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Cellular data usage consumption prediction is an important topic in cellular networks related researches. Accurately predicting
future data usage can benefit both the cellular operators and the users, which can further enable a wide range of applications.
Different from previous work focusing on statistical approaches, in this paper, we propose a scheme called CellPred to predict
cellular data usage from an individual user perspective considering user behavior patterns. Specifically, we utilize explicit
user behavioral tags collected from subscription data to function as an external aid to enhance the user’s mobility and usage
prediction. Then we aggregate individual user data usage to cell tower level to obtain the final prediction results. To our
knowledge, this is the first work studying cellular data usage prediction from an individual user behavior-aware perspective
based on large-scale cellular signaling and behavior tags from the subscription data. The results show that our method
improves the data usage prediction accuracy compared to the state-of-the-art methods; we also comprehensively demonstrate
the impacts of contextual factors on CellPred performance. Our work can shed light on broad cellular networks researches
related to human mobility and data usage. Finally, we discuss issues such as limitations, applications of our approach, and
insights from our work.
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1 INTRODUCTION
Cellular networks play an essential role in our daily life. Billions of devices, including smartphones, tablets, and
IoT devices, are connected to cellular networks, and more are expected in the future [6, 16, 32]. The performance
of cellular networks draws attention from both operators and users due to the ubiquity of cellular networks.
Cellular data usage estimation and prediction are needed for broad applications from wearable devices, cellphones
to the smart Internet of Things (IoT) devices, and autonomous driving [11, 41, 51]. There are lots of existing
researches focusing on the data usage consumption prediction. Xu et al. demonstrated the effectiveness of a time
series analysis approach, which decomposed the traffic patterns into regular and random components [50]. Zhang
et al. proposed a deep spatial-temporal neural network scheme, which improved long-term data usage prediction
accuracy compared to commonly used prediction algorithms [53].Wang et al. approached the data usage prediction
from a new spatiotemporal dependency aspect and demonstrated the superiority of this perspective compared to
state-of-the-art methods [42]. However, all these latest researches on data usage prediction focused on aggregated
cell tower level, which did not address the fundamental cause of data usage dynamics: cellular users.
There are indeed some works studying cellular networks under various scenarios from a user perspective by

collecting user-end data, for example, Tu et al. focused on how phone calls may affect the data service performance
in LTE networks [18]. The performance and reliability of VoLTE (Voice over Long-Term Evolution) are validated
by Jia et al. [21]. But few researches investigate data usage prediction based on individual cellular users. More
importantly, spatial and temporal dynamics of cellular data usage, essentially, are brought by individual users:
diverse users’ usage distributions, various online behaviors, and different mobility patterns, etc. Mobility patterns
and user behaviors have a direct influence upon data usage across the cellular networks, e.g., car driver users
may use navigation apps during morning and evening rush hours, some users may follow a regular commuting
route during workdays, etc. Thus we can investigate users’ cellular usage patterns and potentially make use of
them for a better usage understanding and prediction performance.

In short, there is little work, if any, using cellular signaling data concentrating on individual user level behaviors
and carrying further behavioral analysis due to the lack of detailed large-scale user-level data. In this paper, we
analyze the data usage consumption from the individual user perspective to see whether user behaviors and
mobility patterns can help better predict data usage consumption. We argue that by enhancing the understanding
of characteristics of subscribed cellular users, prediction of cellular data consumption would be more effective. In
detail, by working with one of the largest cellular operators in China, we analyze cellular data usage of users
based on city-scale signaling data and behavior-related tags generated by exclusive data package subscription
data. The cellular data are signaling data covering more than 3 million users, providing information including
signaling types, timing, and attached cell towers. The subscribed cellular users also come with behavioral tag
data from the operator, including six major categories of tags related to the users’ behaviors. Then, based on
the data, we propose the framework CellPred to comprehensively utilize features provided by individual users
and tags, to boost user data usage prediction and mobility pattern prediction. As a result, we achieve a better
performance compared to traditionally cellular data prediction on the cell tower level.
Contributions of this paper can be summarized below:

• To our knowledge, this is the first paper to study cellular data prediction from an individual user perspective
with behaviors considered. Mobility patterns and data usage patterns are revealed by detailed signaling
data together with behavioral tags. Our work is based on real-world signaling data generated by one of the
major cellular operators from the Chinese city Hefei, covering more than 3 million users. We will release
anonymized sample data for the reproducibility of our work in a broader sense. Details will be given in
Section 6.

• We propose a framework called CellPred for cellular data usage prediction by considering individual user’s
mobility patterns and data usage patterns. In particular, we design this framework by taking historical
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mobility and usage sequences, mobility and usage features as inputs with extra aiding from behavior tags
manipulated by a soft attention module. The prediction framework consists of two parts, i.e., an encoder
embedding inputs, features, and tags, and a decoder for mobility and usage prediction. Then we aggregate
individual results to connected cell towers to obtain cell tower level cellular data usage.

• We evaluate our framework CellPred over the three weeks long signaling data with a daily amount of 267
million records and a daily size of 20GB from more than 3 million users, together with the tag data set
including 3,931 behavior related tags. Through the evaluation of the large-scale data sets, we summarize
lessons learned and provide a set of discussions regarding the limitations and potential applications of this
work.

2 MOTIVATION
Data usage prediction plays an essential role in cellular networks; the amount of data consumed draws attention
from both subscribed users and operators. For the operators, accurate data prediction can provide guidance for
resource allocation of cellular networks, especially during big events [45]; for the users, better load management
can provide them with a better experience. However, currently researches only focus on aggregate level analysis
and prediction. It is not clear how different users utilize cellular data and whether patterns extracted from
historical data usage of individual users can be used to help predict data usage, e.g., what kind of users tends to
consume more data usage, when and where they are likely to heavily use cellular data, etc. With the smart city
initiatives, we are lucky to have offline access to a city-scale signaling data set together with tag data generated
by exclusive data package subscription, e.g., what kind of apps users buy data packages for. Considering all of
these, we plan to make full use of users’ historical data usage records by considering hidden patterns of data
usage and mobility from user behaviors to aid data usage prediction. To verify the feasibility of doing so, we
demonstrate the patterns and phenomena extracted from cellular users regarding their mobility and data usage.

2.1 Challenges of Data Usage Prediction
Despite lots of researches done regarding cellular traffic prediction, the task of predicting data usage for a
large-scale cellular network with fine granularity remains tricky. Particularly, we summarize the challenges as
three types via data investigation on our city-scale signaling data set: 1) temporal dynamics: in our data set, the
data consumption during different time can be quite different, e.g., we calculate the data usage for every one
minutes, and the highest data usage for one minute can be 96 times greater than the lowest data usage of one
minute at the overall cellular network level; 2) spatial dynamics: different cell towers bear different data usage
load in the real-world. There are even cell towers with no data usage but used for other purposes, such as voice
services. The data usage can be high as 127 GB and as low as 0 per day for all the cell towers in this cellular
network; 3) individual dynamics: different cellular users in the networks also show usage dynamics, e.g., daily
data usage of a user can be high as 2.87 GB and can be low as 0. In sum, high dynamics exist in the usage data set
from different perspectives. Directly predicting the data usage of cell towers would be prohibitively challenging
considering the drastic dynamics.

2.2 Opportunity
However, approaching the data usage prediction from individual users with consideration of people’s behaviors
may provide us with new opportunities to identify the hidden patterns of data usage, since the data usage is
contributed by different individual users, who may reveal regular usage and mobility patterns.

2.2.1 Data Usage Dynamics: Network Level vs. Individual Level. To begin with, we show the data usage dynamics
of aggregate cell tower level and individual user level by entropy to illustrate why the user level perspective
is more effective. Specifically, we discretize and normalize the daily amount of data usage of cell towers and
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individual users into ten categories, calculated as below:

Cateдoryi = 10 × usaдei−MINusaдe
MAXusaдe−MINusaдe

(1)

MAXusaдe andMINusaдe refer to the maximum and minimum daily usage of cell towers or cellular users. The
usaдei here refers to the daily usage of a specific cell tower or cellular user. After this calculation, we then show
the results of the entropy of the discretized data usage of cell towers and cellular users across different days in
Fig. 1, and average daily usage entropy is shown in Fig. 2. We can observe that the data usage entropy of cell
towers is generally larger than that of individual users, no matter it is across days or daily based.

Fig. 1. Usage Dynamics Across Days Fig. 2. Daily Usage Dynamics Fig. 3. Repeated Traces

2.2.2 Usage Regularity: Temporal & Spatial Pattern. The signaling data are logged due to various events that
happened in the cellular networks, e.g., users making phone calls, visiting the Internet, etc. For each record, we
have the timing and corresponding attached cell tower, essentially we have users’ spatiotemporal traces at cell
tower level, with a high uploading frequency (average 2.85 minutes for each user).
As suggested by Fig. 1 and Fig. 2, we can see that users tend to have a smaller data usage dynamic across

multiple days and on a daily basis, showing better predictability of the individual user level from the temporal
perspective. We also use the example of users’ traces to demonstrate that users have regular patterns from a
spatial perspective, e.g., users connect to the same cell tower (or the proximity of the cell tower) during some
regular time. For example, origin and destination spots can be inferred from a regular user, where we regard users
with n routes with starting cell towers and ending cell towers in the proximity of circle with 1km radius [1]. Here
we implement the similarity calculation between two traces as described in [52], we then find users with high
trace similarity values across different days. In Fig. 3, we show one user’s three traces from three different days.
We can see that the origins and destinations are geographically close in three different traces. Besides, their paths
are similar except connected cell towers are slightly different. Patterns similar to this can then be considered in
predicting a user’s future location, which enhances the performance of mobility prediction.

2.2.3 Contextual: User Behavior. Except for the signaling data set, we also have access to the tag data generated
by the data package subscriptions, which can give us more information about users. We argue that different tags
may indicate different mobility and usage characteristics of users; a group of users with the same tag may show
similar statistical features (indicated by Fig. 4). To be general, we show the similarity of data usage among users
sharing the same tag and users not sharing any tag in Fig. 5. Specifically, we calculate the similarity of users’
temporal usage sequences, i.e., the sequences of data usage for every 1 minute across 24 hours, among users
sharing the same tag and users sharing different tags. We can observe that users sharing the same tag tend to
have a higher temporal usage resemblance. Regarding mobility, we measure the similarity based on the number
of distinct cell towers connected every 1 minute to quantify the mobility dynamics. The results are shown in
Fig. 6, which suggests that users sharing the same tag also have a higher mobility similarity than users with
different tags.
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Fig. 4. Sample Users Similarity Fig. 5. Users Usage Similarity Fig. 6. Users Mobility Similarity

3 DATA SETS
In this section, we first introduce the cellular signaling data and then show some overall statistical features. We
also specifically explain the data we will use for this paper. At last, we introduce the tag data from the subscription
data, covering all the users in the same cellular network, together with how the tag data can help us.

3.1 Cellular Signaling Data
In this work, the data processing and model implementation are considered on the cellular signaling data from one

Fig. 7. Cell Towers Distribution

of the three major cellular operators, in the Chinese city Hefei. The signaling
data are generated from the cellular networks triggered by several necessary
interactive protocols among User Equipment (UE), cell towers, and Mobility
Management Entity (MME). The data were collected by cellular operators to
understand, test, and improve these protocols. Signaling data mainly contain
information including an encrypted device ID, time/date, an encrypted cell tower
ID (i.e., ID for a base station), and a particular type of procedure denoting why
this record is generated. An example of a signaling record and some daily based
statistics are shown in Table 1.

The details of some basic data fields are as follows:
• Timestamp: the time when this record was generated.
• Tower ID: a unique encrypted ID of the currently connected cell tower.
• User ID: a unique encrypted ID for a UE.
• Signalling Type: the related signaling protocol this record belongs to.

There are different signaling types in our data set, but we only focus on one
type, i.e., sRequest, in this work since we work on the data usage. Notably, we find out that 53% of the raw
signaling data are sRequest data. Also, a sRequest record suggests that the UE requests services from the networks,
which can work as an indicator of how active the UE is in the cellular networks. It also indirectly reflects the
cellular data usage consumption of this UE [3, 26]. User’s mobility status can also be revealed by the signaling
data by handovers [12], because the connected tower of the users is revealed in the data, correspondingly we can
know the proximate location of the user. In sum, the cellular data usage and mobility status can be inferred via
the signaling data.

All the above signaling data are associated with the 23,704 cell towers in the studied city. A signaling-density-
based visualization of all cell towers is shown in Fig. 7, where a brighter yellow dot indicates a cell tower with
more signaling data associated with it, and a darker red dot indicates a cell tower with fewer signaling data.
We observe that signaling data are densely concentrated in the center of the city, together with three smaller
counties located in the north, the south, and the east.

We also show some statistics related to our work from this data set in Fig. 8 and Fig. 9. In Fig. 8, we show the
number of signaling records generated by all users during a day, and we can see that 80% of users generated
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Table 1. Signaling Data Example

Field Value
Timestamp 2017/06/12 00:23:55.357
Tower ID 110613042
User ID 3B8xZpNZJpTjfOnwYbcdyA==
Web Type 4G
Signaling Type sRequest
Number of Daily Records: 267 millions
Number of Daily Users: 3.37 millions
Number of Cell Towers: 23,704

Table 2. Tag Data Summary

Categories Tag/Tags(%) Users/Users(%)
Phone usage 38.64 87.25
Car related 35.87 83.68
Demographic 17.91 46.74
Services 3.95 12.19
Financial 2.14 6.56
Shopping 1.49 2.98
Average number of tags per user: 4
Number of users with tags: 3.37 millions

around 50 records per day. By comparing the CDF of all signaling records and sRequest records, we find that
users tend to generate more sRequest records given a certain percentage of users (note that the same percentage
of users are different users for two CDF curves). We also show the temporal patterns of the number of records
and the number of users during the different time of the day. We observe that the number of records presents a
clear diurnal pattern with two rush-hour peaks near 8:00 and 16:00, respectively. However, the second rush hour
peak for the number of users is not obvious compared to the records number distribution.

Fig. 8. Dist. of Users’ Records Fig. 9. Users & Records Fig. 10. Tag Distribution

3.2 User Tag Data
We also have access to the user tag data collected from the subscription data and other cellular operator metadata.
The subscription data come from a new commercial pattern emerging in China, where IT companies cooperate
with cellular operators to dedicate cellular data plan for specific apps or services with a lower cellular data price,
e.g., providing a 5GB exclusive data package which can only be used for certain video apps. Then these tags can
indirectly provide us with more behavioral information about users. For example, “car” tags can indicate this
user may often drive a car, which further indicates that this user may use a navigation app or listen to streaming
music, resulting in more cellular data consumption. In total, all subscribed cellular users in our signaling data
have tags. For details, we show the distribution of the number of tags per user in Fig. 10. Around 80% of users
have fewer than 5 tags, the maximum number of tags for a user is 37, and the average number of tags for all
users is 4.

In summary, the six categories and statistics are shown in Table 2. The first column shows the categories, the
second column denotes the percentage of corresponding tags of this category out of all the tags, and the last
column presents the percentage of users with tags of this category out of all the users. For clarification and brevity,
here we show some representative examples of tags for categories. For phone usages, typical tags include video,
music, etc.; for car-related category, tags contain car-related properties, such as the user has car(s); demographic
tags include gender, age range (e.g., the twenties), etc.; services refer to tags related to services in life, such as
Internet services; financial tags include financial services such as stocks; shopping category includes tags like
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shopping preferences, etc. More comprehensive analyses from the perspective of the tag data are presented in
Section 4.

4 FRAMEWORK

4.1 Overview
The overall goal of this work is to predict the data usage consumption of cellular networks accurately. Specifically,
we approach it at the individual user level by considering users’ behaviors. The architecture of CellPred is depicted
in Fig. 11, including preprocessing, mobility and usage prediction, and potential applications based upon it. We
reveal the details of each part in the following subsections.

Fig. 11. Overall Framework of CellPred

4.2 Preprocessing
The preprocessing part includes raw data processing for preparing input data of mobility and usage prediction.
For the cellular data usage inference, we directly use the number of sRequest records as a metric to measure
the cellular data usage, since sRequest is generated when the users are actively using cellphones, as indicated
in [53]. For individual user mobility inference, the raw signaling data of users can hardly be treated accurately in
terms of mobility analysis due to several reasons, including Ping-Pong Effect [19], outliers, etc. Instead of directly
making use of raw signaling data generated from interactions between users and cellular networks, we need to
preprocess for the data for further investigation and application. Here we show a sample trace of one user and
related statistics in Fig. 12 and Fig. 13 to demonstrate the necessity of the preprocessing step. Several things can
be observed here: i) there are certain outliers in this trace, such as points A and B in Fig. 12 or points (marked by
“star”) with values as high as a few kilometers (almost 16km) in Fig. 13. These outliers are much further away
than other locations in the user’s cellular trace. Possible reasons for this is the roaming mechanism of 4G/LTE
networks [24]. ii) Ping-Pong Effect exists in real-world signaling records [19], e.g., cell tower connection switches
frequently among different cell towers within a short interval. We can observe this from the thick black “line”
in Fig. 13, meaning the distance between cell towers from two consecutive records is fixed around 1 km (918
m), which further indicates that the connection is transferring back and forth between two cell towers. iii) trace
discontinuity exits, e.g., there are relatively long temporal gaps between different trips for a user during the
different time of day, such as the annotated “7.4 hr” in Fig. 13. To achieve better and reasonable results based on
the raw signaling data, we implement the next several preprocessing steps.

4.2.1 Trip Segmentation. Due to the long temporal gaps existing in users’ traces within one day, we partition
users’ signaling records into several different trips by setting a 30-minute threshold similar to the implementation
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Fig. 12. Sample Trace Fig. 13. Trace Statistics Fig. 14. Interval Distribution

in [22]. That also means if the temporal gap between consecutive records is longer than 30 minutes, we will
divide them into two separate trips for further consideration, which is widely used in other cellular data based
mobility investigation works [22, 49]. The trip segmentation will provide further convenience and efficiency in
our later prediction model, since it is more reasonable to feed the model with trips, i.e., when the users are active
in the cellular networks, instead of treating the whole day data as one trip, which would bring lots of empty
values due to cellular inactiveness. To justify the choice of the temporal threshold, we show the distribution of
time interval of two consecutive records across all users in Fig. 14, where we can see that 95% of the records
intervals are shorter than 30 minutes, where the distribution curve “jitters”, indicating the distribution difference
before and after 30 minutes. Moreover, the choice of the temporal threshold actually poses little impact on the
performance of our model since truncation will be implemented for formatting neural networks inputs, which
works the same as trip segmentation.

4.2.2 Outlier Filtering. We also need to remove outliers existing in the trips to achieve a satisfying usage and
mobility prediction. Here we consider two types of outliers, i.e., spatial outliers and temporal outliers. The first
case is that there are spatially outlying records in terms of mobility modeling, where connected cell towers
are far away from previously connected cell towers (e.g., 5 km) within a short period (e.g., 10 seconds). We
implement the method in [22] to filter such cases. The second case is that if multiple records are showing the
connection to the same cell tower within a short time interval, then we regard this as temporally outlying
records and only keep one record for further processing. In detail, suppose we have a user’s trace expressed
as {< t1,CT1 >, < t2,CT2 >, ..., < tn ,CTn >, }, where < ti ,CTi > indicates the signaling record time ti and
connected cell tower CTi . The first case can be generalized as:

Dist(CTi−1,CTi ) > DTHRMax & Dist(CTi ,CTi+1) > DTHRMax

ti − ti−1 < TTHR & ti+1 − ti < TTHR
(2)

Here the DTHRMax is the maximum distance threshold for the distance of two cell towers given a temporal
threshold: TTHR , which is the time threshold for interval between two signaling records. If the above conditions
are satisfied, then the record < ti ,CTi > is discarded. And the second case can be similarly generalized:

CTi−1 = CTi , ti − ti−1 < TTHR (3)

We also discard record < ti ,CTi > if such conditions are met.

4.2.3 Ping-Pong Effect. Another case we should pay attention to is the Ping-Pong Effect, which will dramatically
disturb the performance of user mobility analysis and inference if we directly use the raw signaling trace. Here we
utilize the method in [22] at a high level to eliminate the side effects brought by Ping-Pong Effect. We summarize
the conditions of Ping-Pong Effect here:

Dist(CTi−1,CTi+1) < DTHRMin

ti+1 − ti−1 < TTHR
(4)
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It describes the scenario that in a temporal window with three consecutive records, if the distance between
the cell towers in the first and last records is smaller than a threshold or equal to zero (which is the typically
Ping-Pong Effect case) and the temporal interval between these two records is shorter thanTTHR , then we discard
the record < ti ,CTi >. In this way, repetitive signaling data existing between two cell towers can be removed,
and the processed data are smoother to reflect a more realistic physical trace of the user.

4.2.4 Temporal and Spatial Granularity. To infer future data usage at the individual user level, we need to
quantify the data usage consumption from both temporal and spatial perspectives. That is to say, we need
explicit temporal and spatial granularity to quantify data usage consumption status. For the temporal perspective,
we first use fine-grained one minute (even shorter than the average interval: 2.85 minutes) as the time slot

Fig. 15. Cell Tower Clusters

unit, investigation on impact brought by the time slot length
will be presented in Section 5. For the spatial perspective, we
need to format the cell tower location data properly. Directly
predicting the cell tower ID or associated coordinates is not
feasible since the cell tower ID is encoded by rules unknown
to us (as the data example shown in Table 1) and exact
coordinates are too specific to predict. Considering that the
coverage radius of a normal cell tower is 300 meters in the
cellular networks of our work, here we partition the city
into grids with the size 300m × 300m [20]. Then we cluster
the cell towers into the grids according to the locations of
the cell towers. After that, we use the gird as a geographical
unit to represent the location of the users, providing us with convenience for prediction, also achieves more
explainable prediction results. Besides, cell towers deployment presents a clear clustering pattern geographically,
as shown in Fig. 15, where we visualize some cell towers (black dots) in the suburban region in Hefei city. Thus it
makes more sense to cluster cell towers in grid-based units as location information for mobility prediction. More
details about the cell tower formatting will be shown in Section 5.

4.3 Behavior-aware Features
To obtain a better prediction performance, temporal sequences of users’ locations and cellular data usage are not
enough. We need more information to aid the prediction [12]. In this subsection, we investigate potential features
that can help the prediction models work better. Specifically, we consider features related to user behaviors in
terms of user mobility and data usage and analyze how the tags affect these features. To begin with, we emphasize
that all the features extraction are based on trips after data preprocessing, i.e., we analyze and infer mobility and
usage based on each trip of users, and there could be multiple trips for one user within a day.

4.3.1 Mobility Status Features. The mobility can be addressed by a broad range of features [2, 57], e.g., the
traveling distance of one trip, duration of one trip, locations visited in one trip, etc. We summarize the features
we considered here:

• Radius of gyration: a metric which can indicate the traveling distance of a user during one trip. The
calculation is revealed as the below Equation [2].

rд =

√√√
1
N

N∑
i=1

(rrr i − rrr 0)2 (5)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 40. Publication date: March 2020.



40:10 • Qin et al.

Where the rrr 0 denotes the center of mass of the user’s trip, and rrr i is the location vector of ith record, N is
the total number of records in one trip. The calculated historical radius of gyration can help us understand
the traveling range of one trip, i.e., one aspect of mobility dynamics.

• Entropy of one trip: here we also consider the entropy of one trip for a user based on the list of visited grids.
The entropy is an indicator of possible visiting locations, i.e., the higher the entropy, the more locations the
associated trip covers. Specifically, the entropy is formalized as Equation 6 according to [40].

Entropy = −

n∑
i=1

piloд(pi ), pi =
ei
e

(6)

where i = indicator of a certain associated grid
n = the number of grids visited by the user
pi = the probability of the user visiting grid i
ei = the number of visits of the user in grid i
e = the total number of visits of the user during one trip

• Number of trips per day and during night: we also consider the number of trips during one day and during the
night time (18:00-6:00) for a user, where the number of trips is inferred according to the trip segmentation
method. The larger number of trips during a day may indicate that the user’s visited locations may be more
scattered.

• Average number of trips per day: we observe from the data that different users can have a different number
of trips, and they can also appear on different dates. Thus we also include the average number of trips per
day since it also affects user’s mobility status.

To see the impact brought by tags, here we visualize the distribution of the features among different users to
show how the users with and without certain tags display different feature distribution. For demonstration, we
show a few tags affecting the patterns of users regarding different features. The radius of gyration distribution of
users with and without the “car” tag is shown in Fig. 16, where we can see that users with the “car” tag tend
to have a larger radius of gyration during their trips, denoting they travel longer distances. The corresponding
distribution regarding visiting spots entropy of the same groups of users is shown in Fig. 17, where a similar
trend can be observed that users with the “car” tag are more likely to visit more locations than users without
the “car” tag. Moreover, we show another example of the “navigation” tag, which might also present different
patterns of different groups of users. The trip entropy of users with and without the “navigation” tag is shown
in Fig. 18, where we can see that users with the “navigation” tag are inclined to have a higher trip entropy, i.e.,
visiting more places. Specifically, 80% of users with the “navigation” tag have a trip entropy smaller than 2.42,
while the corresponding value of the users without the “navigation” tag is 1.04. In general, the users with tags
semantically indicating higher mobility dynamics also tend to present higher entropy or radius of gyration.

Fig. 16. Radius of Gyration Fig. 17. Trip Entropy: w/wo “car” Fig. 18. Trip Entropy: w/wo “navigation”
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4.3.2 Usage Data Features. For the data usage traffic, there are also corresponding features that are related to
the cellular data usage consumption, such as average cellular data usage per trip, the variance of cellular data
usage during a day, etc. In our setting, we use the number of sRequest to indicate the data usage consumed by
the user [3, 53]. Further, we investigate different usage features to analyze the distribution of two groups of
users’ data usage consumption, i.e., the amount of data usage consumed per day for each user. We summarize the
features considered for the cellular data usage prediction:

• Average cellular data usage per trip: The trip here is determined by trip segmentation in data preprocessing.
Then we calculate the average cellular data usage during a certain trip.

• Daily average cellular data usage: After we have the average cellular data usage for each trip, we calculate
the overall data usage per day by summing up the usages normalized by the trip duration. Finally, we can
calculate the total daily average of cellular data usage across different days.

• Variance of cellular data usage: We also take account of the variance of cellular data usage of a trip, i.e., the
variance of usage list for every time slot, indicating the dynamics of data usage during the trip.

• Daily variance of cellular data usage: Similarly, we calculate the overall variance of different trips and
average them across one day. Then we calculate the overall average across different days for one user.

• Trip Duration: The trip duration may also affect the amount of cellular data consumed, and presumably, a
longer trip duration will lead to more cellular data consumption.

Similar to the mobility features, we investigate the impact of tags upon usage patterns by quantified features.
We first show the distribution of the trip duration in cellular networks in Fig. 19, where users with and without
the “video” tag are compared. We can see that users with the “video” tag are more likely to have a longer trip,
i.e., a longer period with continuously using cellular networks. The reason behind this may be that users with
the “video” tag are users with a data plan subscription to video apps, who tend to watch more videos during the
day, i.e., using cellular networks for a relatively long time. Data usage distribution of users with and without
the “video” tag is shown in Fig. 20, where users with the “video” tag tend to generate more data usage compared
to users without the “video” tag, e.g., 80% of users with the “video” tag generate 287MB data per day while the
corresponding value for users without the “video” tag is around 4MB. A similar pattern can be observed from the
comparison of users with and without the “music” tag, as shown in Fig. 21. All three figures demonstrate that
users with tags semantically indicating heavy cellular usage have higher data consumption compared to users
without those tags.

Fig. 19. Trip Duration: w/wo “video” Fig. 20. Data Usage: w/wo “video” Fig. 21. Data Usage: w/wo “music”

4.3.3 Behavioral Tags. In the above sections, we have shown that different tags can be used as an effective
indicator for different groups of users. We also show that users with similar tags have similar patterns including
mobility patterns and usage patterns (indicated by Fig. 5 and Fig. 6). The observed patterns motivate us to involve
the mobility and usage features gathering from users of different tags. Still, a user may have several tags, which
pose a challenge for the consideration of the features. For example, the behavior of a “car” & “video” user may be
quite different than a “car” & “WiFi” user, because they may have different cellular data usage patterns despite
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possible similar mobility patterns. To start with, we calculate the average of mobility and usage features from the
same group of users; we then consider the compound impact on a specific user by including information from
different tags. To tackle the problem of implicit influences from different tags, we introduce the soft attention
module to put weights on different tags [47]. The details can be found in the next part.

4.4 Prediction Model
In this part, we introduce the details of our prediction model in CellPred, including the mobility prediction part
and usage prediction part. The overall architecture of the model is shown in Fig. 22.

Fig. 22. Prediction Model Architecture of CellPred

4.4.1 CellPred: Mobility Prediction. As aforementioned, the historical mobility records are formatted as sequences
of grid indexes. In detail, we cluster the cell towers into grids partitioned by the coordinates of cell towers. The
two-dimension grid index is mapped into value by one-to-one correspondence, indicated as Grids in Fig. 22.
We also have extra features extracted from the historical records of users. To achieve a satisfying prediction
performance, both the inputs and the features are considered in CellPred. We utilize deep learning methods here
for the mobility status inference [56], which are suitable for our large-scale and multi-day data sets compared to
traditional machine learning solutions such as Hidden Markov State based method [28]. Specifically, we consider
Long short-term memory (LSTM) here as our cells in encoder and decoder for mobility status prediction [17],
which are widely implemented in works related to mobility prediction, location inference[12, 33] or broad sense
of spatiotemporal data investigation [54].

A illustration of LSTM cell is shown in Fig. 23. The processing can be observed from the figure and abstracted
as the following equations:

дt = σ (Wf · [ht−1,xt ] + bf ) (7)
it = σ (Wi · [ht−1,xt ] + bi ) (8)

Ũt = tanh(WU · [ht−1,xt ] + bU ) (9)
Ut = дt ∗Ut−1 + it ∗ Ũt (10)
ft = σ (Wf [ht−1,xt ] + bf ) (11)

ht = ft ∗ tanh(Ut ) (12)
We denote the current cell as the cell processing input from time t , the inputs of the cell on the left are from

the cell of last epoch, i.e., Ut−1 and ht−1 of epoch t − 1, and the outputs of the cell denoted as Ut and ht , also
working as the inputs for the cell of next epoch t + 1. The core characteristic of LSTM is the “gate” consists of
sigmoid layer and pointwise product (denoted by the red rectangle in the Fig. 23), which controls the information

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 40. Publication date: March 2020.



CellPred : A Behavior-aware Scheme for Cellular Data Usage Prediction • 40:13

flow, i.e., decides how much input information can be through for further consideration. This process is reflected
in Equation 7. The processing in the unit starts from the inputs of epoch t , including last epoch output ht−1 and
current epoch input xt , which are considered by Equation 8 as it ; and a potential cell state Ũt calculated by the
tanh layer in Equation 9 is combined with it for the update of previous cell stateUt−1. The cell state information
preserving and dropping are completed by Equation 10 and the output ht is determined by Equation 11 and
Equation 12. More details can be found in [17]. The structure with such a subtle mechanism of preserving and
dropping information makes LSTM widely used in sequential data processing, such as spatiotemporal sequential
data [54] and natural language sequential data [44].

Fig. 23. LSTM Cell Structure

Our mobility part modeling in CellPred is also based on the LSTM cells, shown by the upper half of Fig. 22.
To be short, for a certain user, we take inputs from the historical mobility records and mobility-related features.
Regarding the mobility features, we leverage the mobility features from different groups of users. For all the
users, we consider them as different groups by different tags they have. Different features are calculated based on
these groups, e.g., we calculate the average trip entropy for all the trips of a group of users, distinguished by a
certain tag. Notice that a user may have multiple tags at the same time, i.e., s/he belongs to multiple groups at the
same time. Different tags can bring different impact on the mobility and usage of the user. To tackle this problem,
we implement a soft attention module in our framework, indicated by the left part in Fig. 22. Firstly, different
tags of the user are encoded to vectors by word2vec as dimension N . Then these vectors are concatenated as
dimension N ∗ n, where n is the total number of tags this user has. Then the layer is passed to feed the forward
neural networks with fully connected layers (FC), combined with ReLu, the outputs are through softmax asw1,
w2, ...,wn . Define the mobility features from different groups asmf1,mf2, ...,mfn , then the final mobility features
for this user can be calculated as

∑n
i=1wi ∗mfi .

After this, all the mobility features are then embedded into high dimension space as tensors with dimension
M ∗ 1. At the same time, the mobility sequences are truncated as the same length D, where each value represents
the location of the user during a time slot, indicated by the partitioned grid. The first D − i values will be used as
inputs, and the rest i values will be used as labels for loss calculation. The mobility sequence will be encoded by an
LSTM layer with the matching dimension as embedded features, i.e.,M ∗ N , which can grasp the spatiotemporal
correlations in users’ trips. Then the embedded features and encoded mobility sequence are concatenated to feed
the decoder, including another LSTM layer and layers of FC to transform the high-dimension outputs to final
predicted values. The predicted values and real values will be used to calculate the loss and backpropagate it
forward. Considering we focus on the accuracy of prediction, we use Mean Absolute Percentage Error (MAPE) as
the loss function for mobility status prediction (Lossm ), details of this loss function will be given in Section 5.

4.4.2 CellPred: Usage Prediction. For the usage modeling, the structure is generally similar to the mobility
modeling. The features are now related to cellular data usage, as we summarized previously. Users with the
same tag will be considered as a group in the feature calculation because users with similar tags display similar
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behavioral patterns, as demonstrated in Section 2. The common features extracted from users may help enhance
the performance of prediction. Besides, users with sparse data, e.g., only a few days of data, can benefit from
the features of trips from similar users. Final usage features for a user can also be expressed as the weighted
combination of features from different groups of users, i.e.,

∑n
i=1wi ∗ u fi , where wi is the weight for usage

features u fi from the group of users with the taдi . The usage sequences are with values denoting the cellular
data consumed during a certain time slot.

Similarly, we separately embed the usage features into the higher dimension asM ∗ 1 vectors and encode the
usage sequence by the LSTM layer, which can learn the temporal dependence of users’ usage records. Extracted
high dimensional features from the inputs are then concatenated for the next layer of LSTM, followed by FCs to
transform results to predicted usage values. We also use MAPE as the loss function for usage prediction (Lossu ),
the detailed implementation is slightly different than the mobility prediction and will be elaborated in Section 5.

4.4.3 CellPred: Individual to Cell Tower. After we have the predicted mobility status дrid(i,u,t ) and usage status
usaдe(j,u,t ) from the user u at the time of t (i and j are the values of дrid and usaдe), we then sum all the usage
from users who are predicted as associated to the same gridдridi at the time t . In this way, we can have aggregated
data usage at the cell tower. Then the final result is compared to the real data usage consumed at the cell tower
level for accuracy calculation. More details will be shown in Section 5.

5 EVALUATION
In this section, we comprehensively evaluate the framework CellPred via real-world signaling data set together
with subscription tag data. We first introduce our overall evaluation methodology, including how we manage the
large-scale data sets, the details about our evaluation setting, metrics we use in the evaluation, the spatial and
temporal granularity of the framework implementation, and details about baselines. Then we show the evaluation
results, including the performance of multiple baselines, and impact from contextual factors, such as time slot
length used in the sequence truncation, the time of the sequence during the day, the day of the sequence during
the week, the proportion of data, and location in prediction, etc.

5.1 Evaluation Methodology
5.1.1 Evaluation Data Management. The evaluation is based on the three weeks long signaling data introduced
in Section 3. Due to the large size of signaling data (with 20GB data generated per day), we process the data on a
high-performance cluster by using big data frameworks, including Hadoop and Spark. Details about this cluster
are given here: (i) 12 Hewlett-Packard machines with 2 Tesla K80c on each; (ii) 10 Dell machines with 4 Tesla
K80c on each; (iii) 4 Xeon E5-2650 with a half TB memory each; (iv) A series of 800GB SSD and 15TB of HDD.
We utilize various techniques to deal with real-world data issues in the data preprocessing, such as spatial and
temporal outliers, etc. We also make use of parallel processing to speed up data processing. After data formatted
as described in Section 4, we implement CellPred by PyTorch with GPU to accelerate the training.

5.1.2 Evaluation Setting. We implement the cross-validation scheme for all the evaluations. In detail, we separate
three weeks of data into training data (70%), validation data (15%), and testing data (15%) after we have all
the mobility and usage sequences for all the users across different days. We evaluate the predicted results by
aggregating individual usage up to cell tower level and comparing them to the real usage at the specified time
for a specific cell tower. Both the mobility pattern and usage are formatted into sequences of values, where the
mobility-related values are quantified by the values mapped from the grid indexes and the cellular data usage
related data are quantified by the number of sRequest records.

5.1.3 Evaluation Metrics. We measure the prediction accuracy of mobility and usage by one metric: MAPE (Mean
Absolute Percentage Error), i.e., the deviation of the predicted results from the true values. The MAPE function is
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also working as the loss function in CellPred, as mentioned in Section 4. However, the calculation for MAPE of
mobility and usage is slightly different. For mobility, the predicted value is formatted into one value representing
the hashed grid index. Then we specify the two-dimension grid indexes by the constructed hash table. After that,
we calculate MAPE by considering the difference between predicted grid indexes and the truth indexes by using
the Euclidean norm. Specifically, the MAPE of mobility prediction is calculated as follows:

xpred , ypred = Hash1Dto2D (дridpred )

MAPEmobility =

√
(xpred−xr eal )2+(ypred−yr eal )2

√
x 2
r eal+y

2
r eal

(13)

The xpred and ypred represent the predicted 2-dimension grid index, i.e., longitude index and latitude index,
xr eal and yr eal denote the corresponding real 2-dimension grid index. The MAPE first considers Euclidean norm
measuring the distance from the predicted grid the user is associated to the true grid, then it is normalized by the
location of the real grid.

The MAPE of usage prediction is straightforward, which is calculated based on the predicted usage value and
real usage value, shown as below:

MAPEusaдe =
|usaдepred−usaдer eal |

usaдer eal
(14)

Further, we assign the predicted cellular data usage of the grid amount to the cell towers in the grid. If there is
only one cell tower in the grid, then we treat the value as cellular data usage of this tower; if there are multiple
cell towers, we distribute the cellular data usage evenly to towers within the grid. After we finish that, then we
add up the predicted cellular data usage at cell tower level, on which we further calculate the final MAPE to
quantify the prediction performance, similarly defined as below:

MAPEusaдe =
|usaдecel l,pred−usaдecel l,r eal |

usaдecel l,r eal
(15)

All the results in the later part be measured by this MAPE to illustrate the performance.

5.1.4 Granularity. Given the fact the signaling data records contain information from both temporal and spatial
perspectives, i.e., when and where it happens, here we introduce the temporal and spatial granularity of our
evaluation. The goal of a proper granularity setting is to evaluate the prediction performance of cellular data
consumption effectively. For the temporal granularity, we partition a day (24 hours) into multiple time slots by
setting a fixed time slot length as 1 minute, which is even more fine-grained than the average updating frequency
of signaling data (2.85 minutes). We can also make the time slot interval longer; we only use 1 minute as an
example here to explain how our framework works in a specific setting, longer time slot setting will also be
evaluated. In total, there are 1,440 time slots for each day. For the spatial granularity, we partition the Chinese
city Hefei into grids with the unit size as 300m × 300m, considering that 71% of cell towers have a covering radius
as 300 meters according to our cell tower properties data. Using coarser spatial granularity directly may not be
reasonable since cell towers cannot be specified within a larger grid, which could lead to error in inferring cell
tower level cellular data consumption. A finer granularity setting with sophisticated localization algorithms with
extra data and work may be feasible while it is not the focus of this work. In total, there are 407 × 582 = 236, 874
grids, meaning there are 407 different indexes horizontally (longitudinal) and 582 different indexes vertically
(latitudinal). Based on this spatiotemporal partition, we implement our framework for the cellular data usage
prediction.

5.1.5 Baseline. There are extensive related works focusing on predicting cellular data usage and mobility
inference of users in the cellular networks [20, 48]. Here we implement the following baselines to compare the
performances with our CellPred. To begin with, we assume the data are preprocessed and well-formatted into
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temporal series with values representing cellular data consumed at the cell tower level, with the same one-minute
temporal granularity setting, on a daily basis.

• Naive model: In the naive model, we first prepare the usage data well at cell tower level, then we directly
use historical data from previous days to predict the future day by averaging all the data in corresponding
time slots. For example, suppose we want to predict the cellular data consumption of one cell tower in a
given minute (e.g., 18:00-18:01) during one certain day, we directly averaging all the data usage during
18:00-18:01 from the previous days and treat the averaged values as predicted values for this cell tower.

• ARIMA model: The ARIMA (Autoregressive integrated moving average) model is vastly used in time
series related analysis and inference problems, including data usage prediction [25]. The ARIMA model can
capture the temporal pattern existing in sequential data, and it works well when there are clear patterns in
data and few outliers. Similar to the naive method, we implement the ARIMA model at the cell tower level
as a solid baseline to compare with our CellPred. The ARIMA is implemented by the model provided in
statsmodel of Python.

• D-STN: We also consider one state-of-the-art deep learning method in the data usage prediction, proposed
by Zhang et al. [53], using Double Spatio-Temporal Neural Network technique (D-STN) to predict long term
mobile data usage. The details of the framework of D-STN can be found in [53]. Considering the difference
in the application scenario of their work (spatiotemporal frames as inputs) and our work (individual user
sequences as inputs), small changes such as input dimensions are made to ensure the model’s effectiveness.

• CellPred-wo: We also implement our CellPred at the user level without considering user behavior-related
features, i.e., we simply implement the model with temporal series directly inferred from raw signaling
data at individual user level without any consideration of behaviors, e.g., mobility regularity. This baseline
is for comparison to CellPred to present the impact of individual user behaviors.

5.2 Evaluation Results
5.2.1 Overall Performance. In this section, we show our comprehensive evaluation results. For CellPred model,
we set the prediction time slot (temporal granularity) to 1 minute, the trip duration is set to 30 minutes, i.e., the
first 29 values of the trip are inputs, and the last one value is treated as the label. We also tried different trip
duration such as 10, 20, and longer duration such as 60; the performance varies little. Here we only use 30 as an
example to show the performance. The word2vec dimension is set by default as 100, the embedding dimension
and LSTM encoding dimension are set as 200, the loss functions we use for mobility and usage are based on
MAPE with specification introduced previously. The optimizer we use is Adam optimizer. Learning rate is set as
0.01 for most cases, while we tune it accordingly in the training, e.g., training upon data of different hours are
trained separately.

Firstly, we show the overall comparison of our method with different baselines during the different time of day
in Fig. 24. Here we separate data into different hours according to their timing information and use all the data
during a specific hour as training and testing data, e.g., the results at 1:00 AM are obtained by all data ranging
from 1:00 AM to 2:00 AM. Several conclusions can be observed and summarized here: i) we can see that CellPred
has the lowest MAPE for all 24 hours of the day, denoting the highest prediction accuracy compared to other
baselines. The CellPred-wo and D-STN achieve comparable performance across the different time of day; ii) we
can observe a diurnal pattern from baselines (Naive and ARIMA), similar to the distribution of the number of
active users and signaling data, as shown in Fig. 9, i.e., a higher MAPE during the day time and lower MAPE
during the night. The reason for this phenomenon may be that data usage is more dynamic during day time for
cell towers, brought by more diverse user distribution and data usage during that time, e.g., around 4 PM people
are gradually off from work and commuting to home or restaurants; iii) for CellPred and CellPred-wo, the diurnal
pattern is not that obvious, but we can still observe a slight MAPE drop during the night. We think one reason is
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that in the late night, the activeness in terms of mobility and cellular data usage decreases, another reason is
that we observe a relatively large decrease of the signaling data amount in the late night, which both cause the
prediction accuracy to increase. We also summarize the statistics of prediction results in Fig. 25. Each bar in the
figure represents the mean value of prediction results from a different time of day. The cap of the bar indicates
the standard deviation (SD) of the prediction MAPE, e.g., the top of the cap has the value as the sum of mean
value and SD. Our CellPred model here has the lowest average of MAPE compared to other baselines; also the
methods with small SDs suggest the performance are not largely affected by the different time of the day.
We are also curious about which part of the features affect CellPred more, e.g., the mobility features or the

usage features. Thus, we implement CellPred without mobility features or usage features, results are shown in
Fig. 26, where CellPred without mobility features is denoted as “wo/ mobility features” and CellPred without
usage features is denoted as “wo/ usage features”. We can see that in general, the black line is higher than the
green line, meaning that CellPred without mobility features performs worse than CellPred without usage features.
The possible reason is that the mobility prediction is worse without the aid from mobility features, and it follows
that the individual user usage is assigned to the wrong grids, leading to worse performance at the aggregated cell
tower level.

Fig. 24. MAPE Distribution Fig. 25. MAPE Statistics Fig. 26. Impact of Features

5.2.2 Contextual Factors. We also investigate different contextual factors related to human activities and quantify
their impact upon the cellular data prediction, including the amount of data we use in the implementation of
CellPred, different temporal granularity we use in the prediction, different time slot steps used in the prediction,
location of the data used in the prediction. These factors may affect the performance of cellular data usage
prediction in one way or another, for instance, a coarser temporal granularity is expected to have a better
prediction performance since the data dynamics is lower when a longer time slot is used.
Impact of Time Slot Length The time slot length we mentioned in the evaluation methodology can be

adjusted, which indicates the temporal granularity we use in the model implementation. By default, we set the
time slot length as 1 minute. But different time slot length we use for the prediction may have different results
associated with it, here we explore the relationship between time slot length in prediction and cellular data
prediction accuracy. Specifically, we compare the performances by setting the time slot length as 1 minute, 5
minutes, 10 minutes, and 20 minutes, respectively. For example, a 5 minutes slot length means we have a user’s
location every 5 minutes, and we also have his/her cellular data usage amount updated every 5 minutes. The
results are shown in Fig. 27, where we can see that MAPE slightly decreases as we increment the time slot
length, meaning the prediction accuracy increase, but the change is trivial (within 3%). We also compare it with
CellPred-wo, in which we can observe a similar pattern. Besides, in consistence with the previous results, the
CellPred performs better than CellPred-wo.

Impact of Proportion of Data Another interesting factor to consider is the proportion of data we use in the
model implementation. Since we can see how different proportions of the training data affect the performance
of our model, and whether a small proportion of data can achieve a relatively satisfying result. Notice that we
directly sample the data of individual users. Different proportions of data are used in the model implementation,
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Fig. 27. Impact of Time Slot Fig. 28. Impact of Data Proportion Fig. 29. Impact of Prediction Step

and we show the results in Fig. 28. The black line with triangle markers shows the results of individual user level
MAPE, i.e., MAPE of individual user mobility and usage prediction, and the red line with square markers show
the final MAPE on the cell tower level. From the results, we can know that different proportions of data used
in the data won’t affect the individual level prediction too much since the number of users used in training is
still substantial (e.g., 1% of 3 million users is still 30 thousand users). But the prediction accuracy of the cell level
usage is profoundly affected by the data proportion since the final results on cell towers are aggregated from
individual users, the performance is expected to be satisfying only if 100% of users’ data are considered.
Impact of Prediction Step The length of prediction steps can reveal more about the performance of the

model. We utilize different prediction steps to compare the performance of CellPred, e.g., predicting the data usage
for the next 1 minute, 5 minutes, and 10 minutes. The results are shown in Fig. 29, where we testify the effect of
different prediction steps based on different time slot length (1-minute and 5-minute). We can see that the MAPE
grows as we predict more prediction steps, i.e., further future data usage, for both 1-minute and 5-minute time
slot length.
Impact ofDay ofWeekDifferent day of theweek is another temporal factor whichmay affect the performance

of prediction, i.e., performance may vary due to the different day in a week. Here we separate data into two
categories by the date, i.e., weekdays and weekends, and show the prediction results in Fig. 30, by implementing
the model on separated data. We can see that in the late night (12:00 AM to 8:00 AM), prediction performances are
evenly matched. While during the daytime, the performance during the weekdays is worse than the weekends.
We think it is brought by the fact that people tend to be frequently using cellular networks during weekdays, e.g.,
using cellphones during commuting from work to home. We can also observe that in the night (8:00 PM to 12:00
AM), the MAPE during weekdays drops fast and is lower thann weekends when it is approaching midnight. A
possible reason for this is that people tend to rest early and prepare for work of the next day, while they tend to
be actively using cellular networks during weekends nights.

Fig. 30. Impact of Week Time Fig. 31. Impact of Region

Impact of Region LocationMoreover, we consider the impact of different regions. Here we divide the whole
city into downtown and suburban by the “N 2nd Ring Road”, which is the contour of a highway surrounding
the downtown region. We consider the region within the surrounding highway as the downtown region and
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region outside the highway as the suburban region. Then we implement the model by data from different regions,
corresponding results are shown in Fig. 31. From the results, we can see that, in general, the MAPE values in
the downtown region are higher than the suburban regions, suggesting that the prediction performance in the
suburban region is better than the downtown region. We think this result is caused by the fact that cell tower
distribution in suburban regions is sparser than downtown regions, as shown in Fig. 7. Thus it is easier for us
to predict the mobility status of users, i.e., their connected cell towers. Once we have the correct prediction on
connected cell towers, then it will indirectly improve the final prediction results on cell tower level data usage.
Another reason could be that mobility and usage patterns are more clear in suburban regions since there are
fewer people and sparser road networks, which simplifies the users’ movements and cellular data usage patterns.

6 DISCUSSIONS
In this section, we discuss several major issues related to our work, including lessons learned, limitations, potential
applications, privacy issues, and details of public data access.
Lessons Learned:We summarize lessons learned from our work as follows.

• The prediction performance from the individual user level is better than methods focusing on aggregate cell
tower level, and the idea of considering user behaviors enhances the mobility and usage pattern prediction,
as indicated in Fig. 24, Fig. 25, and Fig. 26.

• The users with similar tags are likely to have similar mobility and usage patterns, as shown in Fig. 5 and
Fig. 6. Considering groups of users with similar patterns may be a good approach to boost the prediction
performance. It also motivates us to dig deeper into fundamental similarities among users based on signaling
data in the future work.

• Different tags related to users’ behaviors tend to indicate different usage and mobility patterns, as shown
in Fig. 16, Fig. 17, Fig. 18, Fig. 19, Fig. 20, and Fig. 21. Behavioral differences suggested by the tags can be
utilized to aid users’ mobility and usage prediction.

• The performance of CellPred varies little as we use different temporal granularity in the prediction (as
shown in Fig. 27). This suggests that we have the potential to achieve a real-time prediction by shortening
the time slot length without deteriorating the prediction performance too much.

• It is also found that the performance of CellPred changes in different time of day (Fig. 24), day of week
(Fig. 30), and different regions (Fig. 31). Patterns in changing prediction performance are consistent with
user’s behaviors, as we explained in Section 5. It also further indicates how behaviors of users can impact
the cellular data usage investigation.

Limitations: The limitations of this work are discussed here: i) one limitation is about the quantification of
cellular data usage. In this work, we use the number of sRequest from the signaling data to quantify the cellular
data usage consumption, which is not entirely equivalent to real cellular data usage. But we argue that this
would not affect the efficacy and quality of our work since the traffic consumption data can be directly used to
implement our framework; ii) for the mobility prediction part, we did preprocessing to make the mobility status
more predictable, e.g., outlier filtering, while this might slightly affect the performance of CellPred since we have
to distribute the individual user usage to cell towers. But we argue that the preprocessing is necessary, and the
evaluation shows the effectiveness of the framework; iii) the balance of training efficiency and performance
is subtle. The algorithm we select for the prediction is deep learning, which requires dedicate selection over
optimizer function, loss function, learning rate, hidden layer number, hidden layer size, etc. There could be a better
combination of hyperparameters existing, while it is also possible for them to cost more training time; iv) another
limitation of this work is that it is only based on the signaling data from a particular operator. However, it has
been shown in previous work that the cellular networks will generate similar signaling data with a minor variance
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based on the technology they are using and users in their networks [11]. Given the data from another service
provider, our user behavior based modeling can be implemented accordingly without significant modification.
Potential Applications: The cellular networks have tremendously improved the quality of life by enabling

ubiquitous connectivity for cellular users that are physically mobile [11, 55]. In turn, the cellular networks are
based on the mobility characterization of network users, i.e., mobility models, e.g., users’ mobility characteristics
influence network measurement [34], modeling [43], performance prediction [46] and mobility management in
cellular networks [31]. Thus, our CellPred with user mobility and usage investigation and prediction functions
can enable broad applications; data usage prediction in the evaluation at cell tower level is shown as one concrete
example. We provide more application examples of individual user level mobility and usage inference here:

• Based on our user-level and tower-level analysis on the understanding of user mobility and activeness,
cellular network operators can either temporarily close some cellular base stations to reduce operational
costs if reduced usage demand is predicted based on real-time cellular user behaviors, or deploy portable
base stations to cope with predicted increasing demand due to irregular real-time user behaviors brought by
events [34]. These activities have been widely used in both developing countries, e.g., China, and developed
countries, e.g., the United States.

• User behaviors can be used for user profiling, i.e., showing users’ interests towards items or services, which
are commonly used for marketing purposes, e.g., data plan promotion [58]. In detail, users showing interest
in data-heavy services such as video watching can be potential customers of data packages. The user
profiling can also be considered for technical purposes, e.g., synthetic data generation [29], where users’
characteristics are considered in data generation.

• Users mobility and usage patterns can also be used for service coverage gap modeling [22]), e.g., determining
the spatiotemporal coverage of cellular networks; or anomaly detection in cellular networks (e.g., heavy
hitter [5], social events [13], traffic anomaly [37]), which can help the operators better manage cellular
networks.

• In the coming 5G market, user mobility and usage investigation can also provide guidance for local
caching [4], 5G applications related to virtual reality [30] and augmented reality [10]. Since these applica-
tions require fast and stable cellular networks connections.

Privacy and Ethics:Our research vision is aligned with maximizing the benefits of the users while minimizing
the risk of the users. In particular, our research objective is to work with the cellular providers to improve their
cellular services by understanding the cellular demand based on the data they collected legally from their users to
benefit their users. For example, metadata of cellular users have been used to perform analysis on load balancing,
tower deployment, anomaly detection, malicious cellular usage detection/blocking, access patterns, business
opportunities, etc. In particular, cellular data usage modeling and prediction can enable many applications
significantly related to cellular service quality, such as load balancing. There is little risk for the users when we
are achieving this objective. All user IDs have been hashed into global identifiers by the cellular providers’ staff,
and we cannot leverage these identifiers to trace back to any individual users. During our project, we respect
the privacy of users, and the raw data have not been moved from the cellular providers’ internal server. We did
not seek any unnecessary data, e.g., payment methods or billing addresses. The users are aware of the potential
usage of their information by the operators, and we envision the majority of customers may not be against this
work since we aim to maximize their benefits and to minimize the risk during the analyses. As for the voluntary
consent, we provide a link of the user privacy policy of operators as in [7–9] (we cite from all three major cellular
operators for commercial privacy purpose). This consent form has been provided to a user when signing up for
cellular services. If any user does not agree, he or she cannot be granted any service and will not be in the data set
we analyzed. Otherwise, all the users in the data set have agreed and consented the data collection process and
resultant analyses. Snippets of the policy are provided here: “To ensure that you can enjoy our services, and for the
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purpose of accurately charging, we will automatically collect the log data via cell towers, switchboard, terminals,
including but not limited to subscription information, orders of services (voice service, short message service,
searching, connection records), usage records, purchases records, bills, location information, terminal information,
etc. Subscription information mainly covers the communication services and Internet data services, including
the registration information and contracts of subscriptions, changes, and terminations actions, together with
information on data packages purchasing and extra services registering. Purchasing information mainly includes
payment records, arrears information, balance update information, account information, credit information,
etc. Terminal information includes the type of terminal, MAC address, OS version, unique identifier (e.g., IMEI).
Location information includes GPS coordinates. We will use your information under the following circumstances:
To improve your service experience and service quality, or deal with your consulting, complaints, reports, etc.,
or to recommend better or more suitable services, we will use the collected information for the purpose of our
products or services under the constraint of this privacy policy.”
Public Data Access: Accessing empirical cellular data sets is vital to mobile computing researches, but such

data sets are usually not available for fellow researchers due to the various real-world issues. As an initial step, we
will release our sample data in aggregate forms with privacy protection schemes [3] to enable potential following
works built upon our work. Details of the releasing data set are disclosed as below: i) period: one week data from
2017-06-13 to 2017-06-19; ii) data amount: covering 2k cellular users, together with their subscription tags; iii)
data format: encoded user ID, timing of the record, associated grid ID, record type (specified as sRequest); iv) data
link: https://www.cs.rutgers.edu/~dz220/data.html.

7 RELATED WORK
A lot of works regarding cellular networks data usage have been performed by using different data sets, con-
centrating on various topics in cellular networks. We classify the state-of-the-art works by two criteria, i.e., (i)
whether they focused on the aggregate level or the individual level, and (ii) whether they consider user behaviors
or not. Table 3 shows the work in four disjoint categories, which positions our work compared to others. In the
following parts, we discuss the related works based on the behavior criteria.
Behavior-agnostic works: In this category, researchers are mainly focusing on network diagnose problems

to optimize the design of network systems or protocols. Li et al. [27] make use of smartphone collected data at
the network control protocol level to implement parallel processing in protocols, achieving a data access latency
reduction. In [26], researchers design and implement their tools to collect protocol data from both the control
plane and data plane, in which hidden problems are revealed and insights are given. There are also several papers
working on data usage prediction at aggregated cell tower level by different learning-based neural networks
models [45, 53]. These works generally focused on the aggregated level. Another direction is to work on the
individual level, such as modeling human mobility with call detailed records [12, 15, 23, 36]. However, all those
works only directly models on the data without considering individual behaviors.

Table 3. Cellular Networks Based Works

Aggregate Level Individual Level
Behavior-agnostic [26, 27, 45, 53] [12, 15, 23, 36]

Behavior-aware [14, 35, 38, 43] App Usage Data Usage
[39, 42] Our work

Behavior-awareworks: In this category, papers usually leverage collected detailed data to solve user behavior-
related problems. Tu et al. [38] analyze the dependency and coupling effect upon CSFB based voice services and
IP based data sessions in 4G LTE networks, possible fixes are also proposed to this issue. Measurements about
how users interact with their devices are provided through controlled experiments in [14], and some insights are
shown based on the measurements. A prototype measurement service based on the insights is also given. In [35],
researchers unveil fine-grained geospatial and temporal correlations existing in the cellular networks via data
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from RAN (Radio Access Network) and CN (Core Network). Similarly, in [43], the authors focus on spatiotemporal
modeling and prediction upon cellular networks through deep learning techniques. These works generally study
the behaviors at the aggregate level. In contrast, recently works [39, 42] analyze individual behaviors such as
mobile application usage based on internet access records. Our work differs from the previous works in that we
focus on behavior-aware cellular traffic prediction, which has not been explored before.
In short, despite all the above-mentioned state-of-the-art works, there is no previous work in predicting

individual cellular usage with consideration of user behaviors. To our knowledge, our paper is the first paper in
this category, i.e., prediction cellular traffic by uncovering individual user behaviors patterns to advance the state
of the art.

8 CONCLUSION
In this paper, we design and implement a framework called CellPred to predict the cellular data usage consumption
in cellular networks. Specifically, we focus on making use of individual level mobility patterns, cellular data
usage patterns, and behavior tags, which distinguish us from the previous works. Our evaluation is based on a
three-week-long signaling data set with a daily amount of 267 million records, with a daily size of 20GB frommore
than 3 million users, together with data subscription tags. Compared to existing works, our study is built upon
from a behavior-aware individual level, and we provide better performance compared to the existing aggregate
cell tower level cellular data prediction. Based on our results, we also present some unique patterns and insights,
potential applications, which can be beneficial for cellular operators and fellow researchers in cellular networks
and human behavior related areas.
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