
Task Overview

Distance Computation by SIMD

Solution Overview

Task: Build an approximate K-NN Graph for a set of vectors.

Input/Output:
• Inputs: dataset contains 10M 100 dimension vector data.

• Output: 100-nearest neighbors for each vector in given dataset.
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Performance Metric: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
number of true top 100 nearest neighbors
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Experimental Evaluation

References

Heap v.s. Sorted Array

❖ Experiment Environment: Intel(R) Xeon(R) Gold 5318Y CPU @ 
2.10GHz and 512GB memory.

❖ The experiment is conducted on the released dataset of the 
contest, which consists of 10M float vectors of 100 dimensions.

❖Optimized NN-Descent is 3 times faster than original one.

Observation:
• In the first few iterations, heap is a nice data structure to represent 
neighbor lists due to frequent update operations. 

• After several iterations, the update of neighbor lists becomes less 
frequent. On the contrary, many update attempts fail since there 
they have been in the neighbor list.

• In that case, using sorted array can be more efficient than heap due 
to less traverse cost as well as low insertion cost.

(a) Less traverse cost for duplicate value insertion

(b) Less traverse cost for new value insertion

(c) Low Insertion memory copy cost
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Random Initialization: randomly initialize the neighbor lists N[v] of 
each node v.
Local Join: for each node v, and p, q ∈ N[v], update N[p] and N[q] 
based on the similarity between p and q if one of them is new to the 
N[v]. 
Update: update the information of N[v] to determine which 
neighbors are new to N[v].


