
Task Overview

References:
[1] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Trans. Big Data, 7(3):535--547, 2021.
[2] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity measures. In WWW. 577--586.
[3] Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 33(1): 117-128.
[4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache locality is not enough: High-Performance Nearest Neighbor Search with Product Quantization Fast Scan. 
Proceedings of the VLDB Endowment (PVLDB) 9, 4 (2015), 288--299.

Task: to build an approximate K-NN Graph for a set of 
vectors. i.e., for each vector, find its approximate k nearest 
neighbors in a limited time (30 minutes).

Figure 2: Your caption to go here

Figure 3: Your caption to go here Quisque viverra 
lectus ac lectus

1. Reverse neighbor utilization: 
    The initial graph generated by faiss is 340NN, and the current 
nearest neighbor is updated according to the reverse neighbor.
2. Max heap building: 
    The initial graph constructed by faiss has been sorted by 
distance and has satisfied the min heap property.
3. Multithreaded code optimization: 
    Distribute tasks more evenly to each thread.

Conclusion 
1. The technical route of initializing the graph first and then refining it is fast and efficient.
2. The re-ranking of faiss and the searching of 340-NN make many reverse neighbors can be exploited to improve performance.
3. We achieve a good trade-off in the time distribution of initialization and refinement (24~25m on initializing and 4~5m on 
Refining). The iterative one-round NNDescent algorithm has the highest cost performance.

KNN Graph Refinement

ACM SIGMOD Programming Contest 2023

Dataset Description Size K

X Bing queries encoded by Turing AGI v5 107 100

Evaluation Metric: Recall = number of true top 100 nearest neighbors
100

 

Evaluation Environment: 32 CPU x 2.7 GHz, 64 GB Main 
Memory, 32 GB Storage, Ubuntu 20.04.5 LTS - no GPU

Solution Overview
We first use the faiss library [1] to obtain an initial KNN 
graph, and then use the pynndescent library [2] to refine it.

Our solution involved 2 major steps: 

1. Construct an initial KNN graph.
2. Refine the initial KNN graph.

KNN Graph Initialization

Results
# Graph Size Recall Runtime

Initial Graph 340-NN 0.965 24m9s

Refined Graph 100-NN 0.984   4m18s

step:

Goal: A good trade-off between recall and runtime 

Parameter：
 • index_string="IVF1100,PQ100x4fsr,RFlat"
 • nprobe=77                          • thread=16

Build: index=faiss.index_factory(······)

Train: index.train(X)

Add:   index.add(X)

Search: D,I=index.search(X, k=340)

• Product Quantization (PQ) [3] 
is a key optimization technique 
used, which compresses input 
vectors and approximates the 
distance/similarity calculation. 

Simple Principle: 
A neighbor of a neighbor is also likely to be a neighbor

Optimization for Pynndescent: 

index = NNDescent(X, ......)step:

Parameter：
 • metric="sqeuclidean"  • thread=16 
 • init_dist=D                 • init_graph=I  
 • n_neighbors=101        • n_iters=1
 • max_candidates=151

• To partition the index into Voronoi 
cells is a popular approach, which 
reduces search space of our solution, 
and produces an approximate 
answer. (IVF)

• Specifically, we use PQFastScan (PQfs) [4], which stores the 

search-time look-up tables in registers.

• In particular, we search for 340NN instead of 100NN. This is 

because searching more nearest neighbors helps to exploit reverse 

neighbors. For example, v1 is one of the current 100-NN of v0, then 

v0 may be one of the true 100-NN of v1.

Time≈4m18s
Recall≈0.984

Time≈9m31s
Recall≈0.980

After 
Optimization


