
ACM SIGMOD Programming Contest 2023
Team HelloWorld

DB Group, Dept. of Computer Science and Technology, Tsinghua University
Jiayi Wang Advisor: Guoliang Li
jiayi-wa20@mails.tsinghua.edu.cn

0. Task Overview

• Problem definition:
- Build an approximate K-NN Graph for a set of

vectors.
- For n d-dimensional vectors (nodes), find the

approximate k nearest neighbors of each of them
using Euclidean Distance in a limited time.

- n=10
- d=100
- k=100
- 30 minutes

• Measurement:
- 𝑅𝑒𝑐𝑎𝑙𝑙 = !"#$%& '()&"%)'* +,, !%-&%.) !%/01$'&.

+,,

• Testing Environment:
- Azure Standard F32s_v2 with 32 CPU x 2.7 GHz,

64 GB Main Memory, and 32 GB Disk Storage.

3. Accelerate Distance Computation

1. Basic Algorithm: NN-Descent

p Another perspective:

• Local Join: introduce the neighbors of each node
to "get to know" each other

• Advantage: better locality, thus higher efficiency

2. Bottleneck in NN-Descent

• Need to compute distances between each pair of
neighbors

• Need to get the neighbor's lock to update
• Need to maintain a list of neighbors for each node

5. Efficient Update of Neighbors List

4. Efficient Use of Locks

B

A

C
new neighbor

B

A

E

C D

pMain idea: Neighbors’ neighbors are likely to be
neighbors

• With this idea, we can optimize the current NN-
graph by exploring the neighbors’ neighbors of
each node

• The graph will be optimized iteratively

Local Join
To introduce the neighbors of each node to
"get to know" each other

Reference:
[1] Dong W, Moses C, Li K. Efficient k-nearest neighbor graph construction for generic similarity measures[C]//Proceedings of the 20th international conference on World wide web. 2011: 577-586.

• For Euclidean Distance:
- (𝐗 − 𝐘)!= 𝐗 ! − 2𝐗𝐘 + 𝐘 !

- 𝐗 ! of each vector can be precomputed
- 𝐗𝐘 can be converted to matrix multiplication

computations
- Both can be accelerated by vectorization using

Intel MKL

• Naïve way:
for 𝐮 in neighbors:

for 𝐯 in neighbors:
Dist(u,v)
Get_lock_and_update(u)
Get_lock_and_update(v)

- Frequent	lock	acquisition	and	release
- Insufficient localization and cache utilization

• Optimized way:
Compute_all_dist(neighbors)// Vectorization
for 𝐮 in neighbors:

Get_lock(𝐮)
Update_all_neighbors(𝐮)

- Less lock	acquisition	and	release
- Better localization

• An example neighbors list:

- For each neighbor:

! " # $
!"#$%"&
!"#$%&'$ "()
*+,-$ (".)
/,,+ *+-0)

'
() *+",! -. "/"01

! " # $

!"#$%& '

Brings 3*12 = 36 bytes of memmove

• Compress the information in flag:
- n= 10" uses only 24 bits of the

uint32_t
- Use any of the remaining 8 bits

to record the flag information
- Reduce memove by 33%

!"#$%"&
!"#$%&'$ "()
*+,-$ (".)

'
()*"+! ,- "."/0

6. Results
Average Recall: 0.987
Runtime: 1854s

! " # $

%&%%'(&

