Task: The objective is to create an approximate K-NN graph using a set of high-dimensional vectors where each vertex is linked to its approximate k nearest neighbors based on the Euclidean distance.

Dataset:

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of vectors</th>
<th>dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing</td>
<td>10,000,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Vectors are Bing queries encoded by Turing AGI v5.

Input: A set of vectors

Output: Approximate KNN Graph (K=100)

Evaluation Metric: \(\text{Recall} = \frac{\text{ground truth (100--NN neighbors)}}{100} \)

Hardware Conditions: Azure Standard F32s_v2, 32C64G

Time Limit: 30 minutes + 60 seconds (reprozip overhead)

Solution Overview

Unfortunately, the curse of dimensionality frequently causes hubs to appear in high-dimensional space, which we also observed in the Turing Dataset during our analysis. This causes the reverse-NN set to be truncated, thereby saving memory budget, but also undermining neighbor discovery through reverse-NN paths.

With Slack-Threshold:

This method is based on two key principles:

- A neighbor of a neighbor is also likely to be a neighbor. (from NN-Descent)
- A closer neighbor could be found by taking a slight detour. (Inspired by the RNG property [2])

With Slack-Threshold, nodes with relatively far distance from \(P \) are more likely to include \(P \) into its neighbor checking phase. (Node X)

It filters out Node Y. However, by applying local join and relying on principle 1 of NN-Descent, we ensure that local close nodes are detected and well-connected. This approach increases the likelihood of reaching nodes that would otherwise require detours, while also preserving strong local connections.

Low-Level Design:
- The previously mentioned structure will be dynamically maintained to reduce memory footprint.
- SIMD with AVX-512 is used with aligned data for accelerating L2 distance computation.
- Prefetching has been effectively integrated into the computational checking progress.

Results

Results are selected from submissions in the contest.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Recall</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing-10M</td>
<td>0.981</td>
<td>1847</td>
</tr>
<tr>
<td>Turing-10M</td>
<td>0.976</td>
<td>1654</td>
</tr>
<tr>
<td>Turing-10M</td>
<td>0.954</td>
<td>1300</td>
</tr>
</tbody>
</table>

References
