
Approximation with Error Bounds in Spark
Guangyan Hu

Rutgers University
New Brunswick, NJ
gh279@cs.rutgers.edu

Sandro Rigo
University of Campinas
Campinas - SP, Brazil

srigo@unicamp.br

Desheng Zhang
Rutgers University

New Brunswick, NJ
d.z@rutgers.edu

Thu D. Nguyen
Rutgers University

New Brunswick, NJ
tdnguyen@cs.rutgers.edu

Abstract—Many decision-making queries are based on aggre-
gating massive amounts of data, where sampling is an important
approximation technique for reducing execution times. It is
important to estimate error bounds when sampling to help
users balance between accuracy and performance. However, error
bound estimation is challenging because data processing pipelines
often transform the input dataset in complex ways before
computing the final aggregated values. In this paper, we intro-
duce a sampling framework to support approximate computing
with estimated error bounds in Spark. Our framework allows
sampling to be performed at multiple arbitrary points within a
sequence of transformations preceding an aggregation operation.
The framework constructs a data provenance tree to maintain
information about how transformations are clustering output
data items to be aggregated. It then uses the tree and multi-
stage sampling theories to compute the approximate aggregate
values and corresponding error bounds. When information about
output keys are available early, the framework can also use
adaptive stratified reservoir sampling to avoid (or reduce) key
losses in the final output and to achieve more consistent error
bounds across popular and rare keys. Finally, the framework
includes an algorithm to dynamically choose sampling rates to
meet user-specified constraints on the CDF of error bounds in
the outputs. We have implemented a prototype of our framework
called ApproxSpark and used it to implement five approximate
applications from different domains. Evaluation results show
that ApproxSpark can (a) significantly reduce execution time if
users can tolerate small amounts of uncertainties and, in many
cases, loss of rare keys, and (b) automatically find sampling
rates to meet user-specified constraints on error bounds. We also
explore and discuss extensively tradeoffs between sampling rates,
execution time, accuracy and key loss.

Index Terms—Spark, approximation, data provenance, multi-
stage sampling, stratified sampling

I. INTRODUCTION

Data-driven discovery and decision support have become
critical to the missions of many businesses, scientific and
government enterprises. At the same time, the rate of data
production and collection is outpacing technology scaling, im-
plying that significant future investment, time, and energy will
be needed for data processing [1], [2]. Approximate computing
is a powerful tool to reduce these processing needs. Many data
analytic applications such as data mining, log processing, and
data visualization are amenable to approximation [3]. As a
concrete example, suppose a company wants to know the age
distribution of its customers for a particular product. In such
an application, estimated counts derived from data samples
may be sufficient, allowing tradeoffs between precision and
processing time, energy consumption and/or cost.

Fig. 1: A Spark computation having a chain of transforma-
tions ({T}), where each box in an RDD is a partition.

In this paper, we propose a framework for creating and run-
ning approximate Spark programs that use online sampling to
efficiently aggregate massive amounts of data. The framework
computes error bounds (i.e., confidence intervals) along with
the approximate aggregate values. We focus on aggregation be-
cause many decision support tasks require aggregation queries:
e.g., a study of a Microsoft SCOPE [4] data processing
cluster reveals that 90% of 2,000 data mining jobs were
aggregations [5]. Aggregation is also an important component
in online analytical (OLAP) systems for summarizing data
patterns in business intelligence [6], [7].

Spark is a popular data processing system that has been
widely adopted in different domains [8]–[11]. Thus, embed-
ding a general approximation framework in Spark will make
approximation easily accessible to application developers in
many different fields. In addition, while our work is specific
to Spark, it should also be portable to other similar data
processing systems.

Estimating error bounds is important, especially for decision
support queries, because it allows users to intelligently balance
precision and performance. However, Spark programs (and
data processing pipelines in general) often include multiple
complex transformations of the input data before the final
aggregation [12], [13], making it challenging to compute error
bounds. Consider a Spark computation comprising of a chain
of transformations ending with a summation as shown in
Figure 1. If we sample data items in the resilient distributed
dataset (RDD) Rout immediately before the aggregation, then
it is straightforward to use simple random sampling (SRS)
theories to estimate the sums with error bounds [14]. However,
this sampling is unlikely to reduce execution time by much
since the additions saved are relatively inexpensive.

Alternatively, we can view each partition of Rout as a cluster
and apply cluster sampling. We can then use two-stage cluster
sampling theories for estimating sums and error bounds [14],
although we would need to estimate populations in multi-key
computations (see the discussion on multi-stage sampling in
multi-key computations below). This can lead to much greater

ar
X

iv
:1

81
2.

01
82

3v
3

 [
cs

.D
C

]
 6

 J
un

 2
01

9

execution time savings since we can avoid performing all of
the transformations on the dropped partitions. Unfortunately,
this locks the computation into a very coarse-grained sampling
process that may not be tunable to achieve the desired tradeoff
between precision and performance.

A natural solution is to sample earlier, e.g., sample when
creating R1 from the input data, where we can use a combina-
tion of dropping partitions and data items to achieve the right
balance between precision and performance. As we discuss
in Section III, a key insight behind our work is that it is
possible to map such a sampling process to a multi-stage
sampling process on Rout, and use the accompanying theories
to compute the estimated aggregate values and error bounds.

As a concrete example, consider a program to count word
occurrences in a text dataset, where a map parses each
sentence and produces a list of (word, 1) pairs, and a
subsequent flatMap breaks the lists to produce the final
set of (word, 1) pairs, followed by summing the count
of each unique word. In this computation, there are two
levels of clustering, with each partition of the input being a
cluster of sentences, and each sentence a cluster of words.
Therefore, when sampling at the creation of R1 by selecting a
random subset of partitions and a random subset of sentences
from each selected partition, the sampling errors need to be
estimated using three-stage cluster sampling theories since the
end populations are actually words rather than the sentences.
The population size of each word also has to be estimated from
its sample size given the sampling rate over the sentences,
because if a sentence is not chosen for the sample, then it is
unknown whether that dropped sentence would have produced
counts for a particular word.

In Section III, we first explain how sampling at multiple
arbitrary points within a sequence of transformations can be
mapped to a multi-stage sampling process on the output RDD.
We then propose an algorithm to build a data provenance
tree to maintain information about this mapping. Finally, we
propose another algorithm to extract information from the
tree, estimate populations where needed, and compute the
final approximate aggregate values and their error bounds.
Critically, we show how to account for the imprecision in-
troduced by population estimation. If the final keys are known
early in the transformation sequence, we show how adaptive
stratified reservoir sampling (ASRS) [15] can be integrated
with multi-stage sampling to avoid losing rare keys, as well
as balancing the sampling errors between popular and rare
keys (Section IV).

We have implemented the proposed framework in a proto-
type system called ApproxSpark (Section V). Our framework
supports a subset of common Spark transformations, including
map, flatMap, mapValues, sample and filter, and
aggregation operations mean and sum. When running an
approximate computation, users have the flexibility to specify
sampling rates or constraints on the CDF of relative error
bounds for values associated with output keys—if the compu-
tation produces a single value or key-value pair, then the latter
reduces to just the maximum allowable relative error bound.

When the user specifies constraints for the error bound CDF,
ApproxSpark will run pilot executions of several partitions and
use the results to select appropriate sampling rates.

We have used ApproxSpark to implement five approximate
applications from different domains in text mining, graph
analysis, and log analysis. We use the applications to evaluate
ApproxSpark and explore the tradeoffs between performance
and accuracy/precision. Among other findings, our results
show that (i) ApproxSpark can significantly reduce execution
time if users can tolerate small amounts of uncertainties and, in
many cases, loss of rare keys; (ii) it is possible to automatically
find sampling rates to meet user-specified constraints on the
CDF of error bounds in the output; (iii) partition sampling
can lead to greater reduction in execution time than data item
sampling, but lead to more key loss and significantly larger
error bounds, especially for the rarer keys; and (iv) ASRS with
multi-stage sampling avoids or reduces key loss and leads to
more consistent error bounds across keys.

In summary, our contributions include: (i) to our knowledge,
our work is the first to apply multi-stage sampling theories to
estimate aggregate values and error bounds when sampling
within arbitrarily long sequences of transformations; (ii) we
introduce algorithms for maintaining provenance information
during the execution of the transformations and computing the
approximate aggregate values and error bounds; (iii) we show
how ASRS can be combined with multi-stage sampling for
some applications to reduce key loss and equalize error bounds
across popular and rare keys; (iv) we explore extensively
the tradeoffs between sampling rates, execution time, key
loss, and error bounds; and (v) we present an algorithm for
automatically choosing sampling rates to meet user-specified
constraints on the CDF of error bounds for output values.

II. BACKGROUND AND RELATED WORK

Spark. Spark has emerged as a popular distributed data
processing engine. Spark introduces RDDs, which are fault-
tolerant collections of data partitioned across server clusters
that can be processed in parallel [16]. Spark has two types
of operations: transformations and actions. A transformation
is a lazy operation that produces an output RDD from an
input RDD, where as an action computes non-RDD values
from an input RDD, and triggers preceding transformations
needed to produce the input RDD. Data items in RDDs can be
key/value pairs, such that a Spark program may be computing
a number of different aggregations in parallel. The word
counting program in Section I is a good example. It is counting
potentially many different unique words at once, computing an
aggregation for each word.

Spark already contains random and stratified sampling
transformations with several important limitations. First, there
is no support for computing error bounds, especially across
a sequence of multiple transformations. Second, stratified
sampling can still lose some keys, because it adopts Bernoulli
Sampling. Third, sampling is only implemented on existing
RDDs, so that the entire input dataset has to be loaded before
sampling can be applied.

Approximate query processing (AQP). A variety of approx-
imation techniques have been employed by query processing
systems to reduce execution time. These techniques include
using random or stratified sampling to construct samples
to provide bounded errors [5], [17]–[22] or online aggre-
gation to sample data and produce a result within a time-
bound [23], [24]. BlinkDB [21] maintains a set of offline-
generated stratified samples by using an error-latency profile
based on past queries. Sapprox [22] collects the occurrences
of sub-datasets in offline preprocessing and uses it to drive
online sampling. Many AQP systems use offline processing
under the assumption that data will be used repeatedly. Online
sampling is an efficient approximation method when the large
dataset (e.g., logs) will be used only once or a few times [25].

Online sampling. ApproxHadoop [25] introduces approx-
imation to the MapReduce paradigm [26]. It uses multi-
stage sampling to trade off precision and performance similar
to ApproxSpark (we discuss differences below). Users can
specify sampling rates or a target maximum relative error.
StreamApprox [27] approximates stream processing workloads
based on Spark Streaming [28]. MaRSOS [19] is related to
ApproxHadoop but proposes a stratified sampling algorithm
to avoid losing keys and balance error bounds for popular and
rare keys. Compared to MaRSOS, ApproxSpark’s implemen-
tation of stratified sampling using ASRS avoids the overheads
of coordination between parallel tasks while still being able
to balance error bounds.

Comparison with ApproxHadoop. While ApproxSpark and
ApproxHadoop both use multi-stage sampling, there are im-
portant differences. First, ApproxSpark generalizes multi-stage
sampling to handle sequences of transformations with arbitrary
lengths, allowing sampling anywhere within the sequences,
whereas ApproxHadoop is limited to using two- and three-
stage sampling to handle a single map phase in MapReduce
computations. Second, ApproxHadoop also relies on popula-
tion estimation but does not account for the added uncertain-
ties; ApproxSpark does. ApproxSpark implements ASRS to
avoid losing keys and balance error bounds when output keys
are known early in the computation. Finally, in this paper, we
explore the rich space of tradeoffs between sampling rates,
execution times, error bound distributions across all output
keys, and loss of rare keys far beyond what was considered in
the ApproxHadoop study [25].

III. MULTI-STAGE SAMPLING IN SPARK

Suppose we have a simple Spark program that reads a set
of values into an RDD Rin and sums the values. We can
reduce the execution time of this computation by (1) reading
only a randomly selected subset of input partitions, (2) load
a randomly selected subset of data items from each selected
partition into Rin, and (3) compute an estimated sum τ̂ and
its variance V̂, which is needed for computing confidence
intervals around τ̂ , using two-stage cluster sampling theories
as follows [14]:

τ̂ =
N

n

n∑
i=1

(
Mi

mi

mi∑
j=1

vij) (1)

V̂(τ̂) = N(N − n)
S2
u

n
+
N

n

n∑
i=1

Mi(Mi −mi)
S2
i

mi
(2)

where N is the total number of partitions in the input data set,
n is the number of selected partitions, Mi is the total number
of values in partition i of the input data set, mi is the number
of values selected from partition i and loaded into Rin, vij is
the jth value from partition i in Rin, S2

i is the intra-cluster
variance for partition i, and S2

u is the inter-cluster variance.
Note that N and Mi’s are attributes of the input data set, while
n and mi’s are attributes of the sample. S2

u and S2
i are both

computed using the sample.
Now consider a program where Rin is transformed by a

sequence of transformation T0, T1, ..., Tn to produce Rout,
which is then summed. If each transformation Ti is a one-
to-one mapping of an input value to a single output value
(e.g., a Spark map operation), such that Rin, Rout and all
intermediate RDDs contain the same number of data items,
then it is possible to sample the input data when creating
Rin in the same manner as above and still use the estimators
given in Equations 1 and 2. Sampling the input data is exactly
equivalent to sampling the Rout that would have been produced
by processing the entire input dataset.

Spark, however, includes transformations that map input
items to output items in more complex ways than one-to-one.
As already mentioned, this complexity makes it much more
challenging to compute error bounds when sampling early
within a Spark computation. In the remainder of this section,
we first show how generalized multi-stage sampling theories
can be used when sampling at multiple different points within
a Spark program. We then describe two algorithms necessary
to track the multi-level clustering of data items in Rout as the
input data is transformed, and to use the tracking information
to estimate the aggregate values and error bounds. We discuss
summation, but the discussion is equally applicable to average.

A. Multi-stage Sampling

Consider the Spark program and its execution as shown in
Figure 2. The flatMap transformation can generate multiple
output items for each input item, corresponding to a one-to-
many mapping. An example is the generation of the two data
items c2:e1 and c2:e2 in R2 from the single data item c2 from
R1. In this case, when sampling, selecting an input data item
to load into R1 is equivalent to selecting a cluster of items
from R2, and selecting a partition from the input data set is
equivalent to selecting a cluster of clusters from the R2. This
corresponds to a three-stage sampling process. In fact, general
multi-stage sampling and population estimation can be used
to handle Spark programs comprised of a subset of common
transformations for both single- and multi-key computations.

Below, we generalize the two-stage sampling equa-
tions (Eq (1) and (2)) into recurrences for multi-stage sampling

Fig. 2: HDFS blocks and input data items are sampled when
read into RDD R1. Block B2 not shown has been dropped.
Gray boxes are dropped data items. In R2, ci : ej means data
item j is generated from the data item i in the input partition.

with estimated sum and variance. We use Ik = i0, i1, ..., ik to
denote the index of a specific cluster at level k. Note that in
a multi-key computation, a sample is chosen for each key, so
we will need to estimate the sum and variance for each key.

Sum estimation. We estimate the sum of a multi-stage sample
with d sampling stages using the following recurrence:

τ̂Ik =

{
NIk

nIk

∑nIk
j=1 τ̂Ik,j 0 ≤ k < d ,

vIk k = d
(3)

where τ̂Ik is the estimated sum of cluster Ik (at level k), NIk
is the total number of sub-clusters of cluster Ik, nIk is the
number of sub-clusters chosen from cluster Ik, Ik, j is the
index i0, i1, ..., ik, j such that τ̂Ik,j is the estimated sum of a
sub-cluster of cluster Ik, and vIk is the value in the sample
(at the last level k = d) with index Ik. The 0th stage contains
just one cluster comprising the entire population, so τ̂0 is then
the overall estimated sum.

Variance estimation. Similarly, we estimate the variance
using the recurrence:

V̂ (τ̂Ik) =

NIk(NIk − nIk)

S2
u,Ik

nIk

+
NIk

nIk

∑nIk
j=1 V̂ (τ̂Ik,j) 0 ≤ k < d− 1 ,

MIk(MIk −mIk)
S2
i,Ik

mIk
k = d− 1

(4)

where V̂ (τ̂Ik) is the variance of τ̂Ik , S2
u,Ik

is the inter-cluster
variance of the sub-clusters of cluster Ik, MIk is the total
number of values in cluster Ik, mIk is the number of values
from cluster Ik in the sample, and S2

i,Ik
is the intra-cluster

variance of cluster Ik. V (τ̂0) is then the overall estimated
variance.

Confidence interval. Given the above estimated sum and
variance, we can compute the confidence interval as: τ̂0 ± ε,

Fig. 3: An equivalent tree to the transformation chain shown
in Figure 2, where R2 is the final sample at level 0.

Transformation Semantics
map(func) Applies func to each data item (di).
flatMap(func) Applies func to each di and flatten.
mapValues(func) Applies func only to the value of each di.
filter(func) Selects di’s that satisfy a predicate func.
sample(r) samples di’s using sampling rate r.

TABLE I: Spark transformations that can be approximated by
ApproxSpark and their semantics. A transformation generates
a new RDD from a source RDD.

where ε = tn−1,1−α/2

√
V̂ (τ̂0), tn−1,1−α/2 is the critical

value under the Student’s t distribution at the desired level of
confidence α, and n is the degree of freedom (i.e., the number
of chosen clusters at level 1) [14].

B. Data Provenance Tree

In this subsection, we propose to model the multi-stage
sampling clusters resulted from a transformation chain as a
data provenance tree, in order to compute Eq (3) and (4). The
tree is in essence distributed since each partition builds and
maintains the subtree that represents the multi-level clusters
contained in it. Figure 2 can be seen as a tree shown in
Figure 3, which maps the input to output items by each
transformation. A node in the tree is used as a container for

Subroutine Semantics
sampleInputPar(rate) Samples input partitions with rate and

returns selected partitions.
sampleInputDI(rate) Samples input data items in the se-

lected partitions with rate and returns
selected data items.

createRoot() Creates root for the tree.
createNodes({DI}) Creates new nodes using data items

{DI}, where each node corresponds to
one item, where an item is a data item
in an RDD.

addLevel({node}) Adds a new level to the tree using
{node}, where each node’s parent is
the parent data item that has generated
the data item that this node represents.

replaceLast({node}) Replaces last level nodes with {node}.
A new node (e) shares the parent of the
node that has generated e in this trans-
formation. Then the nodes that were
originally in the last level are deleted.

TABLE II: Description of subroutines used in Algorithm 1.

necessary parameters such as variance of each cluster at every
level (sampling stage) in order to recurrently compute Eq (3)
and (4) eventually at the root. The tree mirrors the translation
of sampling during the execution of an RDD transformation
sequence, to an equivalent multi-stage sample being taken
from the final output RDD. Therefore a level in the tree
corresponds to a level of sampling clusters. Table I shows the
subset of Spark transformations that our framework handles.

Overview. In the provenance tree, a node represents a sam-
pling unit at a cluster level, which can be a partition or
data item. We define two types of nodes, one is internal
node, the other is leaf node. An internal node represents a
sampling cluster, such as partition or data item that generates
a cluster of data items, and leaf node represents a final output
data item. A provenance tree will be incrementally built as
each transformation executes in parallel. The computation of
Eq (3) and (4) occurs after the tree has been built, which
is accomplished by traversing the tree level by level from
bottom to the top. The computation does not depend on the
values of intermediate data items themselves, so an internal
node stores its cluster members (children nodes), estimated
sum/variance of the cluster it represents. Note that the es-
timated sum/variance of clusters for an internal node is not
computed until the entire tree has been built, whereas a leaf
node always keeps the value of the data item it represents.

Tree building. We introduce Algorithm 1 for building a data
provenance tree mapped from an RDD transformation chain.
Table II shows the semantics of subroutines in the algorithm
that are not explicitly defined. We assume that input partitions
and data items are sampled when input data is being loaded,
so the tree’s total number of levels would be at least three:
the final sample at the root (level 0), chosen input RDD
partitions and input data items in the chosen partitions. The
tree will have more levels if the transformation chain is
mapped to more than two cluster levels, depending on each
transformation’s semantics. Lines 1 to 9 contain the main
algorithm, which takes as input a transformation chain {T},
partition sampling rate pRate and input data item sampling
rate iRate. Line 2 to 6 are executed sequentially, where it first
creates a root node, then samples the input partitions with rate
pRate (line 3) and adds the sampled partitions ({P}) to the
tree as a children to the root. We use {rate} to keep track
of each level’s sampling rate. Line 8 is the parallel execution
of buildSubtree (line 10 to 28) for each partition, which
builds a subtree rooted at each partition node (sans the partition
node itself) as each transformation executes. Lines 11 to 13
add the sampled input data items in each chosen partition as a
new level. Then the rest of the algorithm will update the tree
based on each Ti’s semantics, using {node}k created from data
items generated from Ti. If Ti is sample, it replaces the nodes
in the last tree level with {node}k generated by sampling the
previous level, then updates ratek using sample’s sampling
rate. If Ti is flatMap and there is sampling operation before
it, a new level is added because sampling data items before
applying flatMap is equivalent of dropping groups of data

Algorithm 1: Building data provenance tree

1 Algorithm DataProvenance({T}, pRate, iRate)
2 createRoot(); // level 0
3 {P} = sampleInputPar(pRate);
4 {node}P = createNodes({P});
5 rate1 = pRate;
6 addLevel({node}P);
7 for Pi ∈ {P} do in parallel
8 buildSubtree({T}, iRate);
9 end

10 subroutine buildSubtree({T}, iRate)
11 {DI} = sampleInputDI(iRate);
12 {node}DI = createNodes({DI});
13 addLevel({node}DI);
14 rate2 = iRate;
15 k = 3; // tracks tree level
16 ratek = 1.0; // initializing rate3
17 for Ti ∈ {T} do
18 {DI}k = exec(Ti);
19 {node}k = createNodes({DI}k);
20 if Ti is sample then
21 replaceLast({node}k);
22 ratek *= sample.rate;
23 else if ratek < 1.0 and Ti is flatMap then
24 addLevel({node}k);
25 ratek = 1.0, k ++;
26 else if Ti is map or flatMap or mapValues

or filter then
27 replaceLast({node}k);
28 end

items generated from this flatMap, thus adding a new level
of clusters. In other cases, the last level’s nodes will be
replaced by {node}k without adding a new level.

Multi-key computation. A transformation can produce mul-
tiple keys, and a transformation chain finally leads to multiple
final output key spaces. However, only each final output key,
instead of an intermediate key, defines an independent Spark
computation. Since we are only interested in the estimator
and error bounds of the final output RDD, the multi-level
clustering in the final sample would only be determined by the
leaf nodes in the same key space. Therefore in the provenance
tree building process, the intermediate key spaces need not to
be explicitly reflected in the internal nodes. The presence of
multiple keys also introduces the need of population estimation
which can be handled by the theory introduced earlier.

Limitations. We assume sample and filter will not
eliminate all the data items from a particular partition, so
that number of partitions stay the same after loading the input
data. We does not consider filter’s effect over the sampling
error, specifically we are not sure about its impact over the
variance and how it is propagated through clusters to the final
error bound. It is because filter deterministically eliminates

some data items based on its predicate, instead of randomly
selecting data items where the sample sum and variance would
follow a certain distribution. We leave exploring the impact of
filter over error bounds as a future work.

C. Tree traversal-based statistics computation
Eq (3) and (4) can be computed by traversing the prove-

nance tree built using Algorithm 1. The tree is traversed level
by level starting from the leaf nodes, from which the estimated
sum/variance of internal nodes at each level can be incre-
mentally computed, and the desired final output is estimated
sum/variance at the root. We introduce Algorithm 2 for this
computation process. Lines 3 to 7 compute in parallel each par-
tition’s statistics by calling the subroutine ComputeNodeI,
which computes Eq (3) and (4) of a given node at level k.
Line 8 computes the root’s estimated sum/variance for the final
confidence interval output.

Algorithm 2: Confidence interval computation

1 Algorithm ComputeTree(tree)
2 d = tree.numLevels− 1;
3 for k ← d to 1 do in parallel
4 for nodei ∈ all nodes at level k do
5 ComputeNodeI (nodei, k, d);
6 end
7 end
8 ComputeNodeI (root, 0, d);
9 return CI(root.τ̂ , root.V̂);

10 subroutine ComputeNodeI(node, k, d)
11 {c} = node.children;
12 if k is d then
13 node.τ̂ = data item’s value;
14 else if k is d− 1 then
15 mIk = {c}.size(), S2

i,Ik
= V ar({c.τ̂});

16 node.τ̂ = Eq3({c.τ̂},mIk ,MIk);
17 node.V̂ = Eq4(mIk ,MIk , S

2
k);

18 else
19 nIk = {c}.size(), S2

u,Ik
= V ar({c.τ̂});

20 node.τ̂ = Eq3({c.τ̂}, nIk , NIk);
21 node.V̂ = Eq4(nIk , NIk , S

2
u,Ik

, {c.V̂ });
22 end

We illustrate the computation process by using the tree
in Figure 3 representing three-stage cluster sampling as an
example. We begin with the level where k = 2, we first
compute the intra-variance of c2 formed by c2 : e1 and
c2 : e2. After computing other clusters (c3, c4 and c5) in the
same level, we decrement k to 1 and moves to second level
nodes. Computing statistics (e.g., intra/inter-cluster variance)
for P1 depends on c2 and c3’s statistics (same for P3), which
has already been computed in the previous level. Finally, the
variance at the root comprising P1 and P3 can be computed.

D. Per-key population estimation
A Spark transformation can generate multiple keys, thus

sampling before a transformation is equivalent of sampling

a mixed-key population where sub-population size of each
key is unknown. It is because sampling occurs before the
transformation that actually generates a key. However, each
sub-population size is needed because variance computation
applies to each output key. We model estimated population
size of a cluster at each sampling stage as a negative binomial
distribution parameterized by sample size and sampling rate
i.e. N̂Ik ∼ NB(nIk , p), where N̂Ik is the population size,
nIk is the sample size and p is the sampling rate applied for
the sub-clusters. nIk at the current stage is equivalent to the
estimated population size of the next stage (NIk), p, nIk and
NIk corresponds to the success rate, number of successes and
the number of trials in a binomial distribution. The unbiased
estimator N̂Ik is nIk

p . The same logic also applies to the last
sampling stage where the value of MIk needs to be estimated.
The uncertainty coupled with estimating NIk and MIk , must
be included in computing the variances in Eq (4) since their
estimators affects the variance. We have detailed derivation on
incorporating it into the variance computation in the Appendix
of our technical report [29].

IV. STRATIFIED RESERVOIR SAMPLING

An inherent limitation of multi-stage sampling is that some
rare output keys may either be lost or have large error
bounds. We leverage an one-pass sampling algorithm Adap-
tive Stratified Reservoir Sampling (ASRS) [15] to address
the rare key issues. ASRS combines stratified and reservoir
sampling [14], [30], and uses power allocation [31] to divide
the total sample size among different strata proportionally
to each stratum’s running sampling error. ASRS dynamically
increases the sampling rates of rare keys to compensate for
their larger sampling errors and decreases sampling rates on
popular keys [15].

ASRS with partition sampling. ASRS has a larger overhead
compared to simple random sampling. In order to achieve
balance among output key retaining, balanced error bound
distributions and the overall execution time, we sample RDD
partitions at the input and apply ASRS over the their elements,
so that in the chosen RDD partitions, sampling errors among
popular and rare keys are more even and rare keys are better
retained. Partition sampling at the input will have significant
execution time saving since much I/O time is reduced. We can
estimate the result and the error bound using standard multi-
stage sampling theory using Eq (3) and (4), because an ASRS
sample is very close to a simple random sample [15].

Limitations. ASRS stratifies the sample by output keys, thus
it cannot be applied unless the output keys are available.
However, sampling right before aggregation will not save
execution time since aggregation is relatively cheap. Therefore
our solution is to apply ASRS over an intermediate RDD,
which would make ASRS suitable for applications where an
output key’s occurrence is proportional to an intermediate key.

V. APPROXSPARK IMPLEMENTATION

We have implemented our approximation mechanisms by
either modifying/extending the original Spark framework. We

Fig. 4: Error bound computation process, divided across the
transformation and action phases. The tree building happens
in the transformation phase, and the error bound computation
happens in the action phase.

extend Spark executor implementation to maintain our data
provenance tree. We also extend Spark’s StatCounter
class to store intra and inter-cluster variances, sample sizes,
sampling rates, etc. ApproxSpark offers two methods for user
to set the degree of approximation, either by specifying the
sampling rates or error bound targets. In addition to setting
specified sampling rates, user is also able to set target error
bounds at different percentiles on the error bound CDF of all
keys. For example, a user may specify that the 10th percentile
of the error bound is at most 0.1, the 50th percentile at 0.3,
the 90th percentile at most 0.6.

A. User-specified sampling rates

Multi-stage sampling. We modify the partition loading and
computation mechanisms in Spark’s HadoopRDD class to
support partition/input data item sampling when data is being
loaded into an RDD. Subsequent RDDs’ data items can be
sampled using the original sample function from Spark API.
In order to forward information to the output RDD as in
Table I, we extend the implementations of those transforma-
tions in RDD class to support the data provenance building
algorithm shown in Algorithm 1. For example, flatMap
not only tags a group of data items generated from the
same data item i in the parent RDD with a cluster id ci,
it also implements the provenance tree building logic. Ap-
proxSpark provides the user with a new RDD transformation
aggregateByKeyMultiStage, for both intra and inter
partition aggregations when multistage sampling is used. It is
similar to RDD’s original aggregateByKey but has added
error bound computation mechanisms.

Error bound estimation. The error computation process is
shown in Figure 4. As introduced in Algorithm 1, the first two
levels of the provenance tree are sequentially built by the Spark
driver program. Then every subtree rooted at each partition
node (sans the partition nodes) are built by each parallel task
in the transformation phase, maintained by a coordinator in
each Spark executor. In the action phase, an RDD partition is
first locally aggregated by each Spark executor before sending
them to reducers across the network for final aggregation. In
the local aggregation phase, the subtree of each partition is
traversed to compute each partition’s statistics. Then in the

Fig. 5: User setting error bound targets design, gray shaded
box is dropped partition(s).

final aggregation, the statistics of each partition are sent to
the reduces for computing the inter-cluster variance among
the RDD partitions and the final confidence interval. As
transformations T1 → Tn execute in parallel on every partition
in the transformation phase, the subtree for every partition of
the provenance tree is built; in the action phase, partitions are
first locally aggregated to compute each partition’s statistics,
then sent to the reducers across network for the final error
bound computation.

Stratified reservoir sampling. We modify ASRS for Spark’s
distributed environment by dividing the total reservoir size,
taken as a user input, evenly among RDD partitions. Each
partition is then sampled using ASRS independently without
coordination among them. We implement ASRS as a transfor-
mation that produces another RDD, containing the resulting
sample with balanced sampling errors among popular and
rare keys. ASRS changes the sampling rate by changing the
size of the portion of the reservoir allocated for a particular
key. On the other hand, ASRS shrinks the size allocated to
each existing key as it discovers more keys in the partition,
where the initial reservoir size for the new key is set as
the average of the sizes for existing keys. The benefit of
implementing ASRS as a transformation is that the result-
ing RDD can be cached in memory for reuse. We provide
ASRSSample for the user to sample an RDD using ASRS
and aggregateByKeyStratified for the aggregation
with error bound computation, both implemented as RDD
transformations.

B. User-specified target error bounds

We propose a greedy algorithm to search for a sampling
rate combination leading to a potentially tight error bound
CDF constrained by the target errors, while aiming to sig-
nificantly reduce execution time. Initially, partition and data
item sampling rates are both initialized as 1.0. The algorithm
includes two phases. 1) In the first phase, a wave of pilot
tasks are executed and the partially aggregated results from
these tasks are sent back to the driver program, where the
number of data items M and inter/intra cluster variances for
each key are computed. It uses a Spark’s job submission mode
that returns the partially aggregated partitions to the driver
instead of sending them for shuffling. 2) In the second phase,
the algorithm uses statistics gathered in the first phase to

predict error bounds: it first lowers partition sampling rate
for potentially maximum execution time reduction until it
would violate any error bound target, then it searches for an
appropriate input data item sampling rate, before the predicted
error CDF would violate any of the user-specified targets.
When predicting errors for keys that are not encountered in the
first phase, the algorithm just uses the average of the statistics
for the keys obtained in the first phase. When the predicted
error distribution meets all the error targets with the lowest
possible sampling rates, the algorithm proceeds to the second
phase and uses them for the remaining Spark tasks. Figure 5
shows the architecture of user setting error bounds.

The algorithm exploits a property that partition sampling
may incur more sampling error [14], but reduces more execu-
tion time compared with data item sampling. Our algorithm
follows a principle in online aggregation - minimum time to
accuracy [23], i.e. minimizing the time to achieve a useful
estimated value. However, online aggregation typically outputs
a running confidence interval for a single estimator as data is
being aggregated in a random order, whereas ApproxSpark
applies multi-stage sampling over the data and outputs the
error bounds for multiple keys at the end of execution.

Limitations. The algorithm assumes the keys are distributed
evenly and the pilot partitions are representative of the entire
dataset. However, when keys are not distributed evenly, the
pilot wave is not able to accurately estimate the parameters.
The error bound computation in our implementation has only
considered two-stage sampling, while in theory, user can insert
multiple sampling operations along the chain and achieve the
target error bounds. We leave this more complicated case as
future work.

VI. EVALUATION

We evaluate ApproxSpark using five real world applications
from different application domains (see Table III). We begin
by briefly describing the applications. We then use them to
extensively explore the tradeoff space between sampling and
precision. Finally, we explore ApproxSpark’s ability to find
appropriate sampling rates for user specified target error bound
constraints.

Experimental environment. All experiments are run on a
cluster of four servers. Each server is equipped with a 2.5GHZ
Intel Xeon CPU with 12 cores, 256GB of RAM, and a SATA
hard disk. The cluster is interconnected with 1Gbps Ethernet.
All servers run Linux 3.10.0. ApproxSpark is implemented on
top of Spark version 1.6.1 and is configured with 16 executors,
each of which runs up to 6 tasks, so that each server has 4
executors, running up to 24 tasks.

A. Applications

Word Co-occurrence (Co-occur). Co-occurrence is a com-
mon text mining application that computes the frequencies
of pairs of words [32]. In this study, the application counts
co-occurrences of topic tags in the MEDLINE database [33],
containing more than 20M citation records of publications

Size
Application Domain Input Dataset (GB)
Co-occur Text Mining MEDLINE database 7.5
Speed Smart City GPS trace 36.0
Twitter NLP Tweets2011 (TREC) 2.2
PageRank Graph Analysis Wikipedia snapshot 53.0
Clickstream Log Analysis Wikipedia clickstream 6.5

TABLE III: List of applications, the domains they come from,
and the input datasets used in our evaluation.

in life sciences. Each citation record contains a set of topic
tags, listing the major topics relevant to the publication. The
application first reads the input data into an RDD, and then
performs a map to extract the list of major topic tags from
each citation record. It then performs a flatMap to generate
key-value pairs ((co-occurring tag pair), 1). Finally, it sums
and outputs the count of each co-occurring tag pairs.

Vehicular Average Speed Analysis (Speed). This application
analyzes the average speed of vehicles moving in a geograph-
ical area each hour at three different granularities: around a
point-of-interest (POI) (e.g., a restaurant), on a road segment,
and within a region. An analysis of vehicular traces is useful
for monitoring urban traffic, predicting passenger demand,
recommending taxi routes, etc. [34]. We analyze a taxi GPS
dataset containing status records collected every 30 seconds
from 14,000 taxis operating in Shenzhen, China, over one
week [35]. Each record contains information about a taxi,
including a timestamp and the taxi’s GPS location and speed.
The dataset has ∼291M records that covers an area of ∼790
square miles divided into 491 regions, containing ∼569k POIs
and ∼198k road segments. Each POI is assigned to a road
segment and each road segment belongs to a region. The
application reads the input data into an RDD, and then per-
forms three transformations using metadata and three actions.
The three transformations are three map operations that: (1)
transform each GPS entry into a ((POI, hour), speed) key-value
pair; (2) transform each ((POI, hour), speed) pair into a ((road
segment, hour), speed) key-value pair; and, (3) transform each
((road segment, hour), speed) pair into a ((region, hour), speed)
pair. The three actions use the three intermediate RDDs to
compute the average speed per hour at each POI, each road
segment, and each region, respectively.

Twitter Hashtags Sentiment Analysis (Twitter). Sentiment
analysis computes quantitatively whether a piece of text is
positive, negative or neutral using natural language processing
(NLP) techniques [36]. In this study, the application com-
putes the average sentiment for each unique hashtag in the
Tweets2011 Twitter dataset from TREC 2011 [37], using the
Stanford CoreNLP library [38]. This dataset contains ∼16M
tweets sampled over 17 days in early 2011. The application
first reads the input data into an RDD, and then performs a
map to compute a score in the interval [0, 5] with 0 being very
negative, 3 being neutral, and 5 being very positive for each
tweet. It then performs a flatMap to extract all hashtags
from each tweet and associates each with the sentiment score
for the tweet. Finally, it computes and outputs the average

 0 20 40 60 80 100
Data item sampling rate (%)

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

100%
75%
50%
25%
precise

(a) Co-occur

 0 20 40 60 80 100
Data item sampling rate (%)

0

50

100

150

R
un

 ti
m

e
(s

ec
on

ds
)

100%
75%
50%
25%
precise

(b) WikiPageRank

Fig. 6: Execution times under different sampling rates. Each
line corresponds to a partition sampling rate. The x-axis shows
the sampling rate for input data items. The dashed line gives
the run time of precise executions.

sentiment for each hashtag.

WikiPageRank (PageRank). This application counts the
number of articles that link to each article in a set, emulating
one of the main processing components of PageRank [39]. We
use the Wikipedia data snapshot from 2016 with ∼5M articles
[40]. The application first loads the data into an RDD, then
applies a map to parse the XML, generating a list of outbound
links for each article. It next performs a flatMap to generate
pairs of (destination article, 1). Finally, it sums and outputs the
count for each destination article.

WikiClickstream (Clickstream). Clickstream analysis can
be used to generate a weighted network of linked articles
showing the probability of users navigating from one article
to another. We use a Wikipedia clickstream dataset from 2016
[41] containing ∼149M tuples of (source, destination, count),
where count is the number of times that a user has visited
the destination page from the source page. The application
computes the total count for each unique (source, destination)
pair. Specifically, it reads the input data into an RDD, performs
a map to generate a key-value pair for each entry, and then
sums and outputs the total count for each unique (source,
destination) pair.

B. Results for multi-stage sampling

We explore the performance and accuracy of multi-stage
sampling using four of the above applications: Co-occur,
Twitter, WikiPageRank, and WikiClickstream. In most ex-
periments, we sample the input data as it is read into the
first RDD because this will lead to the highest speedups.
However, we also explore sampling from RDDs later in the
applications’ transformation chains to explore the trade-off
between performance and accuracy of such scenarios.

Execution times. Figure 6 plots the execution times for two of
the applications, Co-occur, WikiPageRank at different partition
and data item sampling rates. Consistent with previous results
from [25], we observe that (a) multi-stage sampling signifi-
cantly reduces execution times, and (b) partition sampling can
lead to larger execution time savings than data item sampling.
The latter is because dropping a partition eliminates overheads
such as I/O time for reading the blocks, the creation of an
RDD partition in memory, etc., whereas data item sampling

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

100%
75%
50%
25%

(a) Co-occur

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

100%
75%
50%
25%

(b) WikiPageRank

Fig. 7: Fraction of unique keys (normalized against number
of keys produced under precise execution) outputed under
different sampling rates. Each line represents a particular
partition sampling rate.

0 0.2 0.4 0.6 0.8 1
Lost keys' occurrences 10 -4

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-60%
50%-60%
25%-60%

(a) Co-occur

0 0.5 1 1.5 2
Lost keys' occurrences 10 -7

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-60%
50%-60%
25%-60%

(b) WikiPageRank

Fig. 8: CDFs of occurrences of the lost keys, normalized
against the total number of data items across all keys at a
data item sampling rate of 60%. Each line corresponds to a
specific partition sampling rate.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
75%
50%
25%

(a) Data item sampling rate - 75%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile
100%
75%
50%
25%

(b) Data item sampling rate - 60%.

Fig. 9: Each graph plots CDFs of errors with 95% confidence
error at a fixed input data item sampling rate for Co-occur
application. Each line in a graph plots the error CDF at a
particular partition sampling rate.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
80%
60%
40%

(a) Partition sampling rate - 50%.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%
80%
60%
40%

(b) Partition sampling rate - 25%.

Fig. 10: CDFs of errors at a fixed partition sampling rate for
Co-occur application. Each line in a graph plots the error CDF
at a particular input data item sampling rate.

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-60%
75%-100%

(a)

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

100%-30%
75%-75%
50%-100%

(b)

Fig. 11: Error distribution trade off under different partition
and data item sampling rates combination from the Co-
occur application. The legends indicate partition and data item
sampling rates respectively.

0 0.02 0.04 0.06 0.08 0.1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

Estimated
Actual

(a) WikiPageRank, 75%-50%

0 0.2 0.4 0.6 0.8 1
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

Estimated
Measured

(b) WikiClickstream, 75%-50%

Fig. 12: Estimated and actual relative error comparison.

still requires some processing for each partition. The sampling
framework imposes some overheads; i.e., execution time for
the (100% (partition sampling), 100% (data item sampling))
case is somewhat greater than that of the precise version, ran
on unmodified Spark.

Fraction of keys in output. As already mentioned, multi-
stage sampling can result in loss of keys in the output for jobs
that produce more than one key. Figure 7 plots the fractions of
keys present in the output at different sampling rates for the
same three applications, normalized against the total number
of keys produced in the precise executions. Figure 8 shows
the occurrence frequencies of lost keys in the input RDD of
the final aggregation action in a precise execution, normalized
against the total number of data items in the RDD. We observe
that significant fractions of keys can be lost, especially at
higher partitioning sampling rates. For example, sampling rates
of (75%, 60%) for Co-occur reduce execution time by 40%
at the expense of losing 25% of the keys produced by the
precise execution. However, Figure 8 shows that only rare
keys are lost. For example, for the same (75%, 60%) sampling
rates in Co-occur, the most frequently appearing key that was
lost accounted for only a very small fraction 0.85 × 10−4 of
the total number of data items in the input RDD of the final
aggregation action, while 90% of the lost keys each accounted
for less than or equal to 0.08 × 10−4 of the total number of
data items in the RDD. The lost keys are even more rare in
the WikiPageRank and WikiClickstream applications, where
the occurrences of each lost key accounting for 10−7 of the
total number of data items.

Effect of sampling rates on error bounds. Figure 9 plots

the CDFs of the estimated error bounds computed as ε
vapprox

,
which are the ratios of sampling error to estimated value, for
all keys with 95% confidence for Co-occur. Each graph in
the figure plots CDFs for several different partition sampling
rates while keeping data item sampling rate fixed. We observe
that, as pointed out in [19], multi-stage sampling without
considering keys in the final output over-samples popular keys
and under-samples rare keys, leading to uneven relative error
bounds. This can lead to large relative error bounds in the tails
of the relative error bounds CDFs.

We observe that even relatively high partition sampling rates
(e.g., 75% - green curve in Figure 9(a)) can significantly
impact error bounds for more rare keys (pushing the CDF
curve for >60% to the right) while not affecting the frequently
appearing keys much (the CDF curve does not change much
for <60%). Interestingly, a 75% partition sampling rate affects
error bounds less or comparable to a 75% data item sampling
rate (red curve in Figure 9(b)) for up to 60% of the keys,
but the tail is significantly worse for partition sampling. We
believe this is caused by the clustering of data items with the
same keys within partitions. As either or both sampling rates
decrease, the entire error bound CDF shifts to the right (larger
error bounds). However, the observation that partition sam-
pling affects the tail of error bounds CDF much more strongly
than data item sampling remains consistent throughout.

Figure 10 shows the error bound CDFs when the partition
sampling rates are fixed with varying data item sampling rates,
the tails of the error bound CDFs are similar under the same
partition sampling rates. This points to a fundamental trade-
off: partition sampling can reduce execution time over data
item sampling, but trades off higher error bounds for the rarer
keys to do so. Figure 11 shows that the 95% relative error
CDFs can exhibit trade-offs with different combinations of
partition and data item sampling rates. In each subgraph, the
sampling rates are chosen so that they have similar execution
time as in Figure 6(a). We can see that their error CDFs
intersect, with the error CDFs from lower partition sampling
rates having worse tails. It shows that different partition and
data item sampling rates combinations can achieve similar
execution time, but different error bound distributions. For
example in Figure 11(a), (100%-60%) has better smaller errors
after the 62th percentile, but performs worse on frequent keys
that have smaller errors. It is because (100%-75%) processes
more data than (100%-60%), so the frequent keys result in
smaller errors but the rarer keys have worse error due to
partition dropping.

Comparison with relative error. Figure 12 plots the distri-
butions of estimated error bounds, versus the relative error
against ground truth - |1− v̂

v |. We can see that ApproxSpark’s
error estimation is constantly lower than the actual relative
error. We can also see that the estimation is more accurate at
lower percentiles and less so at higher percentiles. It is because
the popular keys usually provides more statistical information
to the error estimation process than rare keys.

Sources of uncertainty. As previously explained, uncertain-

Sampling Rates
Source (100%, 30%) (75%, 75%)
Partition sampling 0% 78%
Data item sampling 88% 12%
Pop. estimate partitions 0% 5%
Pop. estimate data items 12% 5%

TABLE IV: Breakdown of uncertainty on average across all
keys for the four sources of errors in multi-stage sampling for
Co-occur.

Sampling Execution Error Bound Percentile % Keys
Rates Time (s) 100th 90th 50th Present

100%-60% 149.2 0.17 0.12 0.10 80.0
75%-100% 150.8 0.37 0.22 0.06 80.3

100%-30% 120.9 0.22 0.20 0.17 71.8
75%-75% 121.4 0.32 0.28 0.13 72.3
50%-100% 119.7 0.51 0.31 0.11 61.5

TABLE V: Comparison of run times, error bounds at 100th,
90th, 50th percentiles, and fraction of unique keys for Co-
occurrence.

ties (leading to estimated error bounds) can arise from the
sampling as well as population estimations. Table IV shows
the percentages of the error bounds, averaged across all keys
in the output, attributable to each of four sources for Co-
occurence. We observe that the inter-cluster variance from
partition sampling accounts for by far the largest portion of
the estimated error bounds, which is consistent with [14].
The intra-cluster variance from data item sampling accounts
for the next largest portion, while population estimations for
number of partitions, the number of groups of co-occurred
words, within each partition for each key, account for only
small portions of the error bounds.

Summary. Putting together the observations made above,
we conclude that multi-stage sampling works well to sig-
nificantly reduce execution time while introducing small to
modest relative errors, as long as the loss of rare keys
are acceptable. Further, data item sampling would typically
be preferable to partition sampling because it gives more
consistent error bounds across keys. To more clearly support
this conclusion, Table V presents data for two sets of sam-
pling rates for Co-occur, {(100%, 60%), (75%, 100%)} and
{(100%, 30%), (75%, 75%), (50%, 100%)}, where members

 0 20 40 60 80 100
Data item sampling rate (%) on POI RDD

200

400

600

800

1000

R
un

 ti
m

e(
se

co
nd

s)

POI
RS SRS
RS stra.
Reg SRS
Reg stra.

(a) 100% partition sampling rate

 0 20 40 60 80 100
Data item sampling rate (%) on POI RDD

200

400

600

800

1000

R
un

 ti
m

e(
se

co
nd

s)

POI
RS SRS
RS stra.
Reg SRS
Reg stra.

(b) 75% partition sampling rate

Fig. 13: Run times for the aggregations at POI, road segment
and region RDD. The dashed curves represent run times under
SRS, solid curves represent stratified sampling (stra).

within each set have similar execution times. As the partition
sampling rate increases, the tail of the error bounds CDF
worsen significantly. The trend is less clear for lost keys;
however, high partition sampling rates (e.g., 50%) can clearly
lead to significantly increased number of lost keys. Looking
at Figure 6(a), this implies that partition sampling rates of
50% and 75% are not as useful since similar performance
is achievable with (100%, x%) sampling rates. On the other
hand, execution time can be reduced using a partition sampling
rate of 25% if one is willing to tolerate the accompanying key
loss and increased error bounds.

C. Results for stratified sampling using ASRS

In the Speed application, we explored both stratified sam-
pling using ASRS with power allocation technique, and simple
random sampling (SRS) on the data items in POI RDD. In
addition, partition sampling is also applied when reading the
input data. When stratified sampling is performed over the data
items in the POI RDD, it also creates stratification effect for
both road segment and region RDDs since each POI maps to
a road segment, which in turn maps to a region. We use power
allocation techniques to balance the sampling errors at each
strata in the POI RDD when stratified sampling is applied.

Execution times. Figure 13 shows the execution times for
aggregating at multiple RDD along the chain. We see that
aggregating the street and region RDD both have run time
reduction as the sampling rate on the POI RDD lowers,
whether stratified sampling or SRS is performed. However, we
do see that stratified sampling using ASRS has much higher
overhead than the SRS since it needs to perform stratification
and power allocation over the keys.

Confidence interval. Figure 14 plots the estimated values with
error bars of the average speed at the region level. The precise
result is plotted in the dashed black curves, estimated value
in green curve and 95 % confidence intervals as red error
bars. Usually higher average speed is observed in regions that
are away from city centers and at hours that are early in the
morning or late night, as a result these points come with lower
taxi densities, i.e., fewer samples which also tend to cluster
over a few partitions. These points would have larger error bars
without balancing the sample sizes among popular and rare
keys, as shown in the Figure 14(a) and (c), whereas stratified
reservoir sampling coupled with power allocation technique
increases the sampling rates of these rare keys, resulting in
smaller error bars for them. However, we do observe that the
popular keys have shorter error bars under SRS compared to
stratified, it is because the popular keys have a much larger
representation in the sample than the rare keys.

Fraction of keys shown in the output. In Figure 15, we
see that the stratified sampling constantly loses less keys than
SRS at same sampling rate. In Figure 15(b), we see that
when partition sampling rate is set, stratified sampling can
preserve the number of output keys without being affected by
the sampling rate over the data item shown in (a). This shows

(region id, h)

10

30

50

70

90

110
km

/h
95% CI
Estimated Value
Precise

(a) 50%-25% SRS
(region id, h)

10

30

50

70

90

110

k
m

/h

95% CI
Estimated Value
Precise

(b) 50%-25% Stratified
(region id, h)

10

30

50

70

90

110

km
/h

95% CI
Estimated Value
Precise

(c) 75%-50% SRS
(region id, h)

10

30

50

70

90

110

km
/h

95% CI
Estimated Value
Precise

(d) 75%-50% Stratified

Fig. 14: Region average speed at each hour at different partition and data item sampling rates combinations. Comparisons of
95 % Confidence Interval width when sample random or stratified sampling is applied at the POI RDD, coupled with partition
sampling at the input.

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 k
ey

s
in

 o
ut

pu
t

100%
75%
50%
25%

(a) SRS

 0 20 40 60 80 100
Data item sampling rate (%)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 k
ey

s
in

 o
ut

pu
t

100%
75%
50%
25%

(b) Stratified

Fig. 15: Number of output keys (normalized) occurred in
the output, SRS or stratified sampling performed at the road
segment RDD. Each line represents a partition sampling rate
at the initial RDD.

0 0.05 0.1 0.15 0.2
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

(a) Speed

0 0.05 0.1 0.15 0.2
Error Bound

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ile

(b) WikiClickstream

Fig. 16: User-specified error bounds targets shown on the error
CDF achieved by ApproxSpark.

that stratified reservoir sampling is much better at preserving
output keys in the result.

Summary. ASRS can not only achieves a balanced error
distribution among popular and rare keys, it also loses much
fewer output keys, consistent throughout varying sampling
rates over the data items. However, ASRS has a higher sam-
pling overhead than SRS which is reflected in the execution
times.

D. Results for user-specified error targets

We now demonstrate ApproxSpark’s capability in allowing
users to set error bounds target at different percentiles over the
relative error distribution. The red dots in Figure 16 show the
target error bounds at 20th, 50th, 90th, 100th percentiles; the
blue curves show the resulting CDF achieved by ApproxSpark,
setting both partition and data item sampling step sizes to be
0.1%. We can see that the CDFs are bounded by the targets set
by the user. Figure 16(a) is the error distribution for average
Taxi speed with 50% partition, and 80% data item sampling

rates at the POI RDD. Figure 16(b) is the error distribution
for WikiClickstream aggregation result with 40% partition and
60% data item sampling rates. We randomly select 10% of
the RDD partitions to be executed in the pilot wave. This
approximation mode incurs more overhead compared with
setting the sampling rates that satisfy the user-specified error
targets. We have observed that the pilot wave causes about
20% and 25% extra execution time respectively in the two
applications compared with setting the sampling rates directly.

VII. CONCLUSION

In this paper, we motivate, design, and implement a system
called ApproxSpark, which features a set of approximation
mechanisms leveraging sampling theories to adapt to Spark’s
computing paradigm. Our proposed multi-stage sampling the-
ories together with a data provenance tree allows for a gen-
eral approximate computing framework under Spark’s parallel
computing model with multi-step RDD transformations. We
utilize a set of metrics to rigorously evaluate ApproxSpark
including run times, the error bound distribution for all keys,
and the number of missed keys using applications from
different domains. We have also gained important insights on
an interesting yet complicated trade-off space in terms of the
error bounds, run times and number of keys, when choosing
different sampling schemes, such as specific sampling rates,
partition vs data item sampling, whether to use stratified sam-
pling, different combinations of partition/data item sampling
rates. We also have found that input data that contains less rare
keys for the application is more amenable to approximation. In
a real-world setting, a user would choose the most appropriate
sampling setup catering to her approximation goal. Based on
our experience and results, we conclude that our framework
and system can make efficient and customized approximation
to big data practioners using Spark.

APPENDIX

Estimated sum for all clusters is:

τ̂ =
N̂

n

∑
i∈S

vi = N̂ τ̄ (5)

Sample mean among the cluster totals is:

τ̄ =
1

n

∑
i∈S

vi (6)

Estimated total number of clusters N is:

N̂ =
n

p1
(7)

Since N̂ ∼ NB(n, p1), the variance of N̂ is:

V ar(N̂) =
n(1− p1)

p21
(8)

If we treat it as simple random sampling, the variance of mean
of cluster total is:

V ar(τ̄) = (1− p1)
s2t
n

(9)

Variance of cluster totals V ar(τ̂)srs =

V ar(N̂ τ̄)

= N̂2V ar(τ̄) + τ̄2V ar(N̂) + V ar(N̂)V ar(τ̄)

= (
n

p1
)2(1− p1)

s2t
n

+
n(1− p1)

p21
(τ̄2 + (1− p1)

s2t
n

)

(10)

thus:
V arinter = (1− 1

p1
)V arsrs(τ̂) (11)

Estimated sum of cluster i is:

τ̂i = M̂iτ̄i (12)

where sample mean τ̄i in cluster i is:

τ̄i =
1

mi

∑
j∈Si

vij (13)

where mi is the number of sampled items in cluster i, Mi

is the population total in cluster i and p2 is the data item
sampling rate.

Since M̂i ∼ NB(mi, p2), estimated M̂i is:

M̂i =
mi

p2
(14)

with variance:

V ar(M̂i) =
(mi)(1− p1)

p22
(15)

The variance of sample mean in cluster i is:

V ar(τ̄i) = (1− p2)
s2i
mi

(16)

The variance of estimated sum in cluster i is:

V ar(τ̂i) = M̂i
2 ˆV ar(τ̄i) + τ̄i

2V ar(Mi) + V ar(M̂i)V ar(τ̄i)

= (
mi

p2
)2(1− p2)

s2i
mi

+
(mi)(1− p1)

p21
(τ̄i +

(mi)(1− p1)

p21
)

(17)

Intra-cluster variance is:

V arintra =
1

p1

∑
i∈S

V (τ̂i) (18)

The total variance is:

V ar(τ̂) = V arinter + V arintra

= V ar(τ̂)srs +
1

p1

∑
i∈S

V ar(τ̂i)
(19)

REFERENCES

[1] F. T. Chong, M. J. R. Heck, P. Ranganathan, A. A. M. Saleh, and
H. M. G. Wassel, “Data Center Energy Efficiency:Improving Energy
Efficiency in Data Centers Beyond Technology Scaling,” IEEE Design
& Test, vol. 31, no. 1, 2014.

[2] W. Dai, L. Qiu, A. Wu, and M. Qiu, “Cloud infrastructure resource
allocation for big data applications,” IEEE Transactions on Big Data,
vol. 4, no. 3, pp. 313–324, 2018.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[4] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “Scope: easy and efficient parallel processing of massive
data sets,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp.
1265–1276, 2008.

[5] Y. Yan, L. J. Chen, and Z. Zhang, “Error-bounded sampling for analytics
on big sparse data,” Proceedings of the VLDB Endowment, vol. 7, no. 13,
pp. 1508–1519, 2014.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals,” Data mining
and knowledge discovery, vol. 1, no. 1, pp. 29–53, 1997.

[7] X. Xie, K. Zou, X. Hao, T. B. Pedersen, P. Jin, and W. Yang, “Olap
over probabilistic data cubes ii: Parallel materialization and extended
aggregates,” IEEE Transactions on Knowledge and Data Engineering,
2019.

[8] J. G. Shanahan and L. Dai, “Large scale distributed data science using
apache spark,” in Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, 2015, pp.
2323–2324.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1383–1394.

[10] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework
for processing large-scale spatial data,” in Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2015, p. 70.

[11] M. S. Wiewiórka, A. Messina, A. Pacholewska, S. Maffioletti,
P. Gawrysiak, and M. J. Okoniewski, “Sparkseq: fast, scalable and cloud-
ready tool for the interactive genomic data analysis with nucleotide
precision,” Bioinformatics, vol. 30, no. 18, pp. 2652–2653, 2014.

[12] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: Review and
open research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[13] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, and S. Whittle, “The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing,” Proc. VLDB Endow.,
vol. 8, no. 12, pp. 1792–1803, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824076

[14] S. Lohr, Sampling: Design and Analysis. Cengage Learning, 2009.
[15] M. Al-Kateb and B. S. Lee, “Adaptive stratified reservoir sampling over

heterogeneous data streams,” Information Systems, vol. 39, pp. 199–216,
2014.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
in Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA:
USENIX, 2012, pp. 15–28. [Online]. Available: https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/zaharia

[17] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized Stratified Sampling
for Approximate Query Processing,” ACM Transactions on Database
Systems (TODS), vol. 32, no. 2, 2007.

http://doi.acm.org/10.1145/2893356
http://dx.doi.org/10.14778/2824032.2824076
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[18] M. Al-Kateb and B. S. Lee, “Stratified reservoir sampling over hetero-
geneous data streams,” in Proceedings of the 22nd International Con-
ference on Scientific and Statistical Database Management (SSDBM).
Springer Berlin Heidelberg, 2010, pp. 621–639.

[19] M. Thottethodi, T. Vijaykumar, M. Kulkarni et al., “Stratified online
sampling for sound approximation in mapreduce,” 2015.

[20] J. Peng, D. Zhang, J. Wang, and J. Pei, “Aqp++: connecting approx-
imate query processing with aggregate precomputation for interactive
analytics,” in Proceedings of the 2018 International Conference on
Management of Data. ACM, 2018, pp. 1477–1492.

[21] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“BlinkDB: Queries with Bounded Errors and Bounded Response Times
on Very Large Data,” in Proceedings of the Eurosys Conference, 2013.

[22] X. Zhang, J. Wang, and J. Yin, “Sapprox: Enabling efficient and
accurate approximations on sub-datasets with distribution-aware online
sampling,” Proc. VLDB Endow., vol. 10, no. 3, pp. 109–120, Nov.
2016. [Online]. Available: https://doi.org/10.14778/3021924.3021928

[23] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online Aggregation,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1997.

[24] G. Kumar, G. Ananthanarayanan, S. Ratnasamy, and I. Stoica, “Hold
’em or fold ’em?: Aggregation queries under performance variations,”
in Proceedings of the Eleventh European Conference on Computer
Systems, ser. EuroSys ’16. New York, NY, USA: ACM, 2016, pp. 7:1–
7:14. [Online]. Available: http://doi.acm.org/10.1145/2901318.2901351

[25] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen,
“Approxhadoop: Bringing approximations to mapreduce frameworks,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 383–397.
[Online]. Available: http://doi.acm.org/10.1145/2694344.2694351

[26] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[27] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“Streamapprox: Approximate computing for stream analytics,” in
Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
ser. Middleware ’17. New York, NY, USA: ACM, 2017, pp. 185–197.

[Online]. Available: http://doi.acm.org/10.1145/3135974.3135989
[28] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized

streams: An efficient and fault-tolerant model for stream processing on
large clusters.” HotCloud, vol. 12, pp. 10–10, 2012.

[29] G. Hu, D. Zhang, S. Rigo, and T. D. Nguyen, “Approximation with error
bounds in spark,” arXiv preprint arXiv:1812.01823, 2018.

[30] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[31] M. D. Bankier, “Power allocations: determining sample sizes for sub-
national areas,” The American Statistician, vol. 42, no. 3, pp. 174–177,
1988.

[32] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
multidimensional data. Springer, 2006, pp. 25–71.

[33] “MEDLINE Data,” 2017, https://www.nlm.nih.gov/databases/download/
pubmed medline.html/.

[34] D. Zhang, T. He, F. Zhang, M. Lu, Y. Liu, H. Lee, and S. H. Son,
“Carpooling service for large-scale taxicab networks,” ACM Trans. Sen.
Netw., vol. 12, no. 3, pp. 18:1–18:35, Aug. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2897517

[35] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring
human mobility with multi-source data at extremely large metropolitan
scales,” in Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’14. New
York, NY, USA: ACM, 2014, pp. 201–212. [Online]. Available:
http://doi.acm.org/10.1145/2639108.2639116

[36] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on
human language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[37] (2011) Tweets 2011. http://trec.nist.gov/data/tweets/.
[38] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and

D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Association for Computational Linguistics (ACL) System
Demonstrations, 2014, pp. 55–60. [Online]. Available: http://www.
aclweb.org/anthology/P/P14/P14-5010

[39] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Stanford InfoLab, Tech. Rep.,
1999.

[40] “Wikipedia database,” http://en.wikipedia.org/wiki/Wikipedia database.,
2016.

[41] (2016) Wikipedia clickstream. https://meta.wikimedia.org/wiki/
Research:Wikipedia clickstream/.

https://doi.org/10.14778/3021924.3021928
http://doi.acm.org/10.1145/2901318.2901351
http://doi.acm.org/10.1145/2694344.2694351
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://doi.acm.org/10.1145/3135974.3135989
https://www.nlm.nih.gov/databases/download/pubmed_medline.html/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html/
http://doi.acm.org/10.1145/2897517
http://doi.acm.org/10.1145/2639108.2639116
http://trec.nist.gov/data/tweets/
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://en. wikipedia.org/wiki/Wikipedia_database.
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream/
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream/

	I Introduction
	II background and related work
	III Multi-stage sampling in spark
	III-A Multi-stage Sampling
	III-B Data Provenance Tree
	III-C Tree traversal-based statistics computation
	III-D Per-key population estimation

	IV Stratified Reservoir Sampling
	V ApproxSpark Implementation
	V-A User-specified sampling rates
	V-B User-specified target error bounds

	VI evaluation
	VI-A Applications
	VI-B Results for multi-stage sampling
	VI-C Results for stratified sampling using ASRS
	VI-D Results for user-specified error targets

	VII Conclusion
	Appendix
	References

