
Task Overview

Distance Computation by SIMD

Solution Overview

Task: Build an approximate K-NN Graph for a set of vectors.

Input/Output:
• Inputs: dataset contains 10M 100 dimension vector data.

• Output: 100-nearest neighbors for each vector in given dataset.

SUSTech DBGroup · Finalist

Yanqi CHEN, Jiarui LUO, Long XIANG, Shimin LUO, Hongxun DING

Advisor: Professor Xiao Yan, Professor Bo Tang

DBGroup@SUSTech: https://dbgroup.sustech.edu.cn

ACM SIGMOD Programming Contest 2023

Performance Metric: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
number of true top 100 nearest neighbors

100

Random
Initialization

Local Join Update

NN-Descent Framework

𝑋

𝑌

𝐷𝑖𝑚 = 100

16 floats …… 16 floats 4 floats

6 ∗ 16 𝑓𝑙𝑜𝑎𝑡𝑠 4 𝑓𝑙𝑜𝑎𝑡𝑠

16 floats …… 16 floats 4 floats

…𝑅𝑋 𝑅𝑌 …

➢512 bits SIMD 
Register
➢Process 16 

floats at once-

…

- - -

…sub1 sub1

_mm515_sub_ps

…msum1

_mm512_fmadd_ps

➢128 bits SIMD 
Register msum11

msum12

➢Last 4 floats, 
128 bits SIMD 
Register
➢Sub & fmadd

➢Result

Experimental Evaluation

References

Heap v.s. Sorted Array

❖ Experiment Environment: Intel(R) Xeon(R) Gold 5318Y CPU @ 
2.10GHz and 512GB memory.

❖ The experiment is conducted on the released dataset of the 
contest, which consists of 10M float vectors of 100 dimensions.

❖Optimized NN-Descent is 3 times faster than original one.

Observation:
• In the first few iterations, heap is a nice data structure to represent 
neighbor lists due to frequent update operations. 

• After several iterations, the update of neighbor lists becomes less 
frequent. On the contrary, many update attempts fail since there 
they have been in the neighbor list.

• In that case, using sorted array can be more efficient than heap due 
to less traverse cost as well as low insertion cost.

(a) Less traverse cost for duplicate value insertion

(b) Less traverse cost for new value insertion

(c) Low Insertion memory copy cost

[1] Dong W, Moses C, Li K. Efficient k-nearest neighbor graph 

construction for generic similarity measures[C]//Proceedings of the 

20th international conference on World wide web. 2011: 577-586.

[2] Fu C, Cai D. Efanna: An extremely fast approximate nearest 

neighbor search algorithm based on knn graph[J]. arXiv preprint 
arXiv:1609.07228, 2016.

Random Initialization: randomly initialize the neighbor lists N[v] of 
each node v.
Local Join: for each node v, and p, q ∈ N[v], update N[p] and N[q] 
based on the similarity between p and q if one of them is new to the 
N[v]. 
Update: update the information of N[v] to determine which 
neighbors are new to N[v].


