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Task Overview

Task: The objective 1s to create an approximate K-NN graph using a set
of high-dimensional vectors where each vertex 1s linked to its
approximate k nearest neighbors based on the Euclidean distance.

Dataset:

Dataset of vectors dimension

Turing 10,000,000 100

Vectors are Bing queries encoded by Turing AGI v35.

Output: Approximate KNN Graph (K=100)

ground truth (100—NN neighbors)
100

Hardware Conditions: Azure Standard F32s v2, 32C64G

Time Limit: 30 minutes + 60 seconds (reprozip overhead)

Input: A set of vectors

Evaluation Metric: Recall =
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Implementation

Algorithm: Slack-Threshold NN-Descent, which 1s based on NN-
Descent [ 1] with optimizations and improvements.

Data Structures Required by Each Vector(Node):
- Candidates Set (C)

- Incoming Nodes (I)

- Reverse-NN Nodes (R)

Overall Procedure:

1. Randomly selecting 100 neighbors for each node.

2. The incoming nodes are recognized as closer NNs 1n the current round
(Random nodes at the beginning). The reverse-NN nodes consist of
nodes that have out-degrees to the current one.

3. Pairs generated by Cartesian Product between set I U R([1) 1itself, set
I UR(I) and set C U R(C) for each node are mutually checked
whether they constitute the nearest neighbor.

With Tight-Threshold:

The original algorithm utilizes the radius threshold to establish the range
for reverse-NN detection and also filter intimate nodes, which are
considered well-connected due to their shorter distances.
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Reverse-NN Set Truncated

Goal: preserve Y - Pandadd X —» P

Unfortunately, the curse of dimensionality frequently causes hubs to
appear 1n high-dimensional space, which we also observed in the Turing
Dataset during our analysis. This causes the reverse-NN set to be
truncated, thereby saving memory budget, but also undermining neighbor
discovery through reverse-NN paths.

With Slack-Threshold:

This method 1s based on two key

principles:

* A neighbor of a neighbor 1s also likely
to be a neighbor. (from NN-Descent)

* A closer neighbor could be found by

taking a slight detour. (Inspired by the
RNG property [2])

With Slack-Threshold, nodes with
relatively far distance from P are
more likely to include P into its
neighbor checking phase.(Node X)
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It filters out Node Y. However, by applying local join and relying on
principle 1 of NN-Descent, we ensure that local close nodes are detected
and well-connected. This approach increases the likelihood of reaching
nodes that would otherwise require detours, while also preserving strong
local connections.

Low-Level Design:

- The previously mentioned structure will be dynamically maintained to
reduce memory footprint.

- SIMD with AVX-512 1s used with aligned data for accelerating L.2
distance computation.

- Prefetching has been effectively integrated into the computational
checking progress.

Results
Results are selected from submissions 1n the contest.
Dataset Recall Time (s)
Turing-10M 0.981 1847
Turing-10M 0.976 1654
Turing-10M 0.954 1300
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