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ABSTRACT
Understanding representativeness in cellular web logs at city scale
is essential for web applications. Most of the existing work on cel-
lular web analyses or applications is built upon data from a single
network in a city, which may not be representative of the overall
usage patterns since multiple cellular networks coexist in most
cities in the world. In this paper, we conduct the first comprehen-
sive investigation of multiple cellular networks in a city with a
100% user penetration rate. We study web usage pattern (e.g., in-
ternet access services) correlation and difference between diverse
cellular networks in terms of spatial and temporal dimensions to
quantify the representativeness of web usage from a single network
in usage patterns of all users in the same city. Moreover, relying
on three external datasets, we study the correlation between the
representativeness and contextual factors (e.g., Point-of-Interest,
population, and mobility) to explain the potential causalities for the
representativeness difference. We found that contextual diversity
is a key reason for representativeness difference, and representa-
tiveness has a significant impact on the performance of real-world
applications. Based on the analysis results, we further design a
correction model to address the bias of single cellphone networks
and improve representativeness by 45.8%.

CCS CONCEPTS
•Networks→Networkmeasurement;Networkperformance
modeling; •Human-centered computing→Ubiquitous andmo-
bile computing.
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1 INTRODUCTION
Cellular services are essential to our daily life for personal com-
munication and mobile web access. Cellular devices have been
increasing from 740 million in 2000 to 7,740 million in 2018 in the

world [35] as the increase of cellular web users. Understanding the
cellular usage patterns in a city is extremely important for cellular
operators to provide reliable services such as mobile web access
by improve their infrastructures including tower deployment [36],
load balancing [40], and network resilience [46]. To date, many ef-
forts have been focused on cellular usage patterns and applications,
e.g., traffic patterns [32] [43], user behaviors [9], special events [27],
and mobility management [4] [25][11], based on large-scale data
collected by cellular operators or small-scale data collected by indi-
vidual researchers. These studies have provided valuable insights
to understand the performance of cellular networks.

However, most of the above work based on large-scale operator-
level data is built upon a single network and assumes users and
cellular traffic (e.g., web usage) from single network is a representa-
tiveness of all cellular users across different cellular networks in a
city [6] [18]. However, since different networks have different pric-
ing strategies and user coverage, single-network data is potentially
biased to represent all cellular users in applications such as web
traffic estimation [43]. Even though some studies are based on the
data from multiple networks [7] [20] [34] [38] [41], the data are
collected at a small scale, e.g., a dozen devices [38], which are not
statistically representative of the generic cellular web usage pat-
terns. To our knowledge, none of the existing work has quantified
the bias of single network data (e.g., web access log) and its impact
on the real-world applications due to limited data access.

Recently, thanks to the Smart Cities initiative [2], many cities
have been consolidating various data from diverse infrastructures
[39] [10] [13] [42] [47]. For example, Shenzhen (i.e., the 4th biggest
city in the mainland of China and the twin city of Hong Kong)
has been consolidating data from its all three cellular networks
for innovative smart city services through different data collection
mechanisms, e.g., data trading and purchasing [2], which provide an
unprecedented opportunity for the research community to improve
our understanding of cellular usage behaviors based on all cellular
networks in a city.

In this paper, we conduct the first analysis on cellular network
usage representativeness, which is defined as the degree that a
single network can be a representative of operational patterns of all
cellular users in a region. The question we want to address in this
paper is when, where, to what extent, and why the usage patterns
of a given cellular network are biased against the overall patterns of
all cellular users across all networks and how we can correct such
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bias with access only to single-network data. We infer the overall
usage pattern and design quantitative metrics to study cellular
network representativeness on multiple diverse networks in the
same city. Based on the proposedmetrics, we analyze the correlation
between representativeness and underlying contextual factors to
explore its potential causalities. Our analyses feature large-scale
cellular network data for Internet and App access log in Shenzhen,
including more than 10 million daily active users from all three
cellular networks. The contributions are summarized as follows.

(1). We provide the first investigation on cellular usage repre-
sentativeness based on multiple diverse cellular networks in the
same city. We quantify cellular network representativeness with
a distance metric and study the representativeness, its potential
causality, and impact on real-world applications. Specifically, we
summarize 3 findings and analyze its causality based on real-world
contextual data. finding 1: On the spatial dimension, we found that
regions with mixed functions such as CBD (Central Business District)
area has higher data representativeness compared with regions with
single functions such as residential areas. finding 2: On the temporal
dimension, we found that the representativeness of a cellular network
is highly correlated with user mobility and commuting patterns. We
found a 50% lower representativeness during mobility peak hours,
e.g., 9am, 5pm, and 8pm, compared with hours with lower mobility
demand, e.g., 1pm. We study the performance of a real-world appli-
cation on population estimation and its correlation with network
representativeness and summarize our finding 3: The performance
of population estimation based on single networks is highly correlated
with representativeness. We found a high representativeness leads to
a 58.2% lower error of population estimation.

(2). Based on the measurement study and correlation analysis
with three contextual datasets (i.e., Point of Interests, Population,
and Mobility), we design a learning-based correction model to ad-
dress data bias in single networks. Further, we evaluate our method
based on real-world cellphone web log records from multiple cel-
lular networks covering 100% cellphone users. The results show
our method increases the representativeness by 45.8% and then
improve the accuracy of population estimation by reducing MAPE
from 25.8% to 15.4%. Moreover, from the correction model, we share
ourfinding 4: Even data from a single network is not a representative
of all cellular activities across different networks, with a correction
model, 30% of sample data can achieve same representativeness as
the data across all networks; 60% of sample data can improve repre-
sentativeness of a single network by 45.8% on average compared with
original single-network data.

(3). Last but not least, based on our analysis, we share several
implications and discuss the potential impact of our study. Our
analyses are involved with large-scale cellular web log data, which
will be released after a proper anonymization process under the
consent of data owners [1].

2 MOTIVATION
The user distribution and tower coverage difference in single net-
works may cause inaccurate models and bias in real-world applica-
tions. However, such bias is often ignored in many existing studies
such as population estimation [27], web user estimation [19] due
to limited data access. To study the impact of single network biases,

we first quantify the difference on coverage in different networks
and their user difference. Second, we study the performance of
applications based on data from different networks.

Root Cause of Bias of Single Network Data: Many data-
driven research studies rely on data from single cellular networks,
e.g., modeling human mobility based on CDR (Call Detail Records)
data from AT&T [18], inferring internet usage in Shanghai [43].
Those studies assume single network data (e.g., web access record
or phone calls) is representative of all cellular activities in the same
regions. However, single network data is often biased in data-driven
applications due to different tower distributions and target user
groups among networks. cellular network operators typically have
different business priorities in terms of geographic locations, which
leads to a significant difference in cell tower distributions [12]. In
fact, tower deployment strategies are dependent on various factors
such as communication technologies, usage demand, geographic
and demographic information in regions [30]. In particular, we
found that the tower coverage differs in the three networks, as
shown in Fig. 1 when we model tower coverage by Voronoi parti-
tion, which is widely used to estimated cell tower coverage bound-
ary [12]. We found a large difference between the tower coverage,
which lead to different quality of services and associated metrics
(e.g., advertisement, plan rates, etc) for different networks in same
city regions, which lead to different numbers of users for each
network in the same region. It is the root cause for bias of single
network data when used for real-world applications.
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Fig 2: Impact of Bias on App.

Impact of Bias on Real-world Applications: Relying on log
data records for call, app or Internet service access from three major
networks in the Chinese city Shenzhen, we study the impact of
data from different networks on a real-world application, which
estimates real-time population distribution based on regression
models [45] of cellular users. More detailed settings are given in
Section 5. We use MAPE (Mean Absolute Percent Error) to quantify
the performance of the same models with different datasets from
three networks. Fig. 2 shows CDF distribution of estimation errors
on region-level population estimation.We found the performance of
the same estimation model differs when using data from different
networks. In general, the model based on data from Network B
and A show a better performance compared with Network C. The
performance difference is caused by different user coverage and
usage patterns of networks.

Summary: To quantitatively understand where, when, to what
extent, why cellular data bias happens, and more importantly how
to correct and alleviate such data bias from only one network, in
this paper, we conduct a comprehensive empirical study based on
real-world cellular network data from three cellular providers cov-
ering 100% cellular users in Shenzhen. We model the bias in cellular
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data with the term representativeness, which measures the degree of
single network data or sample data of a single network to be repre-
sentative enough for all users across all networks in a city. Besides,
we study the potential contextual reasons for representativeness
differences and implement a real-world application to study the
correlation between their performance and representativeness.

3 DATASET & METHDOLOGY
3.1 Dataset
Cellphone Networks:We have been collaborating with the Shen-
zhen smart city team for data access to all three cellular networks
for one month. For privacy and security issues, we use Network A,
B, and C in the paper, instead of using the company name and de-
tailed time. Network A has the largest number of towers, followed
by Network B and Network C. Since China only has three cellular
service vendors, the dataset achieves 100% penetration rates for
cellular devices.
• Network A deploys 5174 towers serving 3.9 million users;
• Network B deploys 3595 towers serving 3.8 million users;
• Network C deploys 2977 towers serving 2.5 million users.

Even though three networks have different data formats, we reor-
ganize the data to obtain the data log records with five essential
attributes including user ID, timestamp, longitude, latitude, type (e.g.,
a data call for Internet access) where the longitude and latitude give
the tower location. For example, Network B generates 24.5 million
records for a daily data log of voice calls and 185.5 million records
for a daily data log of data calls (e.g., app or Web service access).
We drop other fields for the minimum data exposure. More details
on privacy and ethical issues are given in the Discussion section.
We show their tower coverage with Voronoi partitions [12] in Fig 3.
Contextual Datasets: To study the bias of cellular networks in
context, we focus on three most important contextual data during
the same period: (1) the total potential users, i.e., population, (2)
the reason for a user to use cellular services, i.e., Region Functions

with Point of Interests; (3) the physical movement of cellular users,
i.e., mobility.

(i) Population: We extract Shenzhen population from Worldpop
[14], which gives fine-grained population distribution in 100m ×
100m grids. Fig. 4 presents the population distribution and statis-
tics in Shenzhen where the CBD (central business district) has a
higher population density than other areas. We map population
into administrative regions and calculate the population density in
regions to study the impact on representativeness.

(ii) Point of Interests (PoI): The function of regions is one im-
portant factor to determine the spatial cellular patterns [29]. For
instance, more web access are made in the downtown Central Busi-
ness District (CBD) during daytime compared to some residential
areas; whereas the nighttime may have a reverse pattern. To quan-
tify region functions, we collect 542,115 PoIs in Shenzhen from
an online map service provider. The PoIs are mainly categorized
into 5 groups (i.e., residential, office, education, transportation and
recreation), and 17 subgroups (i.e., traffic facilities, education, fit-
ness, auto services, culture and media, business, life services, food,
tourist attractions, government organizations, shopping, hotels,
finance, recreation, medical services, real estates, beauty & spas).
Fig. 5 visualizes PoIs on a map based on the Voronoi cells of the
Network B. We expect that regions with PoIs from different cate-
gories may have different web access in cellular networks and lead
to a difference of representativeness.

(iii) Mobility: We study cellular operational patterns with three
urban-scale mobility datasets in Shenzhen, i.e., (i) a subway system
with 8 lines, 194 stations and 4 million users, (ii) a bus system with
1,115 lines, 10,106 stations, 13 thousand buses and 5 million bus pas-
sengers, (iii) a taxi system with 15 thousand taxis and 500 thousand
passengers, and (iv) a personal car system with 10,043 personal cars
which are collected for insurance purposes, for a correlation analy-
sis on cellular patterns and urban mobility. Fig. 6 shows mobility of
bus, taxi, subway, and car users, which are also the cellular users
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given the high penetration rates of cellular services. A lighter color
indicates a higher density.

3.2 Measurement Methodology
We use a lowercase letter for a number, e.g., l presents the number
of data records at a specific location during a time period, and a up-
percase letter for a collection, e.g., L is a vector of l as a distribution.
In general, we have three factors to aggregate loads, i.e., spatial,
temporal and networks. We summarized terminologies in Tab. 1.

Table 1: Terminologies

Notation Meaning
P a spatial partition
r , R a region and a region collection
t , T a time slot and a time slot collection
k , K a network and a network collection
l , L a load and a load collection/distribution
L̃ normalized load distribution
l r ,tk a load of network k at region r in time slot t

LR,TK a load collection given K , T and R
ϵ a tolerant threshold for representativeness

Spatial Partition: We introduce two spatial partitions to show
the bias of individual networks in a city, i.e., a network-specific
tower based partition and a network-agnostic census-based par-
tition. For a single network, a tower partition is generated by a
Voronoi graph [12] to estimate the coverage of a tower. The census-
based partition is released by city governments according to their
road distribution and population distribution. Specifically, Shen-
zhen has a census-based partition including 491 regions as shown
in Fig. 7, which shows the dominant cellular network (with most
users) for each region, and the average size of regions is 4.06 km2.
Therefore, tower-based partitions are dependent on tower locations
in single networks. Instead, since census partition is independent
from cellphone networks, we compare load distribution of different
networks under the census-based administrative regions.

A
B
C

Fig 7: Census-based Partition

Temporal Partition: We partition time into 10-minute time slots.
In other words, we calculate calculate load for every 10 minutes.
As a result, one day is divided into 144 time slots. The 10-minute
slot length has been extensively used in various cellular network
studies [12] [43] [45].
Load Distribution: The number of phone calls or internet calls is
described as load. L = l1, l2, . . . ln represents the load distribution
where l1 to ln is the load in a specific region in a specific time slot.
We use a subscript k to differentiate loads from different networks,

e.g., Lk ; we use L∀ for loads of total loads in a city by combin-
ing all cellphone networks. We use a superscript r and t for load
distribution in a region, e.g., Lr , or at specific time, e.g., Lt .
Representativeness Distance as Measurement Metrics: Intu-
itively, Li is a representative of L∀ if Li can be scaled to L∀ by a
scaling factor α . Similarly, to study if a network can be used as
a representative of all networks, we use Representative Distance
θk (0 ≤ θk ≤ 1) which is the maximum norm of the difference
between the total load distribution and the scaled load distribution
of network i at region r during the same time slot as in Equation (1).

θk = min
α
∥|L̃∀ − α L̃k |∥∞;

L̃ =
L −min(L)

max(L) −min(L)
; L∀ =

K∑
k=0

Lk ;
(1)

We illustrate our idea in the example with a single network LA load
distribution and the total load among all networks L∀ in Fig. 8. LA
and L∀ represent the load distribution during one day for Network
A and all three networks, respectively. (1) we normalize both dis-
tributions as in the left figure and calculate the maximum norm
between the two distributions. (2) we tune a scaling factor α to
search for the minimum values of the maximum norm between the
two distribution, which is denoted as the representativeness dis-
tance between the two distributions as shown in the right figure.We
use the maximum norm for two reasons. First, it measures similarity
and preserves pair-wise comparison between two load distributions.
The pair-wise comparison is important since it measures the rep-
resentativeness under same spatial-temporal dimension, e.g., li in
L∀ and li in LA describe the load in same region at same time slot.
In contrast, other statistical features, e.g., average or similarity, are
aggregated results and may ignore the difference between two pairs.
Second, it measures the upper bound of the difference between two
load distributions and therefore it is a more strict measurement than
aggregated value such as mean and similarity. The upper bound
means that difference between loads in the two load distributions is
guaranteed to be smaller than the representative distance. In other
words, a low value of θ leads to a low value of similarity or mean
difference but not vice versa.

Representativeness 
Distance

Fig 8: Representativeness Distance

Tolerant Parameter ϵ . We define a tolerant parameter ϵ . A net-
work k is a representative of all networks if the representativeness
distance θk ≤ ϵ . Based on load distributions of Network A, B and
C, we categorize 491 administrative regions as shown in Fig. 7 or
time slots into 3 groups: (i) Total Representative Regions/Time Slots
(TR), the regions/time slots where every network is representative;
(ii) Partial Representative Regions/Time Slots (PR), the regions/time
slots where we can find at least one representative network but
not all networks; (iii) No Representative Regions/Time Slots (NR), the
regions/time slots where no network is representative.
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4 MEASUREMENT RESULTS
We first investigate spatial and temporal representativeness sep-
arately with control variates method, e.g., we compare different
spatial regions under the same temporal dimensions. Second, we
conduct a case study with a combination of spatiotemporal factors.

4.1 Spatial Representativeness
Overall Patterns: Fig. 9 shows Representative Distance θ distribu-
tion of three networks in administrative regions. A lower represen-
tative distance indicates high similarity between loads (e.g., cellular
traffic on web access) in a single network and loads of all networks.
We found the load of Network B is the most similar to the load
distribution of all users across all networks. One possible reason
is that the load patterns of Network A and C are complementary,
while the load pattern of Network B is close to the overall load
pattern in the city. Based on the representative distance of three
networks, we study the regions in the three groups with different
ϵ in Fig. 10. When the threshold ϵ increases, the number of total
representative (TR) regions increases; the number of no representa-
tive (NR) regions decreases; The number of partial representative
(PR) regions increases first and then decreases.
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Fig 10: Spatial Groups
Impact Factors: To further explain the representativeness of

regions in these three groups, i.e., TP, PR, and NR, we study user
distribution and their usage patterns in these regions, which are
closely related to two types of features, i.e., static features of the re-
gions (e.g., functions and population) [12] and dynamic features of
the users (e.g., mobility) [48]. For example, there are more business
activities and users in CBD areas, who prefer the cellular networks
with better quality and are more tolerant on costs; whereas college
students in educational regions are more sensitive on costs. There-
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fore, we take both PoI (points of interests) and static population
distribution for potential reasons for representativeness difference.
However, those static features are not sufficient to capture dynamic
user distributions since users are moving between different regions
during different time of day. Therefore, we introduce a dynamic
feature, i.e., user mobility, to analyze its correlation with cellular
representativeness. As a result, we study these static and dynamic

features as three contextual impact factors, i.e., Point of Interest
(PoI), population, and user mobility, which are used to investigate
their impact on representativeness in regions to explore the under-
lying reasons for representativeness differences.

Impact Factor 1: Region PoI. For each administrative region
in Fig. 7, the PoI distribution is described by a 17-dimension vector
from 17 subgroups. Since entropy is widely used to measure the
randomness and diversity of a certain distribution, we study PoI en-
tropy in 17 subgroups for each region −

∑17
i=1 p(xi )loд2p(xi ) where

xi is the number of PoIs in a subgroup i . We found that a higher
PoI entropy leads to a lower representative distance as in Fig. 11.
In other words, in the regions with more diverse PoI distributions,
the load distribution of a network is more similar to its total load
distribution. We further validate this observation in Fig. 12 and
Tab. 2. In Fig. 12, we set ϵ as 0.2 to categorize all 491 regions into
three groups, i.e., NR (No Representative group), PR (Partial Repre-
sentative group), and TR (Total Representative group). We found
that a high entropy (i.e., more diverse distribution of PoI) in both
TR and PR, compared with NR. We give the detailed PoI distribution

Table 2: PoI Distribution in Groups

Group Cluster
Residence Transport Office Recreation Edu

TR 0.18 0.23 0.21 0.22 0.16
PR 0.14 0.26 0.28 0.20 0.12
NR 0.30 0.18 0.13 0.18 0.21

in Tab. 2 where we found that (i) the most PoI distributions in TR
and PR regions are dominated by the function of Transportation
and Office, and (ii) NR regions are dominated by the residence.

Impact Factor 2: Region Population. We extract Shenzhen
population from Worldpop [14], which gives fine-grained popula-
tion distribution in 100m×100m grids. Fig. 4 presents the population
distribution and statistics in Shenzhen where the CBD (central busi-
ness district) has a higher population density than other areas. We
map population into administrative regions and calculate the popu-
lation density in regions to study the impact on representativeness
in Fig. 13. In regions with high populations, the representative
distance is small, which indicates that a single network is more
representative in cellular users in these regions.
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Fig 13: Pop. v.s. Spatial

0.0 0.2 0.4 0.6 0.8 1.0
Mobility

0.2

0.3

0.4

0.5

R
ep

 D
is

ta
nc

e 
 (

)

Fig 14: Mobility v.s. Spatial

Impact Factor 3: Region Mobility.We quantify the user mo-
bility of one region by its mobility demand by the number of trips
starting from ri inferred from the four transportation systems as
introduced in Section 3.1. To eliminate the impact of region sizes
and populations, we use mobility demand index, which is defined
as the ratio between mobility demand and population in Fig. 14. We
found that a high mobility demand index (i.e., a high percentage of
moving population) decreases the representative distance. In other
words, it increases the representativeness of a single network.
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4.2 Temporal Representativeness
Daily Pattern: As shown in Fig. 15, we found a lower representa-
tiveness distance in Network A and B, but a higher representative-
ness distance in Network C. All networks show similar patterns
including three peaks around 9-10am, 4-5pm, and 8-9pm. Simi-
larly, on the temporal dimension, we study three representativeness
groups, i.e., TR (Total Representativeness), PR (Partial Representa-
tiveness), and NR (None Representativeness), in Fig. 16. Compared
with spatial representativeness groups as in Fig. 10, temporal repre-
sentativeness groups present a lower representativeness thresholds.
It indicates the spatial dimension has a higher variance of repre-
sentativess, which motivates us to correct the representativeness
mainly from the spatial dimension in Section 5.
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Fig 15: Time of Day
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Impact Factors on Daily Pattern: We analyzed both network
and contextual data to study the potential reasons and impact fac-
tors on the daily representativeness patterns. We mainly show the
results on user mobility since it is the most important dynamic con-
textual factors on the temporal dimension compared to population
and PoI distributions, which are static features related to spatial
distribution of regions. We calculate the entropy of daily origin-
destination pair distributions of all taxi and public transportation
(i.e., bus and subway) trips based on the mobility data introduced
in Section 3.1. A lower entropy indicates a less random (i.e., less
diverse) distribution of user mobility as shown in Fig. 17. In other
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words, most passengers are mainly moving from certain origins to
destinations, i.e., from residential regions to office regions or vice
versa. We study the impact of mobility entropy on the representa-
tiveness by showing the average mobility entropy of three groups
in Fig. 18. We found the highest mobility entropy in the TR (total
representative) group and the lowest in the NR (no representative)
group. It suggested that the low diversity of mobility potentially
leads to a high representativeness distance, which may be because
most passengers are moving between high-demand regions.
(ii) Weekly Pattern: We further study weekly patterns of repre-
sentativeness as shown in Fig. 19. We found a larger representative

distance during weekdays than weekends. Besides, the representa-
tiveness distance is relatively flat during the day time of weekends.
Compared with non-peak time segments, the representative dis-
tance is larger in peak segments. Similar to daily patterns, the

WeekendsPeak Hour

Fig 19: Average Representative Distance in One Week
representativeness difference is potentially caused by the user mo-
bility difference. For instance, the mobility traces are more random
during weekdays compared with weekends. Due to space limitation,
we omit the detailed analysis.

4.3 A Case Study

CBD

Airport
Residential

Train Station

Factors PoI
Diversity Population Mobility

CBD High Large High

Train Station Medium Large High

Residential Low Medium Medium

Airport Low Small High

Fig 20: Case Study Areas and Their Contextual Diversity

To dive deeper on the spatial and temporal representativeness, we
conduct a case study in four selected regions, i.e, two transportation
centers (including the city train station and the airport), the CBD
area, and a residential area, which are labeled in Fig. 20. We select
the four regions for two reasons: (i) they are the most important
regions for most cities; (ii) they have very diverse distributions
in terms of the contextual factors including PoI, population, and
mobility as shown in the Table in Fig. 20. The number of towers in
the four selected locations with a certain radius is given in Tab. 3
from the least number of towers to the most number of towers.

Table 3: Tower Distribution on Select Locations

Radius 1 km 2 km
A B C A B C

airport 2 2 1 17 20 11
residential 25 17 13 84 55 47
train station 38 30 27 134 109 101

CBD 58 56 30 164 178 92

We compare their representative distances in Fig. 21, where we
found the highest representative distance (i.e., less representative)
in the airport area and the lowest representative distance (i.e., more
representative) in CBD. It confirmed our previous observations
in Section 4.1 that a lower contextual diversity in terms of PoI,
population and mobility leads to a larger representative distance,
which make a region less representative. For an in-depth study on
contextual diversity, we further study the impact of geographical
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distances from the center of these areas on representativeness in
Fig. 22. A long distance to the area center (i.e., a larger area with
a larger radius) decreases the representativeness distance of the
area because it mainly increases its contextual diversity. However,
we found that the impacts of distances on four areas are different:
the representativeness only decreases slightly around the CBD re-
gion; whereas the representativeness decreases significantly around
the train station, airport and residential regions. This is because
the nearby regions around the CBD area is still downtown so the
contextual diversity does not change much with the increasing of
geographical distances from the CBD center; whereas the nearby re-
gions around airport, train station and residential areas have higher
contextual diversity with the increasing of geographical distances
since they include more diverse regions.
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Fig 21: Studied Locations
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5 CORRECTION MODEL
Motivation: Based on the analyses, we found that contextual di-
versity (i.e., PoI, population, and mobility) is a key reason for rep-
resentativeness. In regions with more diverse PoI distribution and
mixed functions, higher density of population and more visitors,
a single network is more representative for the usage patterns of
all networks in a city. Our analysis has the potential to help fellow
researchers or network operators with the data from only one net-
work to avoid data bias for their academic research and real-world
applications. For instance, they can use a sample of data from a spa-
tial temporal combination with high contextual diversity, instead of
all the data from a single network. Therefore, a natural question for
us is how to design a correction model to obtain such a data sample,
which is resilient to representativeness bias. The key feature of our
correlation model is that it is only based on single-network data
and public contextual data, and does not require the data from all
networks in a city to correct the bias and thus improve represen-
tativeness. This is because accessing the data from all networks is
very challenging in a real-world setting.

5.1 Problem Definition
We first introduce terminologies for diversity modeling as in Tab. 4
and then formalize our target problem.

5.1.1 Terminologies. (1) Spatial Partition:We use a grid partition in
our correction model, which divides a region into grids with equal
widths and heights. We use grid partition because it is flexible to
change sizes for different spatial granularity, which has been used
in many other research [18] [46]. (2) Mobility Matrices: For each grid
д, we construct two matrices to describe its mobility patterns in the

Table 4: Terminologies

Notation Meaning
д, G a grid and a grid collection
Sд, SG data from a network a grid/grid collection
S, SU both present data from a network for all grids
Sr , SR data from a network for a region r or a region subset R

α a data sampling ratio in terms of S

M
д
f rom a mobility matrix from grid д

M
д
to a mobility matrix to grid д

Pд a PoI distribution in grid д

Dд a Population density in grid д

Vд a region function distribution for grid д

Eд a contextual diversity for grid д

grid: a From matrixMд
f rom to describe the number of passengers

moving from grid д to other grids in different time slots. a Tomatrix
M

д
to to describe the number of passengers moving to grid д from

other grids in different time slots. Therefore, both matrices have |G |
rows and |T | columns where |G | is the number of grids; |T | is the
number of time slots covering both weekdays and weekends. (3) PoI
Distribution: For each grid, a PoI vector Pд is used to describe the
PoI distribution; each element in Pд is number of PoIs in a category,
e.g., education, transport. Different from mobility matrices to show
dynamic features with time, the PoI vector is a static feature on
regions. (4) Population: Another static feature is population on a
grid, we quantify population on a grid д by population density
Dд , i.e., the average number of population per km2. (5) Function
of Regions: Since a grid is always mixed with functions (e.g., office
area, entertainment, residence, shopping, transportation hub, etc),
we model function of regions with a vectorVд where |Vд | is the
number of prefixed region functions; each element vдi inVд is a
probability that the grid r has a function of region, e.g., eduction.
Specifically, we defineVд as a 5-dimension vector corresponding
to five functions of regions, i.e., office, residential, educational,
transportation and recreation, which are the main urban region
functions used in recent literature [43]. However, different from the
traditional definition of region function, which is a static feature
for a region, the region function in our study is a dynamic feature
on temporal dimensions since we classify region function with
temporal mobility data. For example, a grid can be identified as
an office area during workdays while as an entertainment area
during weekends. (6) Contextual Diversity: Intuitively, a grid with a
single function, i.e.,V = {1, 0, · · · , 0} represents a low contextual
diversity. In contrast, a more uniform distribution ofV , e.g.,V =
{0.1, · · · , 0.1} represents a high contextual diversity. Therefore,
we quantify region diversity Eд with an entropy of vector Vд ,
which is one of the most common measurement for randomness of
elements in a set [33]. For example,Vд = {0.2, 0.2, 0.2, 0.2, 0.2} has
the highest entropy, which indicates a high contextual diversity.

5.1.2 Target Problem: Diversity-Driven Grid Selection for Data Sam-
pling. In Equation 2, given a data set S of a network from all grids
and a sample ratio α , our target is to select a sub set of grids G
from all equally-sized grids to maximize the contextual diversity
EG under a constraint that the size of SG is equal to α · |S|. All
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the data SG from this sub set of grids G are our data sample.

arдmaxG E
G

s .t .
∑
д∈G
|Sд | = α · |S|

|G ∩ r | ≥ 1,∀r ∈ R

(2)

To avoid missing values on spatial dimension in sampling, we add
a constraint |G ∩ r | ≥ 1 to make sure every census-based region
r at least gets one of its grids selected. In our setting, a region is
always bigger than a grid, and typically has a few grids in it. When
we require a smaller region, i.e., finer granularity, we can decrease
the grid size to satisfy the constraint.

Metadata
Population, PoI distribution  

8 1 10 10

15 8

0 5

20 0 1 12

0 15 0 11

3 5 0 6

Words f1 f2 f3 f4 f5

0.3 0.3 0.1 0.1 0.2

0.2 0.25 0.2 0.2 0.15

0.05 0 0.3 0.65 0
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V2

V3
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PoI Population Mobility

Contextual Information

Diversity Modeling

Entropy Maximization

Function Distribution

Topic Learning

l1 l2 l3 l4 l5 l6 l7 l8 l9Sample

g4

4 regions

Fig 23: Diversity-Driven Sampling

5.2 Diversity-Driven Sampling
Since contextual diversity in terms of PoIs, population and user
mobility is a key for representativeness in single networks, we
propose a diversity-driven sampling strategy by selecting a few
grids to construct a representative dataset (including all the data
from the selected grids) from a non-representative single network
data to solve the target problem in Equation 2. The general idea is
to first quantify the contextual diversity in grids (i.e., equally-sized
grids) in all regions, and then maximize the contextual diversity
in sampling grids. We summarize our model into two steps as in
Fig. 23 : (i) diversity modeling; (ii) diversity-maximization sampling.
We elaborate on these two steps as follows.

(i) Diversity Modeling: In diversity modeling, we generate a
vectorV = {v1,v2, · · · ,vn } for each grid where n is the number
of potential region functions (e.g., education, office, etc), and each
element vi in V is the probability that a grid belongs to a func-
tion. In general, a higher entropy on V indicates a more diverse
distribution on region functions, thus a larger contextual diversity
in a region. To construct such aV from contextual information of
a grid, e.g., population, mobility and PoI distribution, we apply a

ALGORITHM 1: Diversity-Driven Sampling

Input :α , SU , PU , DU ,MU
f rom ,MU

to

Result: SG

metadata ← (PU ,DU );
words ← (MU

f rom ,M
U
to );

VU ← topicClustering(metadata,words) ;
G ← initialize() ;
C ← U −G;
while |SG | < α · |SU | do
EG ← entropy(VG ) ;
∆EC ← entropyGain(VG ,VC );
д← arдmaxд∈C ∆Eд ;
G ← G ∪ {д};
C ← C/{д} ;
SG ← SG ∪ Sд

end

topic model. Topic models such as LDA [5] was proposed to model
the relation between the word distribution in a document and the
topic distribution of the document. Similarly, we infer region func-
tions with topic models along with the input of mobility, PoI and
population. Specifically, the detailed mapping from region function
clustering to document topic clustering is as follows: we map grids to
documents; region functions to document topics; the dynamic feature,
i.e., mobility matrices to words; the static features, i.e., population
and PoI distributions to meta data of documents, e.g., authors, key
words of documents. We initialize the topic number as 5 in the
clustering and thus the output of a topic model for a document is
a vector V with 5 functions of regions, and each element of the
vector indicates the possibility that the document belongs to a topic,
i.e., a function of region. Thus, in our region diversity modeling,
the topic model is to assign a grid with a distribution of region func-
tionsVд whereVд = {v

д
1 ,v

д
2 , · · · ,v

д
n } and v

д
i is the possibility a

grid д belongs to a region function i . Fig. 23 presents a simplified
example with 4 grids, 3 time slots, and 5 functions of regions. We
map contextual data into grids, and each grid has population and
PoI distribution as metadata. Besides, bothMf rom andMto have
3 rows for 3 time slots and 4 columns for 4 regions. The topic model
will generate a 5-dimension vectorV for each region to describe
the possibility that the grid has these 5 functions.

(ii) Diversity-Maximization Sampling: After the first step,
each grid has been assigned with a function distribution vector.
Based on that, our second step is to create a data sample that meets
the sampling requirement and maximizes the contextual diversity
of the grids having this data sample. To achieve it, we apply an
entropy maximization strategy based on a greedy algorithm. We
separate all gridsU into two groups, i.e., a selected group G and a
unselected groupU −G. In the initialization, for each region r , we
select a grid in r with the highest entropy and put the grid in G to
satisfy the second constraint in Equation 2. Second, we calculate
the entropy gain based on EG for every grid in U −G. We select
the gird д with the highest entropy gain, i.e., the diversity gain, and
then updateG = G ∪ {д}. Third, we update the EG with newG , i.e.,
including this new grid д. The process will stop until the number of
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sample records are satisfied. For the example in Fig. 23, the number
of sample records are α · |S| == 9 and there are 4 records (i.e., l1 to
l4) in grid д2 and 5 records д1 (i.e., l5 to l9). We first select 4 records
from д2 sinceVд2 has the largest entropy with one region selected
and then select 5 records from д1 since we have the largest entropy
inV {д1,д2 } . The process is described in Algorithm 1.

5.3 Evaluation
5.3.1 Evaluation Settings. we evaluate the sampling strategy with
the following settings. Ground Truth: We use the load of three
networks, which covers 100% of cellular users, as the ground truth.
Baselines: we compare the CellRep with two baselines: (1) Single is
based on the raw data from the most representative network for the
best performance of a single network, i.e., a network with the lowest
representativeness distance from A, B and C without sampling. (2)
CellSam is a uniform sampling method without considering the
contextual diversity. Metrics: we use representativeness distance
θ as the metrics for the evaluation, a lower representativeness
distance indicates a higher representativeness.
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5.3.2 Overall Results. We compare the performance of CellRep
with two baselines in Fig. 24. Both the baseline model CellRam
and our CellRep increases the representativeness by reducing the
representativeness distance due to the higher sample until the ratio
is 0.6. In particular, our CellRep decreases representativeness dis-
tance significantly from 0.31 to 0.16 on average as shown in Fig. 25.
It shows that with a sophisticated sampling strategy in CellRep,
even 30% of sample data from a single network can achieve similar
representativeness as all single-network data.
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Fig 27: Impact of Grid Size

5.3.3 Impact of Factors. We further study the impact of different
factors on the performance of CellRep. Fig. 26 compares the resulted
representativeness distance θ with data in the three networks. We
found even three networks have different user coverage, they can
achieve similar representativeness with CellRep. Therefore, CellRep
shows a robust performance in different networks. Specifically, the
representativeness distance can be reduced to smaller than 0.2 in
Network A, B, and C with α equal to 0.5, 0.6, and 0.7, respectively.
Moreover, we study the impact of spatial granularity in Fig. 27,

which shows the performance of CellRep with different grid sizes.
CellRep achieves the best performance with a grid size 100m×100m.
In general, a finer spatial granularity leads to a better performance.

5.3.4 Impact on Real-World Applications. Relying on the measure-
ment results, we validate the impact of representativeness on popu-
lation estimation application as introduced in the motivation. Differ-
ent from the previous work, which improves the inference accuracy,
our work focuses on a different angle, which studies the impact of
representativeness of cellular data. We implement a context aware
population estimation with cellular usage data from single net-
works [45] and map the estimated population to the administrative
regions. We use the Worldpop [14] dataset as the ground truth data
for cross-validation and MAPE (Mean Absolute Percent Error) as
the evaluation metric. We study the impact of our representative
distance on this population estimation in Fig. 28, which proves that
a higher representativeness distance leads to a worse performance
on the application. Fig. 29 shows CellRep corrects the data bias
in this population estimation and improves the performance by
reducing the MAPE 40.3% from 25.8% to 15.4% compared with a
baseline Single (which use raw data in single networks) and another
baseline CellSam, which use a uniform sampling method without
considering the contextual diversity.
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6 DISCUSSION
Lesson Learned:We summarize several lessons learned.

(1). Contextual diversity is the key factor for network represen-
tativeness on both spatial and temporal dimensions. Different con-
textual information (e.g., PoI distribution, population and mobility)
causes different cellular user distribution and leads to representa-
tiveness difference of single networks.

(2). The representativeness is one of the most important fac-
tors for performance for real-world applications. We found a high
correlation between representativeness and the performance of a
population estimation model. Due to the limited access to cellular
activities from multiple networks, most existing applications and
research studies are based on single networks. On one hand, a better
understanding on representativeness can help understand the per-
formance of existing models. On the other hand, our measurement
study paves a way to future cellular web log studies by providing
pre-analysis results and insights.

(3). A well-designed correction model provides an approach to
improving data qualify in single networks by combining open con-
textual data with single-network data. Our evaluation results show
that such a correction model has the potential to improve applica-
tion performance by intelligently sampling the representative data.
The correction model can be applied to many applications related
with web services such as traffic demand prediction [43], web user
estimation [3], hot spot recommendations [15].
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Table 5: Cellular Web Log Analyses Survey

Categories Investigation Scale
Single Multiple

DataCollection
Methodology

Individual Researcher [16] [21] [24] [37] [23] [7] [20] [34] [41]
Network Operators [19] [44] [18] [43] [8] [6] [28] [31] [26] CellRep

Ethical and Privacy Issues: Our study acquired consent to inves-
tigate the Cellular web log data for research purposes, which is
approved by IRB. The data we investigate (i) Deidentification: the
analyzed data are anonymized by the three cellular operators, and
identifiable IDs (e.g., phone numbers or SIM IDs) are replaced by a
serial identifier during the analyses. (ii) Coarse-grained Locations:
we analyze cellular user behaviors at the level of cell towers, which
may cover from a few thousand square meters to a few square
kilometers, which cannot reveal detailed locations of users. (iii)
Aggregation: Our work was exempted by an IRB process in our
affiliation since there is no more than the minimal risk to conduct
our research because the tower-level results are based on aggrega-
tion, which cannot be traced back to individual cellular users. (iv)
Benefits Outweigh Risks: All cellular users consented that their data
will be used for cellular network management and improvement.
We believe our results have positive impacts on cellular users’ by
improving their cellular services so the benefit of our data-driven
research outweigh the potential risk.
Data Release: One key challenge to build up our work is to access
real cellular data. We negotiated with the network providers and
will release preprocessed sample data.
Limitation: A limitation is that our study is based on three net-
works in one particular city. Due to limited data access, we cannot
validate our findings in other cities. However, most cities in the
world are covered by multiple cellular networks. We believe that
the findings are meaningful to other cities, especially the cities in
China since they have the same three cellular operators.

7 RELATEDWORK
Cellular networks are the key infrastructure for Web services. In
fact, the trend has been showing that people use their cellular
phones for Web services (e.g., Internet Access or App) more often
than their phone call [17]. Investigating cellular usage patterns has
received considerable attention recently due to data availability.
Table 5 summarizes related work with a two-dimension taxonomy:
(i) data collection, i.e., collected by individual researchers or cellular
operators; (ii) investigation scale, i.e., single or multiple networks.

7.1 Study on Data from Indivi. Researchers
Many adhoc research projects have various cellular users reporting
their data, e.g., locations, web access latency, and signal strength,
by installing Apps on cellular devices (e.g., cellphones [23] and
connected vehicles [30]). In this approach, researchers obtain de-
tailed data, but the limitation is that the data from a small portion
of users and cannot reveal the overall large-scale user patterns.
A Single Network: Given the relatively easier access of single
network data collected by individual researchers, lots of work has
been proposed to focus on performance and operational patterns
of individual networks, such as urban activity inference [23], pop-
ular routes construction [16], destination recommendation [21],

anomalies spotting [24] and relationships between mobility and
PoI [37].
Multiple Networks: Due to the limited accessibility of multiple
network data from cellular operators directly, almost all data-driven
investigations on multiple networks are limited to small samples
of users voluntarily contributing their data from their devices at
an application level, e.g., inter-city mobility of Skout users [41],
location prediction [20], urban planning based on location-based
social network [34], and existing PoI verification [7].

7.2 Study on Data from Network Operators
Cellular network operators passively collected their network data
for billing purposes (e.g., CDR data [18]) or web access logs (e.g.,
internet access data [22]). Compared with detailed data collected
by individual researchers, the data collected by cellular operators
typically cover all users for a network, yet with coarse granularity
on spatial and temporal dimensions.
A Single Network: Extensive studies have been conducted with
cellular data for various applications. For example, the Call Detail
Records (i.e., CDR) for phone calls or data connection records for
data calls are commonly used to model human mobility at a metro-
politan scale [18] [48]. Based on cellular data from a single network,
researchers (i) conduct spatiotemporal phone call analysis[6], data
call analysis [31], mobile traffic analysis and prediction [6] [46] [43],
and dynamic urban geo-social connectivity graph construction [19]
(ii) trajectories recovery from mobility data [44], (iii) determine
the locations of network upgrades [26], and (iv) improve network
performance [8]. However, the above work is based on a single
network in one city, which may not be representative of usage
patterns of all cellular users across different networks.
Multiple Networks: To our knowledge, we conduct the first effort
to investigate the usage patterns of all cellular networks in a city.
Compared with previous studies in other three categories, we ad-
vance the understanding on the usage patterns of multiple diverse
cellular networks.

8 CONCLUSION
As an infrastructure for mobile web service, we conduct the first
comprehensive study based on multiple diverse cellular networks
to understand cellular service representativeness at city scale with
more than 10 million cellular users. We quantify the representa-
tiveness in single networks and explain the potential reasons for
representativeness differences. Based on our analysis, we design
a correlation model and then validate its performance based on
real world application on population estimation. Our analysis re-
sults could be used as a preliminary result to provide insights for
research work and applications such as city-scale web service mod-
eling, mobility and population estimation. Moreover, we design a
correction model to improve representativeness in single-network
data. Last but not least, we will share pre-processed sample data to
benefit the research community to build up our work.

593



CellRep WWW ’20, April 20–24, 2020, Taipei, Taiwan

ACKNOWLEDGMENTS
This work is partially supported by NSF 1849238 and 1932223.

REFERENCES
[1] https://www.cs.rutgers.edu/~dz220/data.html. (????).
[2] Vito Albino, Umberto Berardi, and Rosa Maria Dangelico. 2015. Smart Cities: Def-

initions, Dimensions, Performance, and Initiatives. Journal of Urban Technology
22, 1 (2015), 3–21. https://academic.microsoft.com/paper/2026942921

[3] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Srinivasan
Seshan, Shobha Venkataraman, and He Yan. 2014. Modeling web quality-of-
experience on cellular networks. In Proceedings of the 20th annual international
conference on Mobile computing and networking. ACM, 213–224.

[4] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime
Lenormand, Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini,
and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics
Reports (2018).

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research 3 (2003), 993–1022. https:
//academic.microsoft.com/paper/1880262756

[6] Guangshuo Chen. 2018. Spatiotemporal Individual Mobile Data Traffic Prediction.
Ph.D. Dissertation. INRIA Saclay-Ile-de-France.

[7] Hsiu-Min Chuang and Chia-Hui Chang. 2015. Verification of POI and Location
Pairs via Weakly Labeled Web Data. In Proceedings of the 24th International
Conference on World Wide Web. 743–748. https://academic.microsoft.com/paper/
1961665379

[8] Wei Dong, Swati Rallapalli, Rittwik Jana, Lili Qiu, KK Ramakrishnan, Leo Ra-
zoumov, Yin Zhang, and Tae Won Cho. 2014. iDEAL: Incentivized dynamic
cellular offloading via auctions. IEEE/ACM Transactions on Networking (TON) 22,
4 (2014), 1271–1284.

[9] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,
Ramesh Govindan, and Deborah Estrin. 2010. Diversity in smartphone usage.
In Proceedings of the 8th international conference on Mobile systems, applications,
and services. ACM, 179–194.

[10] Zhihan Fang, Yu Yang, Shuai Wang, Boyang Fu, Zixing Song, Fan Zhang, and
Desheng Zhang. 2019. MAC: Measuring the Impacts of Anomalies on Travel
Time of Multiple Transportation Systems. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 3, 2 (2019), 42.

[11] Zhihan Fang and Desheng Zhang. 2017. Human Mobility Modeling on Metropol-
itan Scale Based on Multiple Cellphone Networks. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation. ACM,
321–322.

[12] Zhihan Fang, Fan Zhang, Ling Yin, and Desheng Zhang. 2018. MultiCell: Urban
Population Modeling Based on Multiple Cellphone Networks. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2, 3 (Sept. 2018), 106:1–106:25. https://doi.org/
10.1145/3264916

[13] Zhihan Fang, Fan Zhang, and Desheng Zhang. 2019. Fine-grained travel time
sensing in heterogeneous mobile networks. In Proceedings of the 17th Conference
on Embedded Networked Sensor Systems. 420–421.

[14] Catherine Linard Forrest R Stevens, Andrea E Gaughan and Andrew J Tatem.
2015. Disaggregating census data for population mapping using random forests
with remotely-sensed and ancillary data. PloS one, 10(2) (2015).

[15] Sahar Hoteit, Stefano Secci, Stanislav Sobolevsky, Carlo Ratti, and Guy Pujolle.
2014. Estimating human trajectories and hotspots through mobile phone data.
Computer Networks 64 (2014), 296–307.

[16] Gang Hu, Jie Shao, Zhiyang Ni, and Dongxiang Zhang. 2018. A graph based
method for constructing popular routes with check-ins. World Wide Web 21, 6
(2018), 1689–1703. https://academic.microsoft.com/paper/2769341224

[17] Cisco Visual Networking Index. 2017. Global mobile data traffic forecast update,
2016–2021 white paper. Cisco: San Jose, CA, USA (2017).

[18] Sibren Isaacman, Richard A. Becker, Ramón Cáceres, Margaret Martonosi, James
Rowland, Alexander Varshavsky, and Walter Willinger. 2012. Human mobility
modeling at metropolitan scales. In MobiSys.

[19] Fang-Zhou Jiang, Kanchana Thilakarathna, Mahbub Hassan, Yusheng Ji, and
Aruna Seneviratne. 2017. Efficient Content Distribution in DOOH Advertising
Networks Exploiting Urban Geo-Social Connectivity. InWWW ’17 Companion
Proceedings of the 26th International Conference on World Wide Web Companion.
1363–1370. https://academic.microsoft.com/paper/2609621282

[20] Ankita Likhyani, Deepak Padmanabhan, Srikanta J. Bedathur, and Sameep Mehta.
2015. Inferring and Exploiting Categories for Next Location Prediction. In
Proceedings of the 24th International Conference on World Wide Web. 65–66.
https://academic.microsoft.com/paper/2156120579

[21] Wei Liu, Hanjiang Lai, Jing Wang, Geyang Ke, Weiwei Yang, and Jian Yin. 2019.
Mix geographical information into local collaborative ranking for POI recom-
mendation. World Wide Web (2019), 1–22. https://academic.microsoft.com/paper/
2945193020

[22] Markus Luczak-Roesch, Laura Hollink, and Bettina Berendt. 2016. Current
Directions for Usage Analysis and the Web of Data: The Diverse Ecosystem of
Web of Data Access Mechanisms. In WWW ’16 Companion Proceedings of the
25th International Conference Companion on World Wide Web. 885–887. https:
//academic.microsoft.com/paper/2277977062

[23] Anastasios Noulas, Cecilia Mascolo, and Enrique Frias-Martinez. 2013. Exploiting
foursquare and cellular data to infer user activity in urban environments. In
2013 IEEE 14th International Conference on Mobile Data Management, Vol. 1. IEEE,
167–176.

[24] Evangelos E. Papalexakis, Konstantinos Pelechrinis, and Christos Faloutsos.
2014. Spotting misbehaviors in location-based social networks using tensors.
In Proceedings of the 23rd International Conference on World Wide Web. 551–552.
https://academic.microsoft.com/paper/182499956

[25] Zhou Qin, Zhihan Fang, Yunhuai Liu, Chang Tan, Wei Chang, and Desheng
Zhang. 2018. EXIMIUS: A measurement framework for explicit and implicit
urban traffic sensing. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM, 1–14.

[26] Mubashir Adnan Qureshi, Ajay Mahimkar, Lili Qiu, Zihui Ge, Sarat Puthenpura,
Nabeel Mir, and Sanjeev Ahuja. 2017. Reflection: Automated test location selec-
tion for cellular network upgrades. In Network Protocols (ICNP), 2017 IEEE 25th
International Conference on. IEEE, 1–10.

[27] Muhammad Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, Shobha
Venkataraman, and Jia Wang. 2013. A first look at cellular network perfor-
mance during crowded events. In ACM SIGMETRICS Performance Evaluation
Review, Vol. 41. ACM, 17–28.

[28] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, Shobha Venkataraman,
and Jia Wang. 2016. Characterizing and optimizing cellular network performance
during crowded events. IEEE/ACM Transactions on Networking (TON) 24, 3 (2016),
1308–1321.

[29] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. 2012. Char-
acterizing geospatial dynamics of application usage in a 3G cellular data network.
In INFOCOM, 2012 Proceedings IEEE. IEEE, 1341–1349.

[30] Muhammad Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang.
2012. A first look at cellular machine-to-machine traffic: large scale measurement
and characterization. ACM SIGMETRICS performance evaluation review 40, 1
(2012), 65–76.

[31] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and JiaWang. 2015. Geospa-
tial and temporal dynamics of application usage in cellular data networks. IEEE
Transactions on Mobile Computing 14, 7 (2015), 1369–1381.

[32] M Zubair Shafiq, Lusheng Ji, Alex X Liu, and Jia Wang. 2011. Characterizing
and modeling internet traffic dynamics of cellular devices. ACM SIGMETRICS
Performance Evaluation Review 39, 1 (2011), 265–276.

[33] C. E. Shannon. 1948. A mathematical theory of communication. Bell System
Technical Journal 27, 3 (1948), 379–423. https://academic.microsoft.com/paper/
1995875735

[34] Rodrigo Smarzaro, Tiago França de Melo Lima, and Clodoveu A. Davis Jr. 2017.
Could Data from Location-Based Social Networks Be Used to Support Urban
Planning?. In WWW ’17 Companion Proceedings of the 26th International Con-
ference on World Wide Web Companion. 1463–1468. https://academic.microsoft.
com/paper/2608713587

[35] Statista Statista The Statistics Portal. 2018. Number of Mobile (Cellular) Subscrip-
tions Worldwide from 1993 to 2017 (in Millions). www.statista.com/statistics/
262950/global-mobile-subscriptions-since-1993/. (2018).

[36] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and
Mostafa Ammar. 2008. Answering what-if deployment and configuration ques-
tions with wise. In ACM SIGCOMM Computer Communication Review, Vol. 38.
ACM, 99–110.

[37] Ionut Trestian, Kévin Huguenin, Ling Su, and Aleksandar Kuzmanovic. 2012.
Understanding human movement semantics: a point of interest based approach.
In Proceedings of the 21st International Conference on World Wide Web. 619–620.
https://academic.microsoft.com/paper/2115884200

[38] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, Hongyi Wang, and Songwu Lu.
2015. Control-plane protocol interactions in cellular networks. ACM SIGCOMM
Computer Communication Review 44, 4 (2015), 223–234.

[39] Guang Wang, Wenzhong Li, Jun Zhang, Yingqiang Ge, Zuohui Fu, Fan Zhang,
Yang Wang, and Desheng Zhang. 2019. sharedCharging: Data-Driven Shared
Charging for Large-Scale Heterogeneous Electric Vehicle Fleets. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (2019),
1–25.

[40] Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang, and
Dejun Yang. 2017. Spatiotemporal modeling and prediction in cellular networks:
A big data enabled deep learning approach. In INFOCOM 2017-IEEE Conference
on Computer Communications, IEEE. IEEE, 1–9.

[41] Rong Xie, Yang Chen, Shihan Lin, Tianyong Zhang, Yu Xiao, and Xin Wang. 2018.
Understanding Skout users’ mobility patterns on a global scale: a data-driven
study. World Wide Web (Apr 2018). https://doi.org/10.1007/s11280-018-0551-8

[42] Xiaoyang Xie, Yu Yang, Zhihan Fang, Guang Wang, Fan Zhang, Fan Zhang,
Yunhuai Liu, and Desheng Zhang. 2018. coSense: Collaborative Urban-Scale

594

https://www.cs.rutgers.edu/~dz220/data.html
https://academic.microsoft.com/paper/2026942921
https://academic.microsoft.com/paper/1880262756
https://academic.microsoft.com/paper/1880262756
https://academic.microsoft.com/paper/1961665379
https://academic.microsoft.com/paper/1961665379
https://doi.org/10.1145/3264916
https://doi.org/10.1145/3264916
https://academic.microsoft.com/paper/2769341224
https://academic.microsoft.com/paper/2609621282
https://academic.microsoft.com/paper/2156120579
https://academic.microsoft.com/paper/2945193020
https://academic.microsoft.com/paper/2945193020
https://academic.microsoft.com/paper/2277977062
https://academic.microsoft.com/paper/2277977062
https://academic.microsoft.com/paper/182499956
https://academic.microsoft.com/paper/1995875735
https://academic.microsoft.com/paper/1995875735
https://academic.microsoft.com/paper/2608713587
https://academic.microsoft.com/paper/2608713587
www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://academic.microsoft.com/paper/2115884200
https://doi.org/10.1007/s11280-018-0551-8


WWW ’20, April 20–24, 2020, Taipei, Taiwan Zhihan Fang, Guang Wang, Shuai Wang, Chaoji Zuo, Fan Zhang, and Desheng Zhang

Vehicle Sensing Based on Heterogeneous Fleets. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4 (2018), 196.

[43] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin. 2017. Understanding Mobile Traffic
Patterns of Large Scale Cellular Towers in Urban Environment. IEEE/ACM
Transactions on Networking 25, 2 (April 2017), 1147–1161. https://doi.org/10.1109/
TNET.2016.2623950

[44] Fengli Xu, Zhen Tu, Yong Li, Pengyu Zhang, Xiaoming Fu, and Depeng Jin. 2017.
Trajectory Recovery From Ash: User Privacy Is NOT Preserved in Aggregated
Mobility Data. InWWW ’17 Proceedings of the 26th International Conference on
World Wide Web. 1241–1250. https://academic.microsoft.com/paper/2593227599

[45] Fengli Xu, Pengyu Zhang, and Yong Li. 2016. Context-aware real-time population
estimation for metropolis. In Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing. ACM, 1064–1075.
[46] Sen Yang, Yan He, Zihui Ge, Dongmei Wang, and Jun Xu. 2017. Predictive Impact

Analysis for Designing a Resilient Cellular Backhaul Network. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 30.

[47] Yu Yang, Xiaoyang Xie, Zhihan Fang, Fan Zhang, YangWang, and Desheng Zhang.
2019. VeMo: Enabling Transparent Vehicular Mobility Modeling at Individual
Levels with Full Penetration. In The 25th Annual International Conference on
Mobile Computing and Networking. 1–16.

[48] Desheng Zhang, Jun Huang, Ye Li, Fan Zhang, Chengzhong Xu, and Tian He.
2014. Exploring human mobility with multi-source data at extremely large
metropolitan scales. In Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, 201–212.

595

https://doi.org/10.1109/TNET.2016.2623950
https://doi.org/10.1109/TNET.2016.2623950
https://academic.microsoft.com/paper/2593227599

	Abstract
	1 Introduction
	2 Motivation
	3 Dataset & Methdology
	3.1 Dataset
	3.2 Measurement Methodology

	4 Measurement Results
	4.1 Spatial Representativeness
	4.2 Temporal Representativeness
	4.3 A Case Study

	5 Correction Model
	5.1 Problem Definition
	5.2 Diversity-Driven Sampling
	5.3 Evaluation

	6 Discussion
	7 Related Work
	7.1 Study on Data from Indivi. Researchers
	7.2 Study on Data from Network Operators

	8 Conclusion
	Acknowledgments
	References

