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Abstract—Nowadays most metro advertising systems schedule advertising slots on digital advertising screens to achieve the maximum
exposure to passengers by exploring passenger demand models. However, our empirical results show that these passenger demand
models experience uncertainty at fine temporal granularity (e.g., per min). As a result, for fine-grained advertisements (shorter than one
minute), a scheduling based on these demand models cannot achieve the maximum advertisement exposure. To address this issue,
we propose an online advertising approach, called FineUDM, based on the uncertain passenger demand modeling for both entering
passengers and exiting passengers. FineUDM combines coarse-grained statistical demand modeling and fine-grained real-time demand
modeling by leveraging historical passenger demands, real-time card-swiping records, and passenger mobility patterns. Based on this
uncertain demand model, it schedules advertising time online based on robust receding horizon control to maximize the advertisement
exposure. We evaluate the proposed approach based on an one-month sample from our 530 GB real-world metro fare dataset with 16
million cards. The results show that our approach provides a 61.5% lower traffic prediction error and 20% improvement on advertising
efficiency on average.

Index Terms—Digital Advertising, Uncertain Passenger Demand, Data-driven Traffic Volume Prediction.
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1 INTRODUCTION

Digital advertising systems [1] in metro networks obtain
increasing preference by advertisers because of the extensive
exposure to a large number of passengers, e.g., in New York
City, the annual ridership is nearly 1.8 billion [2] according
to the Metropolitan Transportation Authority. In such a
metro advertising system, the key design issue is how to
schedule given advertising time (rented by advertisers) on a
digital screen to maximize passing audience for the max-
imum advertisement exposure during all the advertising
time, which is a key indicator of the potential advertising
revenues [3].

Historically, an intuitive approach for this issue is to
preferentially display advertisements in those time periods
with more historical passengers, i.e., a passenger demand
model based on historical passenger data collected in the
automatic fare collection (AFC) system [4], [5]. The assump-
tion behind such an approach with a historical-data-based
demand model is that the daily distribution of passenger
traffic volumes, i.e., passenger demand, in the same metro
station is fairly predictable with historical distributions.
Thus, higher historical passenger demand in a past time
period indicates higher future passenger demand for the
same time period in the future day.

However, our empirical study in the metro network of
Shenzhen (the twin city of Hong Kong and has more than
11 million residents) clearly shows that only coarse-grained
(e.g., one hour) passenger demand is predictable based on
historical data, but fine-grained (e.g., one minute) passenger
demand is with uncertainty and thus unpredictable based

∗ Desheng Zhang is the corresponding author.

on historical data. Further, we argue that the fine-grained
(instead of coarse-grained) passenger demand model is
essential to advertising time scheduling, because an adver-
tisement is normally in a fine-grained length (e.g., less than
one minute). As a result, we face a key challenge to pre-
dict fine-grained passenger demand to effectively schedule
advertising time.

To address this challenge, we propose an online adver-
tisement scheduling approach, named FineUDM, based on
robust receding horizon control with an uncertain demand
model. Specifically, the uncertain demand model in a given
metro station during a given time period contains two
independent parts of passenger demand, namely, entering
passenger demand and exiting passenger demand, which
has been studied in our previous work [6].
1) Entering passenger demand modeling: We introduce Re-
alPoisson, a non-homogeneous Poisson model with a real-
time tuner to predict the fine-grained real-time entering
passenger demand. RealPoisson, instead of using a classic
homogeneous Poisson model, adopts time-varying rate pa-
rameter for entering passenger demand modeling because
the entering demand in a station varies from hour to hour,
e.g., the entering demand during peak hours will be much
higher than that during off-peak hours.
2) Exiting passenger demand modeling: We combines coarse-
grained statistical demand modeling and fine-grained
Bayesian demand modeling by inferring individual arrivals
using both real-time and historical, instead of only histori-
cal, data in the AFC system. This is because given real-
time entering stations and time, we can accurately infer
destinations and arriving time for passengers based on
the low conditional entropy of passenger destinations and
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predictable travel durations in the metro network, learned
from our extensive empirical study.

In addition, we design an advertising scheduling algo-
rithm based on receding horizon control to maximize ad-
vertisement exposure under our uncertain demand model.
Specifically, our main contributions are as follows:

• To our knowledge, we perform the first work, named
FineUDM, to optimize advertisements exposure with
large-scale data from the metro automatic fare collec-
tion system. We already released the sample data for
the benefit of research community.

• We design a two-level uncertain demand model
based on our extensive empirical study, which re-
veals that the coarse-grained passenger demand is
predictable with the historical data while the fine-
grained passenger demand is with uncertainty and
thus unpredictable based on history. Thus, we com-
bine coarse-grained statistical demand modeling and
fine-grained real-time demand modeling to improve
the demand prediction performance.

• We propose RealPoisson, a non-homogeneous Pois-
son model with a real-time tuner to model uncertain
fine-grained entering demand. The two challenging
designs of RealPoisson include the time-varying rate
parameter based on historical data and the demand
trend tuner based on real-time traffic. The former
removes the fix-rate limitation of a classic homoge-
neous Poisson model and exploits the inherent dif-
ference among hourly entering traffic for each metro
station according to history. The latter restores the
averaged randomness for each fine-grained entering
demand based on near-historical demands.

• We propose EveryoneCounts, a bayesian model to
predict uncertain fine-grained exiting demand by
leveraging (i) the real-time card swiping records col-
lected by the AFC system, (ii) the low conditional
entropy of passenger destinations, and (iii) the pre-
dictable travel time between different stations.

• We propose an online digital advertising approach
based on robust receding horizon control, which
exploits our passenger demand model to allocate
coarse-grained advertising time offline but adjust
fine-grained advertising time online to maximize
advertisement exposure.

• We evaluate the performance of our approach
through extensive data-driven evaluation based on
one-month sample from our 530 GB real-world metro
fare dataset with 16 million cards in Shenzhen, Chi-
na. Compared to statistical approaches, the proposed
approach has a 61.5% lower prediction error of fine-
grained traffic volumes, leading to a 20% improve-
ment in advertising efficiency.

The rest of the paper is organized as follows. Section 2
defines the advertising optimization. Novel empirical result-
s are presented in Section 3. Sections 4-9 show the detailed
design and its performance. Section 10 discusses the real-
world issues. We introduce the related work in Section 11
and conclude the paper in Section 12.

2 MODELS AND PROBLEM DEFINITION

In this section, we first present the scenarios and the ad-
vertising models. Then, we provide the formal definition of
the advertising efficiency optimization problem. The mainly
used notations are summarized in Table I.

2.1 Scenarios and Models

We focus on the metro stations where passengers need to
swipe their metro cards at the entrance/exit to enter/exit a
station. We model the metro network as a set of connected
metro stations, denoted by Ψ = {ψ1, · · · , ψd, · · · , ψm}. As
shown in Fig. 1, we show the metro network of Shenzhen
and a scenario where digital screens are installed and ex-
posed to passengers between AFC machines and platforms
of a station. The lighter the icon, the higher the average
passenger demand.
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Figure 1: An illustration of the digital screen advertising in
Shenzhen metro network: both the entering passengers

(from outside of the metro network) and exiting passengers
(from other stations within the metro network) will pass by

the target screen when they enter or exit the station.

The metro network sells advertising time of each digital
screen in each station to advertisers and charges them based
on the length of advertising time. The maximum length of
daily advertising time for each digital screen at all stations,
denoted by T (e.g., 24 hours), is divided into small time slots
with equal length τ (e.g., one minute). Suppose γ advertisers
buy advertising time on digital screens and the lengths of
their advertising time are αi

d, where 1 ≤ i ≤ γ and 1 ≤ d ≤
m. We consider all advertisers with same priority, although
our method can also be used for multiple priorities. For a
given slot tj and a station ψd, the passenger demand βj·d is
given by the slot traffic volume, i.e., the number of passengers
passing by the digital screen during tj in station ψd. Note
βj·d = β1

j·d + β0
j·d where β1

j·d is the slot traffic volume of
passengers entering station ψd and β0

j·d is the exiting slot
traffic volume.

2.2 Problem Definition

Given the advertisement utility (i.e., T ) of metro stations,
the objective of the metro advertising system is to provide
the best advertising service to the advertisers in terms of
optimized advertising efficiency. With the above models and
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TABLE 1: Main Notations Used in This Paper

Notation Description
T The length of a time unit, e.g., 24 h, at a

station ψd

τ The length of time slots, e.g., 3 min
αi
d The length of advertising time for a station

ψd and advertiser i
βj·d The traffic volume of jth slot at a station

ψd

ρij·d The AD schedule for jth slot at a station ψd

for advertiser i

notations, we now formally define a key term – advertising
efficiency and its corresponding optimization problem.

Definition 1 (Advertising Efficiency). The traffic volume over
the total advertising time on the screens at all stations, i.e.,∑γ

i=1

∑m
d=1

∑T
τ
j=1 βj·d × ρij·d∑γ

i=1

∑m
d=1 α

i
d

, (1)

where the schedule of the jth slot at the station ψd for the
advertiser i, ρij·d, is given by,

ρij·d =

{
1, if tj is an AD slot for advertiser i at station ψd

0, otherwise .

(2)

For the numerator, the innermost summation is for all AD
slots in a particular station ψd for a particular advertiser;
the middle summation is for all AD slots in all stations for a
particular advertiser; the outmost summation is for all AD
slots in all stations for all advertisers. For the denominator,
the summation is the total advertising time.

Definition 2 (Advertising Efficiency Optimization). Given
the total advertising time and the slot length, a set of schedules
ρij·d needs to be made, so that the advertising efficiency is maxi-
mized, i.e.,

max
ρi
j·d

∑γ
i=1

∑m
d=1

∑T
τ
j=1 βj·d × ρij·d∑γ

i=1

∑m
d=1 α

i
d

,

s.t. τ ×
∑T

τ

j=1
ρij·d = αi

d,∀i ∈ [1, γ], ∀d ∈ [1,m]. (3)

To solve this optimization problem, we need to find a
schedule ρij·d for different AD slots in different stations for
different advertisers. In our setting, γ, m, T , τ , and αi

d

where ∀i ∈ [1, γ] are given in advance. But the passenger
demand βj·d for a particular slot in a particular station
has to be obtained by a demand model. Such passenger
demand includes passengers who enter or exit the target
station. Generally speaking, passengers that enter and leave
through the station are independent, we model them with
two separate fine-grained models and add them together as
the entire uncertain demand model in the paper.

In this work, as shown in Section 3, we found that fine-
grained passenger demand models experience uncertainty.
Thus, we formulate the passenger demand βj·d in our
optimization as a variable, instead of a fixed value. In this
work, we assume βj·d belongs to some uncertainty set where
β
j·d ≤ βj·d ≤ βj·d. As a result, we formulate a robust

optimization problem as follows.

Time
Time UnitAd Slot

Figure 2: The illustration to explain the definition of the
advertising efficiency optimization problem.

Definition 3 (Robust Advertising Efficiency Optimiza-
tion).

max
ρi
j·d

min
βj·d

∑γ
i=1

∑m
d=1

∑T
τ
j=1 βj·d × ρij·d∑m

d=1

∑γ
i=1 α

i
d

s.t. τ ×
∑T

τ

j=1
ρij·d = αi

d, ∀i ∈ [1, γ],∀d ∈ [1,m]

βj·d ∈ [β
j·d, βj·d], ∀j ∈ [1,

T

τ
],∀d ∈ [1,m]

(4)

In this problem, the key challenge is how to obtain an
uncertainty set of passenger demand, i.e., β

j·d and βj·d

and then to determine the schedule {ρj}
T
τ
j=1 with an online

fashion, so that the best n =
∑γ

i=1 αi
d

τ slots with highest
passenger demand can be selected as the advertising slots
for all the advertisers in the given station d. As illustrated
by Fig. 2, if the uncertain passenger demand for each time
slot can be predicted, the best n slots with highest passenger
demand will be selected as AD slots. Then, all the selected
AD slots can be allocated to all the advertisers (assumed to
have same priority in this work) according to their priorities.
Note that the allocation strategy is not the focus of this work.

As follows, we conduct an empirical study in Section 3
before we present our demand model and scheduling.

3 EMPIRICAL STUDY

To predict future passenger demand, we conduct an exten-
sive empirical study on the real-world AFC records collected
in the metro system in Shenzhen, China.

3.1 Dataset

In this paper, we utilize two sample datasets from a stream-
ing dataset of smartcard transactions in the metro AFC
system of Shenzhen, which is the twin city of Hong Kong
and has more than 11 million residents. Each card swiping
record includes card ID, device ID, swiping in or out, date,
time as well as metro station ID among 118 metro stations.
In this paper, two sample datasets, named as Dataset A and
Dataset B, are used. The summary of Dataset A and Dataset
B as well as the format of each data record are illustrated in
Fig. 3. As shown, Dataset A contains 2,807,973 smart cards,
and the records range from Dec 12, 2013 to Dec 25, 2013. The
average daily number of card swipings in the metro system
is more than 3 million. The average daily traffic per station is
about 25,000. Dataset B contains the streaming card swiping
data of 16,000,000 passengers from July 1, 2011, including
smartcards used in both metro systems and bus systems in
Shenzhen.
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Dataset A Dataset B

Collection Period

Number of Cards

Number of Records

Format:Card ID,Station ID,Device ID,Date &Time,

13/12/12- 13/12/25 11/07/01- Now

16,000,0002,807,973

41,270,178 6,212,660,742

Swipe in/out

Figure 3: The dataset summary and the record format.

We utilize Dataset A as a sample to study all metro
stations during a two week period. Dataset B is used for the
large-scale evaluation. In the rest of this section, although
similar observations are found throughout all the 118 s-
tations, we focus on our empirical study results over the
Xixiang station, which is a representative commute station.

In the following, we offer several observations on both
entering demand and exiting demand at different levels of
temporal granularities. In Subsection 3.2, we first investigate
traffic volumes of entering demand and offer a few inter-
esting observations. We further explore exiting demand In
Subsection 3.3 and get similar observations with entering
demands.

3.2 Observations on Entering Demand

3.2.1 Certainty of Coarse-grained Entering Demand
We first study the trend of coarse-grained entering demand
of passengers in terms of traffic volumes as shown in
Fig. 4(a), which plots the trends of a weekday (polyline)
and the nearby historical nine weekdays (bars). The tem-
poral granularity of the traffic volume is one hour, which
is coarse-grained compared to the typical duration of an
advertisement, e.g., one minute.
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(a) The distribution of the coarse-
grained entering demand in a
weekday and the average distri-
bution of its near historical week-
days.
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(b) The distribution of the fine-
grained entering demand in the
rush hour (08:00 am to 08:30 am)
in a weekday and its near histori-
cal weekdays.

Figure 4: Comparison of coarse-grained and fine-grained
entering demand.

Observation 1.1. Predictable and Smooth Coarse-grained
Entering Demand: The trend of the single weekday highly
matches the trend of its near historical weekdays. The curve
is smooth in general, except for the rush hour. In other
words, the trend of the coarse-grained entering passenger
demand in a station is predictable based on the nearby
history records.

The main reason for the coarse-grained predictability
and smoothness is that the entering passenger demand
is relatively stable during near days, in a specified area

around a station. Based on Observation 1.1, we conclude
that the distribution of coarse-grained entering passenger
in a station can be accurately predicted using the average
history distribution.

3.2.2 Uncertainty of Fine-grained Entering Demand
We now introduce the trend of the fine-grained entering
passenger demand. Fig. 4(b) plots the distribution of fine-
grained entering demand during the rush hour (from 08:00
am to 08:30 am) of a weekday and its nearby historical nine
weekdays.

Observation 1.2. Unpredictable and Fluctuated Fine-
grained Entering Demand: On the one hand, the trend of
the fine-grained passenger volume entering the station in a
weekday does not follow the average over nearby historical
weekdays. That means the traffic volume in the same fine-
grained slot largely varies in different days and thus unpre-
dictable according to purely historical records. On the other
hand, the trend of the fine-grained passenger volume, even
during rush hours with crowded passengers, is fluctuated
with continuous peaks and valleys. For example, some
valleys next to a peak even have a traffic volume as low
as the average volume in slack hours.

The unpredictability and fluctuation of the fine-grained
entering volume is resulted by the randomness of human
mobility. It is common for a commuter to enter the same
station at different minute in the morning for different
weekdays even when the commuter needs to arrive at the
workplace at the same minute everyday.

3.3 Observations on Exiting Demand
3.3.1 Certainty of Coarse-grained Exiting Demand
We then study the trend of coarse-grained exiting demand
of passengers in terms of traffic volumes as shown in
Fig. 5(a), which plots the trends of a weekday (polyline) and
the average over nearby historical nine weekdays (bars). The
temporal granularity of the traffic volume is also one hour.
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(a) The distribution of the coarse-
grained exiting demand in a
weekday and the average distri-
bution of its near historical week-
days.
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(b) The distribution of the fine-
grained exiting demand in the
rush hour (06:30 pm to 07:00 pm)
in a weekday and its near histori-
cal weekdays.

Figure 5: Comparison of coarse-grained and fine-grained
exiting demand.

Observation 2.1. Predictable and Smooth Coarse-grained
Exiting Demand: Similar with the coarse-grained entering
demand, the trend of the coarse-grained exiting demand in
a single weekday highly matches the average trend of the
near historical weekdays. We can also make the conclusion
that the trend of the coarse-grained exiting demand in a
given station is predictable based on the nearby history.
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It is worth noting that the rush hours for the entering
demand and the exiting demand in this given station occur
at different time of a day. We can clearly find in Fig. 5(a)
the entering rush hours occur at 08:00am and in Fig. 4(a) the
exiting rush hours occur at 07:00pm. This is because Xixiang
is a station located in a residential area and commuters
usually go to work from the station (i.e., entering demand)
in the morning and return home (i.e., exiting demand) in the
afternoon.

3.3.2 Uncertainty of Fine-grained Exiting Demand
For the fine-grained exiting demand, we plot in Fig. 5(b) the
distribution of the demand during the rush hour (from 06:30
pm to 07:00 pm) of a weekday and the average over nearby
historical nine weekdays.

Observation 2.2. Unpredictable and Fluctuated Fine-
grained Exiting Demand: Compared with the entering de-
mand, the trend of the fine-grained exiting demand is even
more random and more fluctuated.

The fine-grained exiting demand is unpredictable due to
both the randomness of human mobility and the deviation
of the arrival time for the same train in different days. More-
over, different from entering demand where the commuters
need to arrive at the workplace on time everyday, the exiting
demand is more flexible since the returning commuters are
not required to arrive at home at the same time everyday.
For the greater fluctuation of fine-grained exiting demand,
the reason is that the exiting passengers are highly limited
by the schedule of metro trains. Between the arrivals of two
successive trains in a metro station, few passengers exit the
station.

Inspired by Observation 1.2 and Observation 2.2, we
aim to propose fine-grained advertising instead of coarse-
grained advertising because the existence of valley slots
during a coarse-grained period (e.g., rush hours) pulls down
the advertising efficiency of that period. Only the fine-
grained selection of all the high-volume slots leads to better
advertising efficiency.
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Figure 6: The CDFs of the prediction error of both
coarse-grained and fine-grained volumes in a weekday

based on the near history.

3.4 Historical Prediction Performance

We finally reveal the different performance of the historical
prediction of fine-grained and coarse-grained passenger de-
mand. The historical prediction error of both entering and
exiting passenger demands with varying lengths of time
slots (i.e., 1 min, 2 min, 3 min, 0.5 h, 1 h, and 2 h) are

shown in Fig. 6(a) and Fig. 6(b), respectively. The demand
prediction error for time slot tj , denoted by δj , is computed

as δj =
|βj−β̂j |

max{βj ,β̂j}
, where βj is the true passenger volume

of time slot tj and β̂j is the average historical traffic volume.
Specifically in this study, βj is the slot volume in one
weekday and β̂j is the average slot volume in near historical
nine weekdays.

From the figures, we have the following observations
on the prediction performance of pure historical data. On
the one hand, the prediction error of coarse-grained traffic
volume for both entering passengers and exiting passengers
is much lower than that of fine-grained traffic volume. For
example in Fig. 6(b), when the slot length is 1 h, the exiting
traffic prediction errors of around 99% slots are lower than
0.1. However, more than 40% slots have a prediction error
larger than 0.3 when the slot length is 1 min. On the other
hand, we can find that the fine-grained prediction error
of exiting volumes is a little higher than that of entering
volumes. For example in Fig. 6(a)(entering), when the slot
length is also 1 min, there are only about 30% slots (more
than 40% for exiting volume) have a prediction error larg-
er than 0.3. This observation confirms with the difference
between Fig. 4(b) and Fig. 5(b), i.e., the fine-grained exiting
demand is even more random and fluctuated than the fine-
grained entering demand (Observation 2.2).

3.5 Summary

Based on the empirical study, we have following important
conclusions: (i) According to Observation 1.1 and 2.1, the
coarse-grained passenger demand is predictable based on
historical distributions, which provides us a global view
on the coarse-grained passenger demand in a future day.
(ii) According to Observation 1.2 and 2.2, the fine-grained
passenger demand is unpredictable based on historical dis-
tributions. As a result, we propose an uncertain passenger
demand model to predict fine-grained entering demand
and exiting demand based on a special kind of Poisson
process and prediction of individual arrivals, respectively.
(iii) According to Observation 1.2 and 2.2, the fine-grained,
instead of coarse-grained, advertising scheduling should be
applied due to fluctuated fine-grained passenger demands.
Thus, the selection of peak fine-grained slots among all the
fluctuated slots is enabled to achieve higher advertising
efficiency. So we design an online advertising scheduling
based on robust receding horizon control. As follows, we
first give an overview of our approach in Section 4, and
then introduce our demand model and AD scheduling at
Section 6, 7, and 8, respectively.

4 METHODOLOGY OVERVIEW

Inspired by the empirical study, we propose the “Every-
one Counts” design to improve the advertising efficiency
by robust receding horizon control based on a two-level
passenger demand model. As follows, we introduce the
overview of the proposed approach. In the rest of the paper,

we use frame, denoted by {fl}
T
h

l=1, to represent the coarse-
grained time slot whose length, denoted by h, is in hour
level. We use slot, with minute-level length τ , denoted by
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{tlj}
h
τ
j=1, to represent the jth fine-grained slot in frame fl.

Our demand modeling and AD scheduling are based on
these two temporal units.
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Figure 7: An example illustrating the overview of the
proposed approach.

Given the fixed advertising time αi
d and slot length τ ,

the proposed approach (i) allocates the total n = αi
d/τ

AD slots to coarse-grained frames based on our coarse-
grained demand model obtained by historical AFC data, and
(ii) allocates all AD slots in a particular frame based on our
fine-grained demand model obtained by real-time AFC data
plus individual mobility patterns.

We use an example regarding to a specific metro station
ψd and a specific advertiser i to illustrate the main process
of the proposed approach, since scheduling at different
stations is independent among each other. As shown in
Fig. 7, the length of the advertising time αi

d is two hours,
and the length of slots τ is 3 minutes. Then the total
number of advertising slots (AD slots) n is 40. The length
of frames h is 1 h. Thus, there are 24 frames in the day and
20 slots in each frame. Our scheduling has two key steps.
(i) According to the historical distribution of coarse-grained
passenger demand in frames, n AD slots are allocated to
{fl}24l=1. Note the allocation based on the global view of
high-traffic slots distribution in frames enables frame-scale
(instead of day-scale) passenger demand prediction, which
leads to higher demand prediction accuracy. (ii) Taking one
of the frames with 10 AD slots for example, fine-grained
passenger demand (for both entering passengers and exiting
passengers) in this frame is predicted online and updated
in each time slot with a non-homogeneous Poisson model
and a receding horizon of newly occurred AFC records.
Suppose the best 10 slots with high traffic volumes are those
illustrated in the figure, according to the prediction at the
current time (i.e., the first slot in the frame). These best 10
slots may be replaced by other slots in further predictions
with a receding horizon. Based on this slot-level demand
model, an online AD schedule is made for all the slots in
the current frame, and the schedule is implemented only for
the nearest future slot, i.e., the next slot of the current one.
In this example, the next slot ranks 3rd among all the slots
in terms of traffic volume, which will be selected as an AD
slot. The online prediction and scheduling continue until all
the slots in the frame are scheduled.

We next present the detailed design of our two-level

demand model and AD scheduling in the following four
sections.

5 COARSE-GRAINED DEMAND MODEL

Given historical AFC data, our coarse-grained passenger
demand model is a statistical model, i.e., at frame-level
using the historical average passenger demand as the future
passenger demand. Based on further empirical study, our
coarse-grained frame-level passenger demand model has
the following property.

Property 1: Stable Distribution of High Demand Slots
in Frames. When all the time slots in a day are sorted
according to their passenger demand, the distribution of
those best n slots with highest demand in each frame is
stable.
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Figure 8: The distribution of high-traffic slots (τ = 1 min)
in each 1 h frame when the advertising time α is 4 h or 12 h.

This result is based on Dataset A.

Fig. 8 shows the distributions of the best n slots in frames
of short term historical days when h and τ are 1 hour and
1 minute, respectively. Fig. 8(a) plots the distribution of the
best 240 slots, i.e., 4 hour advertising time, and Fig. 8(b) plots
the distribution of the best 720 slots, i.e., 12 hour advertising
time. From the figures, we found that no matter n is large or
small, the distribution of the best n slots in frames is stable.

According to Property 1, the proposed EveryoneCounts
allocates coarse-grained frame-level AD slots into each
frames based on the statistical coarse-grained demand dis-
tribution.

6 FINE-GRAINED ENTERING DEMAND MODEL –
REALPOISSON

In this section, a non-homogeneous Poisson model with a
real-time tuner, RealPoisson, is proposed to predict fine-
grained passenger entering demand. The proposed mod-
el has two challenging designs to improve the prediction
performance, i.e., the time-varying rate parameter based on
historical traffic and an entering volume tuner based on real-
time traffic.

6.1 Non-homogeneous Poisson Model
The adopted non-homogeneous Poisson model, instead of a
classic Poisson model with a fixed rate parameter, supports
the time-varying entering rate. Researchers used to apply
a classic Poisson model to traffic volume prediction when
passengers arrive at a stable rate during the prediction
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duration. However, the hourly passenger entering volume
greatly varies as shown in Fig. 4(a), i.e., passenger arrival
rate is not stable from hour to hour. To remove the fixed-
rate limitation of a classic Poisson model, we propose the
non-homogeneous Poisson model, which explores historical
entering traffic to achieve the time-varying rate parameter.

A non-homogeneous Poisson model is defined as a
counting process {N(t) : t ≥ 0} with a rate or intensity
function λ(t). Specifically, for a short time interval of [s, t],
0 < s < t, N(t)−N(s) satisfies a Poisson distribution with
mean m(t) − m(s) =

∫ t
s λ(u)du. In the entering demand

modeling, find-grained historical average value of traffic
volumes is used to construct the intensity function. The
construction method first divides 24 hours in a day into
slight time slices with the same length, e.g., one minute.
Arriving rate in a single slice is regarded as stable and thus
derived from historical average value. To get an accurate
intensity function for different kinds of days, we further
classify different days into weekday, weekend, and holiday.
In summary, we compute the intensity function for each spe-
cific station in each specific day. For instance, the entering
demand for a short time interval [t, t+∆t) is described by
a Poisson distribution with parameter

∫∆t
t λd(u)du, where

λd(t) is the intensity function.

6.2 Real-time Tuner

There are two reasons for introducing the real-time traffic
based tuner into the entering demand model. On the one
hand, there exists significant randomness in the fine-grained
entering traffic, as shown in Fig. 4(b), even though the enter-
ing rates for neighboring fine-grained time slots are similar.
On the other hand, the rate parameters, which are computed
as the averaged historical traffic, eliminate the randomness
of the entering traffic volume for each fine-grained time slot.
To restore the randomness and improve the predicting ac-
curacy of the fine-grained entering demand, we employ the
real-time tuner to make use of real-time traffic information.

The real-time tuner is a classifier, predicting real-time
trends (i.e., upward, downward and almost stable) of the
fine-grained entering traffic volumes derived from the ba-
sic non-homogeneous Poisson model. The real-time tuner
restores the randomness of the fine-grained traffic in each
time slot by exploiting the impact of the trend sequence in
several near-historical slots on the trend in the current slot.
The tuner is trained off-line based on logistic regression us-
ing traffic trend sequences in continuous fine-grained slots.
When the on-line entering demand prediction of the current
slot is performed, the predicted result from the basic non-
homogeneous Poission model is tuned by the tuner with the
past several trends. If the predicted current trend is upward
(downward), the primary prediction will be increasingly
(decreasingly) tuned in proportion to the traffic volume in
the last time slot. The length of trend sequences used for
tuner training is set as 6 since it offers good classification
accuracy by our evaluation.

Fig. 9 plots the prediction performance of the fine-
grained entering demand by historical averaging (His-
torical), non-homogeneous Poisson prediction (Primary-
Poisson), non-homogeneous Poisson with real-time tuner
(RealPoisson), and ground truth (Truth) from 08:30am to
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Figure 9: Performance comparison of fine-grained entering
demand predictions from 08:30 am to 09:00 am in a

weekday.

09:00am in a weekday. It is obvious the erratic fluctuation
of Truth (grey bars) reflects its randomness while the line
of Historical (the dotted line in blue) shows a much more
stable prediction. The PrimaryPoisson line (the dotted line
in red) is neither smooth as Historical line nor fluctuates
dramatically as the Truth line. RealPoisson outperforms the
other two methods, especially for slots which change greatly
compared with their previous slots (e.g., time 12 and time
14 circled by black ellipses). This is because our real-time
tuner predicts these great changes and adjusts the predicted
traffic volumes.

7 FINE-GRAINED EXITING DEMAND MODEL – EV-
ERYONECOUNTS

We propose a bayesian model, EveryoneCounts, for fine-
grained exiting demand modeling, based on both historical
and real-time AFC records. EveryoneCounts aims to infer
passenger exiting stations and time based on the particular
mobility pattern for each entering passenger recorded by
the AFC system. Since the passenger exiting demand in a
future slot is the number of passengers arriving at the target
station from other metro stations, their AFC records enter-
ing the metro system have already been recorded. We use
such logged AFC records, including both the origin station
and the entering time, as a condition to predict passenger
arrivals, thus to obtain passenger exiting demand at slot
levels. In detail, there are three steps, namely, destination
prediction, travel duration prediction, and traffic volume
aggregation.

7.1 Destination Prediction

For a passenger k entering the metro through station θk
at the time µθ

k, we predict the destination dk based on
the recorded AFC entering information according to the
predictable passenger destinations.

Property 2: Low-entropy Destination. The entropy of
destination, H(dk), for a metro passenger k is low and the
conditional entropy H(dk|θk, µθ

k) is even much lower when
the origin θk and starting time µθ

k are given.
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Fig. 10 plots the CDFs of H(dk), H(dk|θk), and
H(dk|θk, µθ

k) for all the metro records of passenger k during
3 months, which are computed as follows,

H(dk) = −
∑

dk∈Ψ
p(dk) log p(dk),

H(dk|θk) =
∑

dk,θk∈Ψ
p(θk, dk) log

p(θk)
p(θk,dk)

,

H(dk|θk, µθ
k) =

∑
dk,θk∈Ψ,µθ

k∈χ

p(θk, dk, µ
θ
k) log

p(θk,µ
θ
k)

p(θk,dk,µθ
k)
,

(5)
where Ψ, the set of all the metro stations, is the support
of θk and dk, which can be considered as random vari-
ables, and χ = {[00:00:00, 01:00:00), [01:00:00, 02:00:00), · · · ,
[23:00:00, 24:00:00)}, the set of hours in a day, is the support
of the random variable µθ

k. We find from the figure that
H(dk|θk, µθ

k) is lower than 0.7, which means there are only
20.7 possible destinations, compared to totally 118 stations
in Shenzhen metro, for each passenger when θk and the
hour of µθ

k are given. By exploring the travel history of
each passenger, the destination of a future metro trip can
be exactly predicted given the recorded AFC information
of the origin and the starting time of the trip, i.e., finding
the destinations mostly associated with the origin and the
starting time in the historical data.

7.2 Travel Duration Prediction
We then predict the arrival time νdk of passenger k at the
predicted destination dk based on the recorded θk and µθ

k,
according to the following property of passenger mobility.

Property 3: Stable Travel Duration. The travel durations
between a given pair of origin and destination, denoted by
ω(θ, d), is stable. Moreover, if the hour of the starting time
µθ is given, the standard deviation of the travel durations
for a pair of origin and destination, denoted by σ(ω(θ, d)),
will be further reduced.

Fig. 11 plots the CDFs of σ(ω(θ, d)), and
σ(ω(θ, d|µθ)), θ, d ∈ Ψ, where ω(θ, d|µθ) represents
the travel durations for a given pair of stations and starting
during a given hour in χ. We find from the figure that 70%
of σ(ω(θ, d|µθ)) are lower than 3 min.

In this work, we use 90th percentile of the standard
deviation to obtain an arriving time interval, instead of a
fixed value, for an uncertain demand model.

7.3 Traffic Volume Aggregation

Based on the arriving time intervals of all passengers who
are already in the metro network, we obtain a lower bound,
i.e., β0

j·d, and a upper bound, i.e., β0
j·d for exiting demand

at station ψd during slot tj based on all the AFC records
occurring before the current slot tj−1. These lower and up-
per bounds are used in our scheduling with robust receding
horizon control as follows.

8 SCHEDULING BY RECEDING HORIZON CON-
TROL

Based on our two-level demand model, our scheduling also
has two parts, i.e., offline advertising time allocation at
frame level, and online advertising time allocation at slot
level.

8.1 Offline Advertising Time Allocation at Frame Level

Given n AD slots and the historical coarse-grained traffic
distribution of T

h frames, we first allocate n to the frames.
The number of AD slots for frame fl, 1 ≤ l ≤ T

h , is denoted
by ηl. The allocation is inspired by the Property 1 of our
coarse-grained demand model, i.e., stable distribution of
high demand slots in frames. So we determine the allocation

{ηl}
T
h

l=1 according to the stable distribution of high-traffic
slots in frames. Given the fixed n and the historical percent-
age, denoted by πl, of the high-traffic slots in frame fl, ηl
is computed as the product of n and the stable historical

percentage πl, i.e., ηl = n × πl, where
∑T

h

l=1 ηl = n, and∑T
h

l=1 πl = 1.

8.2 Online Advertising Time Allocation at Slot Level

With the allocation of the number of the advertising slots
in each frame and the predicted real-time traffic volumes in
future slots in each frame, the schedule {λlj} are made with
receding horizons of real-time AFC records, where 1 ≤ l ≤
T
h , 1 ≤ j ≤ h

τ . The pseudo code in Alg. 1 explains the main
process of the scheduling.

Algorithm 1: Online AD Slot Allocation
Input {ηl}: the allocation of n advertising slots for each frame

fl;
Real-time card swiping records

Output {λl
j}: the schedule of all time slots in all frames

1: l = 1, j = 0
2: for l = 1, l <= T

h
(i.e., all the frames) do

3: for j = 0,j < h
τ

do
4: Predict the lower and upper bounds for

{βl
j+1, β

l
j+2, · · · , βl

h
τ
} based on the updated AFC

records occurring before tlj .
5: Solve robust advertising efficiency optimization

problem proposed in Eq.(4).
6: When the current time moves into tlj+1, display

advertisements if λl
j+1 is 1.

7: Continue
8: end for
9: end for

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2020 at 21:59:27 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2725913, IEEE
Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA 9

During a frame fl, before each slot tlj , the advertising
schedule λlj , is made by first predicting lower and up-
per bounds of passenger demand in the future slots in
fl, {βl

j+1, · · · , βl
h
τ

} with updated AFC records. Then, we
solve the robust advertising efficiency optimization problem
proposed in Eq.(4) by a numerical method to obtain the
schedule for the rest of slots. Then, we choose to display
the AD or not based on the obtained schedule.

9 PERFORMANCE EVALUATION

Based on one month data from Dataset B in Fig. 3, we
evaluate the performance of the coarse-grained demand
prediction, the fine-grained entering and exiting demand
prediction, and the resulted advertising efficiency against
different settings of the slot length (default: 3 min), frame
length (default: 1 hour), and the length of advertising time
(default: 5 hours).

We respectively compare the performance of the pro-
posed fine-grained entering demand model(RealPoisson)
and the fine-grained exiting demand model (Every-
oneCounts) with the performance of the optimal scheduling
and two existing approaches as follows.

• The optimal approach (Optimal): This approach
makes the optimal schedule for each time slot to
achieve the optimal advertising efficiency under the
given advertising time and slot length, based on the
ground truth of fine-grained traffic volumes.

• Coarse-grained scheduling approach (Coarse-
grained): This approach selects the best coarse-
grained frames with highest averaged historical traf-
fic volumes in near historical days to display ad-
vertisements. The frames are sorted and selected to
display advertisements in decreasing order of their
historical frame traffic volume.

• Historical traffic volume based approach (Histor-
ical): This approach applies fine-grained advertis-
ing based on pure historical traffic volume instead
of both historical and real-time information. Fine-
grained slots are sorted and selected as advertising
slots in decreasing order of the historical averaged
slot traffic volume in near history.

9.1 Performance of Coarse-grained Demand Prediction
We first explore the coarse-grained frame-level AD slots
allocation performance under different settings of the slot
length τ and the frame length h, given the default value of
α.

Fig. 12 plots the allocation error δη when τ varies from
1 min to 6 min and h varies from 0.5 hour to 3 hour. The
allocation error δη is computed as the average prediction
error of the number of high-traffic slots in each frame,

δη =
h

T

∑T
h

l=1

|ηl − η̂l|
max{ηl, η̂l}

, (6)

where {η̂l} are the true distribution of the high-traffic slots
in the frames of the target day.

We can find from the figure that the allocation error of
most settings are lower than 10%, especially when the slot
length is 3 min and the frame length is longer, e.g., 3 h.
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Figure 12: The allocation error of the given advertising
time (five hours) into coarse-grained frames when both the

length of slots and the length of frames vary.

The reason for the largely decreasing allocation error as the
frame length increases is that the more coarse-grained traffic
volume is more predictable. This phenomenon corresponds
to the Observation 1.1 and 2.1 that coarse-grained entering
and exiting demands are predictable.

We can also find that when the slot length is 3 min, the
allocation error is the lowest among those with the same
frame length. The key reason is as follows. The train interval
in the metro system in Shenzhen city is 3 min in rush hours
and 6 min in nonrush hours. Then, the 3 min time slots
naturally grouping the passengers getting off from the same
train. As a result, the traffic volumes in every 3 min slot are
more regular than in other length of slots. Inspired by this
conclusion, we suggest the setting of slot length τ according
to the train interval of the target metro station.

9.2 Performance of Fine-grained Demand Prediction
We then respectively evaluate the online fine-grained de-
mand prediction performance of RealPoisson and Every-
oneCountes. We compare the prediction error of RealPois-
son with that of Historical, ClassicPoisson (homogeneous
Poisson model with a fixed rate parameter), K nearest
neighbors regression model (denoted by KNN in result fig-
ures), and autoregressive integrated moving average model
(denoted by ARIMA in result figures) when slot length
varies. We compare the performance of EveryoneCountes
with that of Historical, KNN, and ARIMA under different
settings of the slot length. Parameter K is set as 10 for
KNN regression, and (p, d, q) = (2, 1, 2) for ARIMA model,
where an initial differencing step is applied to eliminate
the non-stationarity. The results are plotted in Fig. 13(a) and
Fig. 13(b), respectively.

From Fig. 13(a), we can find that prediction errors go
down when the time slot is longer. Only when the slot
is extremely short, i.e., 1 min, the prediction errors of all
the models significantly increase, which accords with Ob-
servation 1.2. But the performance for 2-min and longer
slots are relatively closer, which agrees with Fig. 6(a). This is
because the entering demand for a typical commute metro
station is relatively more regular and predictable than the
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Figure 13: The prediction error of fine-grained demand
models.

exiting demand. We can also find that the prediction errors
of Historical and RealPoisson are much smaller than that
of ClassicPoisson. This is because a classic Poisson model
ignores the different entering rate for different period (e.g.,
peak and off-peak hours) in a day.

We can find from Fig. 13(b) that the prediction errors of
both approaches decrease as the slot length increases and
the prediction error of EveryoneCounts is on average 61.49%
lower than that of Historical. When the slot length is as short
as 1 min, the prediction performance of both approaches
is poor while the reasons of their poor performance are
different. The reason for the high prediction error of Every-
oneCounts with 1 min slot length is the deviation of the indi-
vidual travel duration from the average historical duration
of each passenger (as shown in Fig. 11) is much larger than
the 1 min slot length. While the reason for the extremely
high prediction error of Historical is the uncertainty of the
fine-grained traffic volume, our novel observations made in
Section 3.3.2.

To show the prediction performance of typical time se-
ries analysis approaches and machine learning approaches,
we evaluates the prediction error of ARIMA and KNN
regression. From the figures, we can find that KNN achieves
highest prediction error, which is resulted from the chal-
lenging feature selection. In the evaluations, the features to
predict the passenger volume in a future slot are set as the
passenger volumes in previous slots which are shown by
our Observation 1.2 to be unpredictable and fluctuated. As
a result, KNN performs worst. ARIMA has a similar pre-
diction error with Historical. As expected, for the entering
passenger demand, which is relatively more regular than
the exiting demand, the prediction error of ARIMA is a little
higher than that of Historical and for the exiting demand
prediction, ARIMA performs worse than Historical.

9.3 Performance of Advertising Efficiency for Entering
Passengers

The performance of the advertising efficiency for entering
passengers of RealPoisson and all the compared approaches
are evaluated against the impact of advertising time α, slot
length τ and frame length h. The default length of a frame
used in the subsection is 2 hours.

9.3.1 Impact of the Advertising Time
Fig. 14(a) plots results of advertising efficiency when the
advertising time increases from 1 h to 8 h. From the picture,

we can see that the proposed RealPoisson outperforms all
other approaches except Optimal. The advertising efficiency
decreases for all approaches as the advertising time increas-
es. The downward tendency is due to unevenly distribution
of traffic volumes at different hours in the daytime as shown
in the coarse-grained entering demand of Fig. 4(a). When
the advertising time is short, we can choose those hours
with heavy traffic. The Coarse-grained approach has the
worst performance sine it can only select complete frames or
not and thus miss valuable slots with high traffic volumes
in others frames. We will further discuss this issue when
considering the impact of frame length.

9.3.2 Impact of the Slot Length
We then evaluate the impact of slot length on advertising
efficiency with a fixed length of advertising time and frame
length. The results are plotted in Fig. 14(b), where the Opti-
mal approach has a slight decreasing while the RealPoisson
and the Historical approach has a rather smaller increase
when the slot length increases. It is expected that Optimal
achieves its best performance when slot length is the short-
est, i.e., 1 min. When the slot length is 1 min and 6 min,
RealPoisson has an advertising efficiency 91.4% and 95.1%
of that of the Optimal, respectively. The Coarse-grained
approach has a fixed advertising efficiency since its allo-
cation scheme only considers frame-level traffic volumes. In
summary, the slot length has little impact on the advertising
efficiency of all the compared approaches, resulted by the
relatively regular and predictable entering demand in a
typical commute station.

9.3.3 Impact of the Frame Length
We present the impact of the frame length on advertising
efficiency when the frame length ranges from 0.5 h to
3 h in Fig. 14(c). The figure shows that the increasing
frame length diminishes the advertising efficiency of both
RealPoisson and Coarse-grained while obviously has no
impact on Optimal and Historical. Coarse-grained has the
fastest decrease when the frame length is enlarged since
its coarse-grained selection results in larger amount of low-
traffic slots in the selected frames. RealPoisson has a much
slower decrease than Coarse-grained, which is benefited
from the fine-grained selection avoiding those low-traffic
slots in each frame. The decreasing efficiency of RealPoisson
is resulted by the lack of real-time information in the traffic
prediction for the future slots in a longer frame.

9.4 Performance of Advertising Efficiency for Exiting
Passengers

The performance of the advertising efficiency for exiting
passengers of EveryoneCounts and all the compared ap-
proaches are evaluated against the impact of advertising
time α, slot length τ and frame length h.

9.4.1 Impact of the Advertising Time
Fig. 15 and Fig. 17(a) plot the total traffic volume of the exit-
ing passengers accumulated during all the advertising time
and the advertising efficiency when the given advertising
time varies from 1 h to 8 h.
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(a) The advertising efficiency when the adver-
tising time varies from 1 h to 8 h.
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(b) The advertising efficiency when the slot
length varies from 1 min to 6 min.
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(c) The advertising efficiency when the frame
length varies from 0.5 h to 3 h.

Figure 14: The performance of advertising efficiency for entering passengers.
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(a) The advertising efficiency when the adver-
tising time varies from 1 h to 8 h.
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(b) The advertising efficiency when the slot
length varies from 1 min to 6 min.
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(c) The advertising efficiency when the frame
length varies from 0.5 h to 3 h.

Figure 17: The performance of advertising efficiency for exiting passengers.
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Figure 15: The total traffic
volumes of exiting

passengers when the
advertising time varies

from 1 h to 8 h.
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Figure 16: The empirical
CDFs of the advertising
efficiency in all the 118
metro stations of all the

approaches.

From the two figures, EveryoneCounts performs the best
among all the non-optimal approaches. As the advertising
time increases, as expected, the total traffic volume increas-
es, while the advertising efficiency decreases for all the
approaches. Since the exiting traffic is not evenly distributed
in the target day and those time slots with higher traffic
volumes will be preferentially selected, the longer the ad-
vertising time, the lower the advertising efficiency. When the
advertising time is 1 h, the total traffic volume (advertising
efficiency) of EveryoneCounts is 37% and 62.9% higher than
that of Coarse-grained and that of Historical, respectively.
The reason for the lower advertising efficiency of Coarse-
grained than that of EveryoneCounts is the fluctuated fine-

grained exiting traffic volume even during rush hours,
which has been introduced as Observation 2.2. Historical
has the worst performance of the advertising efficiency
because of the high prediction error of the fine-grained
traffic volume, which is resulted by the significant temporal
irregularity of fine-grained exiting traffic, even much more
unpredictable than the entering traffic.

9.4.2 Impact of the Slot Length
Given the fixed length of the advertising time, the length of
the slots has different impacts on the advertising efficiency
of different approaches. Fig. 17(b) plots the advertising effi-
ciency of all the approaches when the slot length varies from
1 min to 6 min.

Optimal and our approach have decreasing advertising
efficiency while Historical has increasing advertising effi-
ciency as the slot length increases. For Coarse-grained, since
it applies the coarse-grained scheduling, the slot length has
no impact on its performance. The decreasing advertising
efficiency of Optimal and EveryoneCounts is resulted by
the more coarse-grained advertising with longer slot length.
Although EveryoneCounts has a decreasing advertising
efficiency, the distance between its efficiency and that of
Optimal decreases. For example, when the slot length is
1 min and 6 min, the efficiency of EveryoneCounts is 91%
and 96.3% of that of Optimal, respectively. As expected,
the lowest advertising efficiency of Historical when the slot
length is shortest is resulted from the temporal uncertainty
of fine-grained exiting traffic.
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9.4.3 Impact of the Frame Length
Fig. 17(c) presents the advertising efficiency of approaches
when the frame length varies from 0.5 h to 3 h. Optimal
and Historical are not affected by the frame length be-
cause they both apply only fine-grained advertising. Our
approach and Coarse-grained have decreasing performance
with larger frame length because they both take advan-
tage of the coarse-grained traffic certainty. However, longer
frame length leads to higher traffic volume prediction error
of EveryoneCounts since more and farther future exiting
traffic need to be predicted in longer frames while real-time
entering information for those exiting traffic is unavailable.

9.5 Global Performance

We show the advertising efficiency for exiting passengers
achieved by all the approaches in all the metro stations
under the default setting in Fig. 16. From the figure, we
can find that EveryoneCounts has the closet performance
with Optimal. The average advertising efficiency of Ev-
eryoneCounts is 26.84, which is 89.7% of the efficiency of
Optimal, and 18.6% and 58.5% higher than the efficiency of
Coarse-grained and Historical, respectively.

10 DISCUSSIONS

In this section, we discuss some practical issues regarding
to the real-world deployment of the proposed approach.

Advertisement Fairness: The proposed approach is to
assist a metro system optimize its advertising efficiency
given the total advertising time rented by all advertisers.
Since an advertiser is charged according to the length of its
advertising time, it is also important to maintain the fairness
among all advertisers. Our approach can be easily adapted
to take the fairness into account. When a time slot is selected
as an advertising slot, each advertisement will be displayed
with a probability proportional to the its length of rented
time. As a result, when the rented time of an advertisement
is longer, its display probability would be higher.

Passengers Contributing to Revenues: In this paper,
we envision that all passengers passing by a digital screen
would see advertisements. Admittedly, in reality, only a por-
tion of passengers would see advertisements, and an even
smaller portion of passengers would actually contribute to
advertisers’ revenues. However, these real-world factors are
extremely difficult to quantify, and are out of the technical
scope of this paper. Thus, we focus on the total passing by
passenger traffic volume in this work.

Passengers with Temporary Cards: In a real-world
metro system, there are passengers traveling with tempo-
rary cards, e.g., foreign visitors. Thus, the mobility patterns
of these passengers cannot be inferred from the histori-
cal travel records. In this work, for these passengers, the
destinations and the travel durations are predicted based
on statistical general regularities of the passenger mobility
within the metro system.

Metro Station Exits Without AFC Machines: Some
metro stations might not have AFC machines at the exit-
s, so the destinations of passengers are unavailable. Our
approach is still applicable for such stations, because the
destination and travel duration of a passenger trip can be

estimated by exploring the entering record of the passen-
ger’s next trip [7].

Demand Modeling using Other Infrastructures: Other
infrastructures, e.g., wifi routers or infrared sensors, can also
be used to model passenger demand. But they typically
introduce additional costs. In contrast, our approach based
on AFC data did not introduce any additional costs, since
AFC data are collected automatically for billing purposes.

11 RELATED WORK

Our approach predicts the passenger traffic volume by uti-
lizing the real-world card-swiping information recorded by
the metro automatic fare collection (AFC) system. The most
related topics with this work include advertising efficiency
improvement, traffic volume prediction, and traffic arrival
time prediction. Although smart card data have been used
before [4], [5], our work is the first one on the advertis-
ing efficiency improvement based on an uncertain demand
model. To the best of our knowledge, there is few, if any,
research studies on the topic, so we summarize our related
work from two aspects of traffic arrival time prediction and
passenger demand estimation.

11.1 Arrival Time Prediction

In our design, we predict the passenger arrivals in urban
metro networks, which is determined by the arrivals of
metro trains. Similarly, several existing studies propose
wise designs to predict the travel time of other kinds of
transportation, e.g., bus. We classify such work into three
categories according to the different information they use,
i.e., (i) roadside sensors [8], (ii) the taxi GPS information [9],
[10], [11], and (iii) the cell phone data [12], [13], [14].

Several pieces of work have been proposed to use road-
size sensors, e.g., loop detectors, to predict travel time.
Based on the data collected by the roadside sensors, such
approaches predict the travel time by estimating speeds of
vehicles. Given the estimated vehicle speed as well as the
fixed length of the road segments, these studies further
predict the travel time. Taghvaeeyan et al. [8] design a
portable roadside sensor system which is placed next to the
roadway to measure traffic. Based on longitudinally spaced
sensors, the system can measure speed information and
estimate travel time.

Recently, more and more researchers concentrate on the
large-scale taxi GPS data. Balan et al. [9] propose a real-
time trip information system that provides passengers with
the expected fare and travel time. Wang et al. [10] create
a citywide model for estimating the travel time of any
path in real time, based on the map information and the
GPS trajectories of vehicles received in current time slots as
well as the history records. Westgate et al. [11] propose a
regression method for travel time distribution estimation of
ambulance between any two locations based on sparse GPS
data.

Zhou et al. [12] employ a novel idea to predict the bus
arrival time using the cell phone data. They present a bus
arrival time prediction system based on the participatory
sensing data provided by cell phones of bus passengers.
Another work VTrack [13] also uses sensing data from
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phones, e.g., the WiFi-based positioning samples, to predict
traffic delay. Derrmann et al. [14] show that dwell time
distributions can serve as a good predictor for travel time
estimation.

11.2 Passenger Demand Estimation
The existing work on the real-time passenger demand, i.e.,
traffic volume estimation, mainly focuses on the volume
estimation of vehicles, which can be classified into two
categories, i.e., parametric and non-parametric methods.
Parametric methods typically used models include local re-
gression model [15], and Markov chain model [16], etc. Non-
parametric methods include non-parametric regression [17],
Bayesian networks [18] and neural networks [19].

Based on the source of the data used for prediction, the
related work can also be divided into two categories, i.e., (i)
the approach using roadside sensors [13], [20], [21], and (ii)
the approach using taxi GPS data [22], [23], [24], [25], [26],
[27], [28], [29], [30]. Singliar et al. [20] develop a probabilistic
estimation model for highway networks based on the infor-
mation collected from a set of traffic sensors placed around
the city. Yuan et al. [22] use both historical patterns and real-
time traffic information from the GPS data of taxicabs to
estimate traffic conditions. Aslam et al. [23] provide model
and inference procedures which can be used to analyze
traffic patterns from historical data, and to estimate current
traffic status from data collected in real-time. Yuan et al. [27]
propose a taxi passenger demand model for taxi drivers
to quickly pick up passengers to maximum their revenue.
Zhang et al. [29], [30] estimate taxicab passenger demand
based on a large dataset of historical demand recorded by
taxicabs’ historical trips and real-time information collected
by roving taxicabs.

11.3 Summary
Our work solves the advertising optimization problem
based on our uncertain passenger demand model with card-
swiping records collected by AFC machines in a metro sys-
tem. Compared with other kinds of transportation, e.g., cars
or buses, the metro system has quite different properties in
both metro train traveling and passenger mobility patterns.
The existing approaches for vehicle traffic prediction cannot
be directly used to predict metro passenger demand.

12 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel online approach for metro
digital advertising to improve advertising efficiency. Our
extensive empirical study and technical efforts provide a
few valuable insights on metro transit networks, which
are hoped to be useful for fellow researchers on similar
topics. Specifically, we find that (i) coarse-grained passenger
demand is regular while fine-grained passenger demand is
more dynamic; (ii) passenger mobility patterns are fairly
stable, and given entering station and entering time, the
exiting station can be predicted with a high accuracy; (iii)
travel periods between same stations are also stable in dif-
ferent time; (iv) it has a high accuracy to predict passenger
demand by using time and stations passengers entering the
metro network as conditions.
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