads to increased inference accuracy.

2) High Level Comparisons: Figure 15 gives the average

accuracy on 1000 road segments under one hour slots. The

average accuracy of all three models on 1000 road segments

is lower than the accuracy we observed in 4 particular road

segments. It is because the passenger demand may change

dramatically between different segments. But the relative

performance between three models is similar to Figure 13.

Dmodel has better performance than SDD and Basic by

39% and 13% on average, which results from its customized

online training. Dmodel has a 76% accuracy at the 9AM

slot, which the default slot for the following experiments.

2 4 6 8 10 12 14 16 18 20 22

50

60

70

80
 SDD  
 Basic  
 Dmodel

A
cc

ur
ac

y 
(%

)

24 Hours of a Day

 

Fig 15: Hourly Average Accuracy

Figure 16 gives the average accuracy on 1000 segments

with different slot lengths. The average accuracy of all models

increases with the lengths of slots. SDD outperforms Basic and

Dmodel when slots are longer than 6 hours. This is because
the passenger demand in a longer slot becomes more stable

on different days. When the slot becomes longer, Dmodel
and Basic have the similar performance, because measuring

ratios for long slots are mostly equal, and cannot be used by

Dmodel to differentiate related time slots.
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Fig 16: Effects of Slot Lengths

C. Sensitivity of Dmodel

We investigate the sensitivity of Dmodel to two parameters
Δρ and ω on 1000 road segments under two hour slots.
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1) Δρ vs. Accuracy: Δρ is used to decide the similarity

between measuring ratios as in Section IV-B2. Figure 17

gives effects of Δρ on Dmodel. With the increase of Δρ,
the accuracy of Dmodel increases first, and then decreases.

This is because when Δρ increases, Dmodel finds more

slots with similar pickup patterns to effectively train the cus-

tomized corrective model online. But when Δρ becomes too

large, Dmodel has to consider more slots with different

pickup patterns, leading to poor performance. The accuracy

peaks when Δρ = 0.2, which is set as the default value of

Δρ. If the used Δρ leads to an empty training dataset for

Dmodel, Δρ increases until the dataset is not empty.
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Fig 17: Δρ vs. Accuracy

2) ω vs. Accuracy: ω decides the percentile to predict

passenger arrival as in Section IV-C1. Figure 18 plots effects

of ω on Dmodel. A small ω indicates that Dmodel conser-
vatively predicts arrival rates; whereas a large ω indicates

that Dmodel aggressively predicts arrival rates. Either a

small or a large ω leads to poor performance. The accuracy

peaks when ω = 0.4, which is set as the default value of ω.
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Fig 18: ω vs. Accuracy

VI. RELATED WORK

Several novel systems have been proposed to store large

sets of taxicab traces obtained from on-board GPS devices

for useful knowledge [7]. For example, some systems are

proposed to assist taxicab operators provide better services,

e.g., predicting passenger demand [2] [3] [4], detecting

anomalous taxicab trips to discover driver fraud [8], and dis-

covering temporal and spatial causal interactions to provide

timely and efficient services in certain areas with disequilib-

rium [9]. In addition to taxicab operators, several systems are

proposed for the benefit of passengers or drivers, e.g., allow-
ing taxicab passengers to query the expected duration and

fare of a planed trip based on previous trips [10] and esti-

mating city traffic volumes for drivers [11]. Moveover,

taxicab GPS records can help beyond the taxicab business:

(i) traces consisting of GPS records from experienced taxi-

cab drivers can assist other drivers to improve their driving

performance [5]; (ii) GPS records can be used for navigating

newer drivers to smart routes based on those of experienced

taxicab drivers [12]; (iii) large scale taxicab GPS traces

enable us to better understand region functions of cities [13].

However, our model is different from the existing research

by its novel inference method based on real-time and histori-

cal data from roving sensor networks. Technically, we focus

on inferring passenger demand based on a customized online

training method utilizing real-time pickup patterns and hid-

den contexts (e.g., arriving moments) obtained by roving

taxicab sensors, which has not been investigated before.

VII. CONCLUSION

Based on a 450 GB dataset, we design and evaluate a pas-

senger model Dmodel with a 76% inference accuracy. Our

effort provides a few valuable insights: (i) the mobile

taxicabs can be used as roving sensors to infer passenger de-

mand with high accuracy; (ii) the inference accuracy is

highly depended on locations, time, and logical information;

(iii) the length of inference slots has significant impact on

the inference accuracy; (iv) a statistical passenger demand

model can be enhanced by a generic offline training that

takes the waiting passengers into account, but it can be fur-

ther enhanced by a customized online training for particular

real-time situations, shown by our 39% performance gain.
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