Unsupervised String Transformation Learning for Entity Consolidation

RUTGERS
 THESTATE UNIVERSITY OF NEW JERSEY

Massachusetts Institute of Technology

Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed Elmagarmid, Ihab Ilyas, Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, Nan Tang

Data Integration is Ubiquitous

- Fundamental problem in numerous applications

A Closer Look at Data Integration

Entity Resolution:
Find Duplicate Records

Entity Consolidation:
Merge Duplicate Records

ID	Name	Address	Telephone
P1	Mary Lee	9 St, Wisconsin	$(718) 453-0681$
P2	M. Lee	9th St, WI	7184530681
P3	James Smith	3rd E Ave, CA	$212-213-2888 \times 264$
P4	J. Smith	3 E Avenue, CA	$(212) 213-2888$
P5	Lee, Mary	9 Street, WI	$+1-718-453-0681$
P6	Smith, James	5th Street, WA	$+1-212-213-2888$

Entity Consolidation: Merge Duplicate Records

Clusters of Duplicate Records

ID	Name	Address
P1	Mary Lee	9 St, Wisconsin
P2	M. Lee	9th St, WI
P5	Lee, Mary	9 Street, WI
P3	Smith, James	5th Street, WA
P4	James Smith	3rd E Ave, California
P6	J. Smith	3 E Avenue, CA

Entity Consolidation: Merge Duplicate Records

Clusters of Duplicate Records

ID	Name	Address	
P1	Mary Lee	9 St, Wisconsin	
P2	M. Lee	9th St, WI	majority vote truth discovery data fusion, etc
P5	Lee, Mary	9 Street, WI	Conflict Value Pairs

Data Variety and Inconsistency

- A big issue in data integration and entity consolidation

- Largely done by hand, labor intensive \& error prone

Example: Match \& Merge Affiliations

"I've created a number of rules to map together alternative organization names and misspellings ..."
"I wrote a bunch of manual patterns to map names to canonical versions, although it is likely that I still missed some cases ..."
"There are 10 different ways "Google" is represented and 11 different versions of "IBM," so that required some manual scrubbing ..."
"I manually collapse ..."

Human Answer Automatic Generated Questions

Question Wisconsin — WI Accept California — CA Reject Michigan — MI Massachusetts — MA		A group of "similar", replacement rules that are automatically generated
9 St, 02141 Wisconsin	9th St, 02141 WI	
$9 \mathrm{St}, 02141$ Wisconsin	9 Street, 02141 WI	
3rd E Ave, 33990 California	3 E Avenue, 33990 CA	

Human Answer Automatic Generated Questions

Human Answer Automatic Generated Questions

Questions are asked in frequency decreasing order

Generating \& Grouping Rules

Name
Mary Lee
M. Lee
Lee, Mary
Smith, James
James Smith
J. Smith
S. David
Brown, Alex
Alex Brown

Clusters on 1 Column

Mary Lee - M. Lee
Lee, Mary — Mary Lee
Lee, Mary - M. Lee
Smith, James — James Smith
Smith, James - J. Smith
James Smith - J. Smith
Brown, Alex - S. David
Brown, Alex - Alex Brown
Alex Brown — S. David

Candidate Replacement Rules

Generating \& Grouping Rules

Name
Mary Lee
M. Lee
Lee, Mary
Smith, James
James Smith
J. Smith
S. David
Brown, Alex
Alex Brown

Mary Lee - M. Lee
Lee, Mary - Mary Lee
Lee, Mary - M. Lee
Smith, James - James Smith
Smith, James - J. Smith
James Smith — J. Smith
Brown, Alex - S. David
Brown, Alex - Alex Brown
Alex Brown — S. David

> Lee, Mary - Mary Lee
> Smith, James - James Smith
> Brown, Alex - Alex Brown

Group by way of	Lee, Mary - M. Lee
transforming	Smith, James - J. Smith

Mary Lee - M. Lee
James Smith - J. Smith

Brown, Alex — S. David
Alex Brown — S. David

Transformation Program [Guwani: Popt11]

P_{C} the beginning of $\underline{s}^{\text {st }}$ capital Token
P_{D} the ending of $\underline{1}^{\text {st }}$ lowercase Token
direction k predefined regex

Transformation Program [Guwani: Popt11]

$\stackrel{\mathrm{P}_{\mathrm{C}}}{\text { LLeel }^{\mathrm{P}_{\mathrm{D}}}} \stackrel{\text { Mary }}{\text { substring "M" + constant "." + substring "Lee" }} \xrightarrow{ }$ M. Lee

P_{C} the beginning of $\underline{1}^{\text {st }}$ capital Token
P_{D} the ending of $\underline{1}^{\text {st }}$ lowercase Token
direction k predefined regex

Position:	$\operatorname{Pos}($ Token,k, dir $)$
Substring:	$\operatorname{Substr}\left(\operatorname{Pos}_{1}, \operatorname{Pos}_{2}\right)$
Program:	Substr $_{1}+\operatorname{Substr}_{2}+$ Constant ${ }_{1} \ldots$
	concatenate substrings and constant strings

Many-to-Many Relationship

$\operatorname{Substr}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)+$ Constant(". ") $+\operatorname{Substr}\left(\mathrm{P}_{3}, \mathrm{P}_{4}\right)$

Rule Grouping Problem

Partition all the candidate rules such that
(i) Replacements in the same partition share a program
(ii) The number of partitions is minimum
Lee, Mary_M. Lee

NP-Hard

Greedy Algorithm for Rule Grouping

(1) For each rule, pick a representative from all its programs
(2) Rules with the same representative are grouped

Data-Driven Representative Program

M. Lee

Representative Program: the one shared by most of candidate rules

Experiment Results

100 questions

Dataset	\# Records	\# Clusters	\# Distinct Value Pairs	Variants	Conflicts	Precision	Recall
Author-List	33,971	1,265	51,538	26.5%	73.5%	.994	.503
Address	17,497	3,038	80,451	18%	82%	.990	.744
Journal-Title	55,617	31,023	81,350	74%	26%	.991	.665

Ground Truth:

Variant Pairs Conflict Pairs

Original Clusters	Updated Clusters
9 St, Wisconsin	9 St, WI
9 9th St, WI	9 9th St, WI
9 Street, WI	9 St, WI
5th Street, WA	5th Street, WA
3rd E Ave, California	3rd E Ave, CA
3 E Avenue, CA	3rd E Ave, CA

	Identical	Not Identical
Variant Pairs	True Positive	True Negative
Conflict Pairs	False Positive	False Negative

Experiment Results

100 questions

Dataset	\# Records	\# Clusters	\# Distinct Value Pairs	Variants	Conflicts	Precision	Recall
Author-List	33,971	1,265	51,538	26.5%	73.5%	.994	.503
Address	17,497	3,038	80,451	18%	82%	.990	.744
Journal-Title	55,617	31,023	81,350	74%	26%	.991	.665

Experiment Results

100 questions

Dataset	\# Records	\# Clusters	\# Distinct Value Pairs	Variants	Conflicts	Precision	Recall
Author-List	33,971	1,265	51,538	26.5%	73.5%	.994	.503
Address	17,497	3,038	80,451	18%	82%	.990	.744
Journal-Title	55,617	31,023	81,350	74%	26%	.991	.665

TABLE VI
Precision improvement for MC

	AUTHORLIST	ADDRESS	JOURNALTITLE
before	.51	.32	.335
after	.65	.47	.840

Take Away

- A semi-automatic way to standardize string formats
- Data-driven group generating
- Achieved very high precision and good recall with small human effort

