

ACM SIGMOD Programming Contest 2023

Team: CantonDwenDwen (Runner-Up)

Advisor: Dr. Jilian Zhang

Haizhou Ye yeh629@stu2021.jnu.edu.cn

Xuyang Liu liuxuyang@stu2022.jnu.edu.cn

Chenzhao Wang akinouta@stu2022.jnu.edu.cn

Task Overview

Task: to build an approximate K-NN Graph for a set of vectors. i.e., for each vector, find its approximate k nearest neighbors in a limited time (30 minutes).

Dataset	Description	Size	K
Х	Bing queries encoded by Turing AGI v5	10 ⁷	100

Evaluation Metric: Recall = $\frac{\text{number of true top 100 nearest neighbors}}{\text{number of true top 100 nearest neighbors}}$

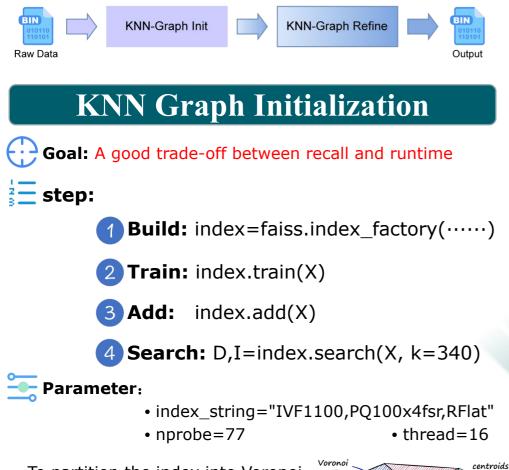
Evaluation Environment: 32 CPU x 2.7 GHz, 64 GB Main Memory, 32 GB Storage, Ubuntu 20.04.5 LTS - no GPU

Solution Overview

We first use the **faiss** library [1] to obtain an initial KNN graph, and then use the **pynndescent** library [2] to refine it.

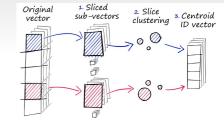
Our solution involved 2 major steps:

- 1. Construct an initial KNN graph.
- 2. Refine the initial KNN graph.



• To partition the index into Voronoi cells is a popular approach, which reduces search space of our solution, and produces an approximate answer. (IVF)

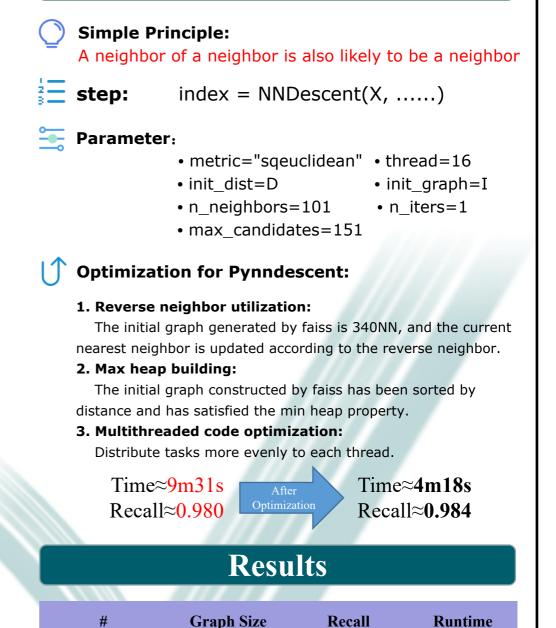
• Product Quantization (PQ) [3] is a key optimization technique used, which compresses input vectors and approximates the distance/similarity calculation.



• Specifically, we use PQFastScan (PQfs) [4], which stores the search-time look-up tables in registers.

 In particular, we search for 340NN instead of 100NN. This is because searching more nearest neighbors helps to exploit reverse neighbors. For example, v_1 is one of the current 100-NN of v_0 , then v_0 may be one of the true 100-NN of v_1 .

KNN Graph Refinement



Conclusion

Initial Graph	340 -NN	0.965	24 m 9 s
Refined Graph	100-NN	0.984	4 m 18 s

Recall

Graph Size

- **1.** The technical route of initializing the graph first and then refining it is fast and efficient.
- **2.** The re-ranking of faiss and the searching of 340-NN make many reverse neighbors can be exploited to improve performance.
- **3.** We achieve a good trade-off in the time distribution of initialization and refinement (24~25m on initializing and 4~5m on Refining). The iterative one-round NNDescent algorithm has the highest cost performance.

References:

[1] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Trans. Big Data, 7(3):535--547, 2021. [2] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity measures. In WWW. 577--586. [3] Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(1): 117-128. [4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache locality is not enough: High-Performance Nearest Neighbor Search with Product Quantization Fast Scan. Proceedings of the VLDB Endowment (PVLDB) 9, 4 (2015), 288--299.