
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Task: The objective is to create an approximate K-NN graph using a set 
of high-dimensional vectors where each vertex is linked to its 
approximate k nearest neighbors based on the Euclidean distance.
Dataset:

Vectors are Bing queries encoded by Turing AGI v5.
Input: A set of vectors Output: Approximate KNN Graph (K=100)

Evaluation Metric: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (100−𝑁𝑁𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
100

Hardware Conditions: Azure Standard F32s_v2, 32C64G
Time Limit: 30 minutes + 60 seconds (reprozip overhead)

Task Overview

Solution Overview

Unfortunately, the curse of dimensionality frequently causes hubs to 
appear in high-dimensional space, which we also observed in the Turing 
Dataset during our analysis. This causes the reverse-NN set to be 
truncated, thereby saving memory budget, but also undermining neighbor 
discovery through reverse-NN paths.

Results
Results are selected from submissions in the contest.

References
[1] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph 
construction for generic similarity measures." Proceedings of the 20th international 
conference on World wide web. 2011.
[2] Jaromczyk, Jerzy W., and Godfried T. Toussaint. "Relative neighborhood graphs 
and their relatives." Proceedings of the IEEE 80.9 (1992): 1502-1517.

Contact: mengchen22@m.fudan.edu.cn, zhangk@fudan.edu.cn

TEAM X2A3008M
Member: Meng Chen, Advisor: Kai Zhang

DASlab - System Group @ Fudan University

ACM SIGMOD Programming Contest 2023

Dataset # of vectors dimension

Turing 10,000,000 100

Nodes Filtered out 
𝑃𝑃 in R(I)

Nodes will take P as 
Potential NN for Checking

Fail to Establish Links due to 
Reverse-NN Set Truncated

Dataset Recall Time (s)
Turing-10M 0.981 1847

Turing-10M 0.976 1654

Turing-10M 0.954 1300

Implementation
Algorithm: Slack-Threshold NN-Descent, which is based on NN-
Descent [1] with optimizations and improvements.
Data Structures Required by Each Vector(Node):
- Candidates Set (C)
- Incoming Nodes (I)
- Reverse-NN Nodes (R)
Overall Procedure:
1. Randomly selecting 100 neighbors for each node.
2. The incoming nodes are recognized as closer NNs in the current round 

(Random nodes at the beginning). The reverse-NN nodes consist of 
nodes that have out-degrees to the current one.

3. Pairs generated by Cartesian Product between set 𝐼𝐼 ⋃𝑅𝑅(𝐼𝐼) itself, set 
𝐼𝐼 ⋃𝑅𝑅 𝐼𝐼 and set C⋃𝑅𝑅 𝐶𝐶 for each node are mutually checked 
whether they constitute the nearest neighbor.

With Tight-Threshold:
The original algorithm utilizes the radius threshold to establish the range 
for reverse-NN detection and also filter intimate nodes, which are 
considered well-connected due to their shorter distances. 

With Slack-Threshold:
This method is based on two key 
principles: 
• A neighbor of a neighbor is also likely 

to be a neighbor. (from NN-Descent) 
• A closer neighbor could be found by 

taking a slight detour. (Inspired by the 
RNG property [2])

With Slack-Threshold, nodes with 
relatively far distance from 𝑃𝑃 are 
more likely to include 𝑃𝑃 into its
neighbor checking phase.(Node X)

It filters out Node Y. However, by applying local join and relying on 
principle 1 of NN-Descent, we ensure that local close nodes are detected 
and well-connected. This approach increases the likelihood of reaching 
nodes that would otherwise require detours, while also preserving strong 
local connections.

Low-Level Design:
- The previously mentioned structure will be dynamically maintained to 

reduce memory footprint.
- SIMD with AVX-512 is used with aligned data for accelerating L2 

distance computation.
- Prefetching has been effectively integrated into the computational 

checking progress.

Goal: preserve 𝑌𝑌 → 𝑃𝑃 and add 𝑋𝑋 → 𝑃𝑃


	幻灯片编号 1

