
Near-Duplicate Sequence Search at Scale for Large Language
Model Memorization Evaluation

Zhencan Peng

Rutgers University

zp128@scarletmail.rutgers.edu

Zhizhi Wang

Rutgers University

zw393@cs.rutgers.edu

Dong Deng

Rutgers University

dong.deng@rutgers.edu

Abstract

Recent studies show that large languagemodels (LLM) unintendedly

memorize part of the training data, which brings serious privacy

risks. For example, it has been shown that over 1% of tokens gener-

ated unprompted by an LLM are part of sequences in the training

data. However, current studies mainly focus on the exact memo-

rization behaviors. In this paper, we propose to evaluate how many

generated texts have near-duplicates (e.g., only differ by a couple

of tokens out of 100) in the training corpus. A major challenge of

conducting this evaluation is the huge computation cost incurred

by near-duplicate sequence searches. This is because modern LLMs

are trained on larger and larger corpora with up to 1 trillion to-

kens. What’s worse is that the number of sequences in a text is

quadratic to the text length. To address this issue, we develop an

efficient and scalable near-duplicate sequence search algorithm in

this paper. It can find (almost) all the near-duplicate sequences of

the query sequence in a large corpus with guarantees. Specifically,

the algorithm generates and groups the min-hash values of all the

sequences with at least t tokens (as very short near-duplicates are

often irrelevant noise) in the corpus in linear time to the corpus

size. We formally prove that only 2
n+1
t+1 − 1 min-hash values are

generated for a text with n tokens in expectation. Thus the index

time and size are reasonable. When a query arrives, we find all the

sequences sharing enough min-hash values with the query using in-

verted indexes and prefix filtering. Extensive experiments on a few

large real-world LLM training corpora show that our near-duplicate

sequence search algorithm is efficient and scalable.

ACM Reference Format:

Zhencan Peng, Zhizhi Wang, and Dong Deng. 2023. Near-Duplicate Se-

quence Search at Scale for Large Language Model Memorization Evaluation.

In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Language models learn a probability distribution over sequences

of tokens (e.g., words or byte-pair encodings [27]) and predict the

next token given a sequence of previous tokens [47]. The large

neural language model (LLM) is a major breakthrough in natu-

ral language processing (NLP) in recent years. They significantly

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

boost the performance of numerous downstream NLP tasks, such

as machine translation [3], text summarization [55], and question

answering [38]. The state-of-the-art language models are based on

Transformers [61], contain millions to billions of parameters, and

are trained on large-scale text corpora with billions to trillions of

tokens. For example, PaLM is a Transformer-based LLM with 540

billion parameters and is pre-trained using a high-quality corpus of

780 billion tokens [16], while GPT-3 has 175 billion parameters and

is pre-trained using 500 billion token corpora [12]. Other prominent

LLMs are ELMo [53], BERT [23], XLNet [68], T5 [51], etc.

A few recent studies find that LLMs unintendedly memorize

part of the training data [13, 14, 36, 50, 60]. For example, Lee et al.

show that over 1% of tokens generated unprompted by an LLM are

part of memorized sequences in the training data [39]. Moreover,

the chance a training sequence generated verbatim by an LLM is

super-linear to the number of times it appears in the training cor-

pus [14, 36]. In the meanwhile, existing large-scale training corpora

contain numerous long duplicate sequences as well as sequences

that are duplicated tens of thousands times [39]. Memorization is

undesired as it not only degrades model generalization [14] but also

leads to unexpected privacy risks, such as membership inference

attacks [13] and training data extraction attacks [15].

However, existing work mainly focuses on the exact memoriza-

tion behaviors of LLMs. In this paper, we study near-duplicates,

which are much more pervasive than exact duplicates in large-

scale training corpora. For example, it is estimated that around 30%

to 45% of web contents are near-duplicates [11, 58]. Specifically,

we propose to evaluate how many texts generated by LLMs have

near-duplicate sequences in the training data. For this purpose,

for each text generated by the LLM, we find all its near-duplicate

sequences in the training corpus (if there are any). We define two

sequences are near-duplicates if their Jaccard similarity is above a

given threshold.

A major challenge of conducting this evaluation is how to effi-

ciently find the near-duplicate sequences of a query sequence in

the training corpus, which entails a huge computation cost. This is

because modern LLMs are trained on larger and larger corpora (up

to 1 terabyte), while the number of sequences in a text is quadratic

to the text length. As pointed out by recent studies, finding exact

duplicates in large-scale text corpora is already difficult [14], let

alone near-duplicates. To address this issue, we develop an efficient

and scalable near-duplicate sequence search algorithm based on

the min-hash techniques [10]. It creates a min-hash sketch [25]

for every sequence in the training corpus offline and compares the

query sequence’s sketch with the training sequences’ sketch to find

the near-duplicates. We adopt the idea from a previous work [25] to

aggregate the min-hash values in a text. Moreover, we extend the

previous work in the following ways. First of all, we impose a length

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

threshold t and only generate min-hash values for sequences with

at least t tokens (as very short near-sequences are often irrelevant

noise). We formally prove that on average our algorithm generates

2
n+1
t+1 − 1 min-hash values for a text with n tokens in O (n) time.

Thus the index time and size are reasonable even for large-scale

text corpora. Second, we design a novel algorithm to efficiently find

all the min-hash sketches that are similar to the query sequence’s

sketch. In addition, the problem definitions are slightly different.

The previous work finds near-duplicate sequences in two long texts,

while this paper searches sequences in a collection of texts that are

similar to a query sequence. Furthermore, this paper focuses on

large-scale datasets that cannot fit in memory, while the previous

work only considers the in-memory case. Finally, we apply our

near-duplicate sequence search algorithm to evaluate the (fuzzy)

memorization behavior of large language models.

In summary, we make the following contributions in this paper.

• We develop an efficient and scalable near-duplicate sequence

search algorithm. We formally analyze the impact of the

length threshold in our algorithm and propose an efficient

query processing algorithm.

• We conduct extensive experiments using real-world large-

scale text corpora to evaluate our algorithm. Experimental

results show that our algorithm is efficient and scalable.

• We evaluate the (fuzzy) memorization behaviors of four GPT-

2 models of various sizes using our algorithm.

The rest of the paper is organized as follows.We briefly introduce

language models in Section 2. Section 3 defines the near-duplicate

sequence search problem and presents our algorithm. We evaluate

our algorithm in Section 4 and evaluate large language model mem-

orization in Section 5. Section 6 reviews related work and Section 7

concludes the paper.

2 Background: Large Language Models

In general, language models learn the probability distribution of

the next token given a sequence of previous tokens. For example,

given two previous tokens “hello, good”, a reasonable language

model probably assigns a higher probability to the token “morning”
than to the token “SIGMOD” as the next token of the two tokens.

Training.Given a text corpus, for each training example x1, · · · ,xn
(e.g., a text in the corpus), the language model is trained to minimize

the lossL = −
∑n
i=1 logp (xi |x1, · · · ,xi−1)wherep (xi |x1, · · · ,xi−1)

is the learned probability of xi as the next token to the previous

tokens x1, · · · ,xi−1. The target for this probability is 1 for this

training example. Thus the optimal solution for the model is to

memorize the training sequence [15]. However, since there are a

huge number of training examples in the text corpus, the trained

model usually does not memorize every sequence in the training

data.

Generation Strategies. Once trained, to generate a text, we only

need to repeatedly pick the next token based on the learned proba-

bility distribution. The users can optionally provide the first few

tokens (namely prompt) to the language model for text generation.

The simplest method to pick the next token is random sampling

based on the learned probability distribution [50]. A few alterna-

tives are greedy search, beam search, top-k sampling [24], and top-p
sampling. Greedy search picks the token with the highest probabil-

ity as the next token. Beam search picks the batch of next tokens

with the highest probability, even though the first next token may

not bear the highest probability. The top-k sampling samples only

from the k most probable next tokens as predicted by the language

model [24], while the top-p sampling samples only from the most

probable next tokens that form the p% cumulative probability.

Memorization. It has been shown large language models memo-

rize part of their training data. The model emits the training data

verbatim when fed with appropriate prompts [14], which brings

serious privacy issues [36]. For example, it is found that about 1%

of tokens generated unprompted by a language model are part of

sequences in the training corpus [39]. In this paper, we aim to find

how many texts generated by LLMs have near-duplicate sequences

in the training corpus (e.g., differ by a couple of tokens out of 100

tokens). For this purpose, we need to address the near-duplicate se-

quence search problem. It finds all the near-duplicate sequences of

a query sequence in a large-scale training corpus (up to 1 terabyte).

3 Near-Duplicate Sequence Search

3.1 Problem Definition

We first define a few notations. A corpus D contains many texts. A

text T consists of a series of tokens. The total number of tokens in

a text T is denoted as |T|. T[i, j] is the sequence in T from its i-th
token to its j-th token (included), where 1 ≤ i ≤ j ≤ |T|. The token
can be a word, a phrase, a byte-pair encoding (BPE) [27], etc.

Definition 1 (Near-Duplicate Seqence Search). Give a text
corpus D, near-duplicate sequence search takes a query sequence Q
and a similarity threshold θ as input and outputs all the sequences
T[i, j] s.t. sim(Q,T[i, j]) ≥ θ , where 1 ≤ i ≤ j ≤ |T| and T ∈ D.

We focus on the Jaccard similarity sim in this paper, which is

the ratio of the intersection size (i.e., the number of common to-

kens) to the union size (i.e., the total number of distinct tokens)

of two sequences. However, depending on how duplicate tokens

are handled, there are two kinds of Jaccard similarities. The first

one, distinct Jaccard similarity, first deduplicates two sequences

and then calculates the Jaccard similarity as usual. The second one,

multi-set Jaccard similarity, treats each occurrence of a token in a se-
quence as a unique token. For example, consider the two sequences

(A,A,A,B,B) and (A,B,B,B,C). The distinct Jaccard similarity is

2/3, while the multi-set Jaccard similarity is 3/7 as it treats the two

sequences as (A1,A2,A3,B1,B2) and (A1,B1,B2,B3,C1) and the in-
tersection and union sizes are 3 and 7, respectively. In this paper,

we use the distinct Jaccard similarity if not mentioned otherwise.

3.2 Min-Hash for Jaccard Similarity Estimation

We resort to the min-hash techniques [10] to address the near-

duplicate sequence search problem. In a nutshell, given a random

universal hash function
1
that maps every token to a hash value,

the min-hash of a sequence is the minimum hash value of all its

tokens. The distinct Jaccard similarity of two sequences can be

1
e.g., f (x) = a · x + b mod p where p is a large prime [59].

2

[1,13]-[17,17]: (10, 11)
[1,6]-[13,16]: (10, 20)

[7,13]-[14,16]: (10, 22)
[14,14]-[17,17]: (11, 22)

…
[4,4]-[5,5]: (50, 88)
[5,5]-[6,6]: (20, 88)

[9,9]-[10,10]: (80, 90)
[10,10]-[11,11]: (77, 90)

[1,2]: (30, 60)
[1,3]: (30, 60)
[1,4]: (30, 50)

…
[2,4]: (50, 60)
[2,5]: (50, 60)

…
[15,17]: (11, 44)
[16,17]: (11, 44)

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10w11w12w13w14w15w16w17

30 60 66 50 88 20 33 40 80 90 77 55 10 22 70 44 11

1st row: word position; 2nd row: word hash value;

<T, f1, 2, 9, 6> min-hash: 20

5 compact windows for t = 5: <1,13,17> <1,6,12> <1,1,5> <7,7,12> <8,8,12>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
75 30 40 25 85 60 10 45 24 97 20 72 36 76 18

text:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
25 45 11 33 46 56 15 40 48 32 12 64 65 51 35 80 30

<T, f2, 4, 10, 7> min-hash: 15

with hash
function f1

Text S:

compact windows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
37 43 44 41 53 10 38 28 49 15 55 74 47 13 28

Text T:
f2:

Text S:

< S, f1, 1, 6, 4> min-hash: 25 <S, f1, 8, 14, 11> min-hash: 20

<S, f2, 7, 13, 10> min-hash: 151 collided compact window pair

2 collided compact window pairs

Barack and I were raised with so many of the same values that you work hard for …

with hash
function f2

f1:p1

p2

p3

10: [1,13]-[13,17]
11: [1,17]-[17,17]
20: [1,6]-[6,16]
22: [7,13]-[14,16]
22: [14,14]-[14,17]
…
…
90: [9,9]-[10,10]
90: [10,10]-[10,11]

hash:

brute-force:
136 sketches

TxtAlign:
34 sketches

RangeAlign:
34 pairs of min-hash and

Figure 1: A running example.

accurately estimated by s/k , where s is the number of min-hash

collisions of the two sequences in k trials using k independent

random universal hash functions. This is an unbiased estimation

with low variance [44].

To address the near-duplicate sequence search problem, we de-

velop an algorithm to find all the sequences in the corpus whose

min-hash values collide with those of the query sequence at least

⌈kθ⌉ times, where θ is the user-provided similarity threshold. In

addition, in practice, only near-duplicate sequences that are long

enough are interesting. For this purpose, we impose a length thresh-
old t and only find near-duplicate sequences with at least t tokens.
Formally, we have the following problem definition.

Definition 2. Give a text corpus D, a length threshold t , and
k independent random universal hash functions f1, · · · , fk . Near-
duplicate sequence approximate search takes a query sequence Q
and a threshold θ as input and outputs all the sequences T[i, j] s.t.∑k
x=1 1{ fx (Q) = fx (T[i, j])} ≥ ⌈kθ⌉, where T ∈ D and j − i + 1 ≥ t .

Note here the hash function fx outputs the min-hash of its input

sequence. In addition, 1{b} is a boolean function that returns 1

(or 0) when b is true (or false). Since the variance of the Jaccard

similarity estimation is O (1/k) [44], for a large enough k , the near-
duplicate sequence approximate search guarantees to find most of

the sequences in the corpus that are similar to the query sequence.

3.3 Efficient Min-Hash Generation

To find all the near-duplicate sequences, we propose to generate

k min-hash values for every sequence (of length at least t) in the

text corpus during the offline indexing phase. However, the total

number of sequences in a large-scale text corpus (e.g., consists of

a few hundreds of billions of tokens) is enormous. A recent work

Allign on finding all the near-duplicate sequences in two long

texts designs an algorithm to tackle this problem [25]. In this paper,

we adapt the algorithm to work with the distinct Jaccard similarity,

improve its time complexity, and formally analyze the impact of

the length threshold t . Finally, we design an algorithm for near-

duplicate sequence approximate search based on it.

The Existing Work for Text Alignment. Allign proposes an

algorithm to efficiently generate the min-hash values of all the

sequences in a long text [25]. The key idea is to group nearby se-

quences in a text by their min-hash values using compact windows.
A compact window is a tuple ⟨T, f , l , c, r ⟩. It represents all the se-
quences T[i, j] where l ≤ i ≤ c ≤ j ≤ r and all these sequences

have the same min-hash, which is f (T[c]). Moreover, the compact

window is maximal, i.e., extending either l or r makes the above

condition no longer hold. Clearly, by definition, the hash value of

T[c] is the smallest among all the tokens in T[l , r]. For simplicity,

we omit the text T and hash function f in the compact window

when they are clear from the context. For example, consider the text

T with 17 tokens and their hash values derived from a random hash

function f as shown in Figure 1. ⟨1, 13, 17⟩ is a compact window.

Algorithm 1: Indexing

Input: D: a text corpus; k : an integer; f1, f2, · · · , fk : k
independent hash functions; t : a length threshold.

Output: k inverted index files of compact windows on disk.

load the text corpus D into memory;1

foreach 1 ≤ i ≤ k do2

foreach text T ∈ D do3

GenerateCompactWindows(1, |T|,T, fi , t ,Q);4

foreach compact window ⟨l , c, r ⟩ ∈ Q do5

h ← fi (T[c]);6

append ⟨T, l , c, r ⟩ to the inverted list Ii [h];7

write the inverted index Ii to the disk as a file;8

// for large-scale corpora, load one batch of
texts at a time, partition the compact windows
by i and h, and use hash aggregation to build
the inverted index files for each partition.

Algorithm 2: GenerateCompactWindows(l , r ,T, f , t ,Q)

Input: l : an integer; r : an integer; T: a text; f : a hash function;

t : a threshold; Q: a collection of compact windows.

if r − l + 1 < t then return;1

find a position c ∈ [l , r] s.t. ∀p ∈ [l , r], f (T[c]) ≤ f (T[p])2

using an advanced RMQ algorithm [26], break ties arbitrarily;

add a compact window ⟨l , c, r ⟩ to Q;3

GenerateCompactWindows(l , c − 1,T, f , t ,Q);4

GenerateCompactWindows(c + 1, r ,T, f , t ,Q);5

All the sequences T[i, j] where 1 ≤ i ≤ 13 ≤ j ≤ 17 share the same

min-hash value f (T[13]) = 10.

Allign proves there are O (n) compact windows in a text with

n tokens and these compact windows and all the sequences in

the text are surjective, i.e., each sequence is in one and only one

compact window. It develops an algorithm that generates all the

O (n) compact windows in the text in O (n logn) time and O (n)
space. Moreover, it extends the algorithm to deal with the multi-set

Jaccard similarity when the text contains duplicate tokens [25].

Our Min-Hash Generation. As only the min-hash values of se-

quences with at least t tokens are needed in our settings, we do not

need to generate a compact window ⟨l , c, r ⟩ if its “width” r−l+1 < t .
Next we present an algorithm that generates all the “valid compact

windows” whose widths are at least t in a text with n tokens in

O (n) time and space. We further prove our algorithm generates

2
n+1
t+1 − 1 valid compact windows on average (i.e., in expectation)

and every sequence with at least t tokens is in one and only one of

these valid compact windows. The compact windows can be used

to accurately estimate the distinct Jaccard similarity to the query.

Our algorithm is similar to the one in Allign. It is a divide-and-

conquer algorithm. Given a sequence T[l , r], it divides the sequence
into two by the token T[c]with the smallest token hash value in the

sequence. Then it recursively solves two sub-problems, one takes

the (sub)-sequence T[l , c − 1] as the input and the other one takes

T[c+1, r] as the input. In addition, it produces a tuple ⟨l , c, r ⟩, which,
by definition, must be a compact window. The recursion stops when

the input sequence is not long enough (more specifically, when

3

r − l + 1 < t) as no valid compact window exists in the input. Note

initially the input sequence is the entire text T[1, |T|].

Note that, when there are multiple tokens with the same small-

est hash value in the input sequence (this happens when the text

contains duplicate tokens), we randomly choose one to divide the

input sequence (i.e., break ties arbitrarily). The pseudo-code of the

divide-and-conquer algorithm is shown in Algorithm 2. It takes a

sequence T[l , r], a length threshold t , a hash function, and a result

set Q as its input. If the input sequence is too short, the recursion

stops (Line 1); otherwise, it finds a token T[c] in the input sequence

with the smallest hash value, adds a compact window ⟨l , c, r ⟩ into
the result set Q (Lines 2 to 3), and recursively generates the compact

windows in the two (sub)-sequences divided by T[c] (Lines 4 to 5).

Example 1. For example, consider the text and its token hash val-

ues in Figure 1. Let the length threshold be t = 5. The algorithm first

chooses T[13] to divide the text T[1, 17] to two sequences T[1, 12]

and T[14, 17] and generates a compact window ⟨1, 13, 17⟩. The

second sequence is shorter than t and is skipped. The algorithm re-

cursively divides the first sequence by T[6] to two sequences T[1, 5]

and T[7, 12] and generates a compact window ⟨1, 6, 12⟩. Eventually,

it generates 5 “valid” compact windows that are wide enough. The

number exactly matches the expectation (as described presently),

which is 2
n+1
t+1 − 1 = 2

18

6
− 1 = 5.

Theorem 1. Algorithm 2 generates 2n+1t+1 − 1 compact windows
for a text T with n distinct tokens in expectation. Furthermore, every
sequence in T with at least t tokens is in one and only one of the
generated compact windows.

Proof. Let Sn denote the expected number of compact windows

generated by the algorithm for a sequence of length n. Since the
token hash values are random, every distinct token in the input

sequence has the same probability
1

n to be the token that divides

the input sequence. Thus we have

Sn =
n∑
i=1

1

n
(Si−1 + 1 + Sn−i) = 1 +

2

n

n∑
i=1

Si−1.

The base cases are S0 = S1 = · · · = St−1 = 0 and St = 1. Solving

the recursive formula, we have Sn = 2
n+1
t+1 − 1.

The second part of the lemma can be proved using reduction.

Let c be the first token where the algorithm chooses to divide the

text. The algorithm must generate a compact window ⟨1, c,n⟩. All
the sequences of T can be partitioned into three categories, T[i1, j1]
where 1 ≤ i1 ≤ j1 < c , T[i2, j2] where 1 ≤ i2 ≤ c ≤ j2 ≤ n, and
T[i3, j3] where c < i3 ≤ j3 ≤ n. Sequences in the second category

must be represented by the generated compact window ⟨1, c,n⟩ once
and only once. Moreover, based on the reduction, all the sequences

in the first (or third) category must be in one and only one compact

windows generated by the algorithm when the input is T[1, c − 1]
(or T[c + 1,n]). The base case is when the input sequence is shorter

than t , in which case, all its sub-sequences are shorter than t and
no compact window is needed to be generated. □

Complexity Analysis. Allign uses a segment tree to find a token

with the smallest hash value in the input sequence (which is a

classical range minimum query, RMQ), which takes O (logn) for
each of the O (n) recursions. However, more advanced RMQ data

structures and algorithms are available [2, 8, 26]. For example, the

data structure designed in [26] can be constructed inO (n) time and

space and it answers an RMQ in O(1) time. Thus the time and space

complexities of our compact window generation algorithm can be

reduced to O (n) using this data structure [26].

3.4 Indexing Compact Windows

In this section, we discuss how to index the generated compact

windows. We propose to build k inverted index files. In each in-

verted index Ii , the compact windows ⟨T, fi , l , c, r ⟩ sharing the same

min-hash h = fi (T[c]) are placed in the same inverted list Ii [h]
ordered by the text identifiers T. When a query sequence arrives,

we first get its k min-hash values, then retrieve the k corresponding

inverted lists from the k inverted indexes, and finally count the

hash collisions to determine the near-duplicate sequences.

We first considermedium-scale corpora such asOpenWebText [30]
(around 31 GB after tokenization) that can fit in memory. Note we

target at a single ordinary machine with around 64 GB memory and

length threshold t ≥ 25. We assume each token is an integer and the

number of texts fits in a 4-byte integer. As shown in Algorithm 1,

we first load the entire corpus in memory (Line 1). For each of the k
hash functions, the algorithm first builds an inverted index in mem-

ory and then writes it back to disk (Lines 2 to 8). This is feasible as

each inverted index contains no more than
2N
t+1 compact windows

on average, where N is the total number of tokens in the corpus

(i.e., the dataset size, which is ∼31 GB for OpenWebText). Since
each compact window ⟨T, l , c, r ⟩ consists of 4 integers (note the

hash function is the same for all the compact windows in the same

inverted index and can be ignored). The ratio of the index size to the

corpus size is no more than
8

t+1 on average. Thus the size of each

inverted index is much smaller than the medium-scale corpus for a

reasonable length threshold t (e.g., 50). For large-scale corpora like
C4 [50] (around 750 GB after tokenization) and Pile [28] (around

825 GB) that cannot fit in memory, we use hash aggregation [52, 57]

to build the inverted index files. Specifically, we load a batch of

texts at a time and generate their compact windows. For each of

the k hash functions, we partition the generated compact windows

such that compact windows from the same i-th hash function and

with the same min-hash value h are in the same partition. Finally,

we load each partition into memory to build the inverted list Ii [h]
and write them back to disk to construct the inverted index. In case

a partition cannot fit in memory, we use recursive partitioning [52].

The hash aggregation entails two passes of the inverted indexes

(one read and one write).

We can also build the index in parallel. Specifically, we assign

each thread a batch of texts and a privatememory space. Each thread

generates compact windows for all its texts and writes the compact

windows to its private memory. Finally, the compact windows in

the private memory space are merged and flushed to disk.

3.5 Query Processing

Once a query sequence Q arrives, we first calculate its k min-hash

values (a.k.a., k-mins sketch [25]) and load the k corresponding

inverted lists into memory. Each of them contains a list of compact

windows ⟨T, l , c, r ⟩, in which every sequence T[i, j] where l ≤ i ≤

4

Algorithm 3: NearDuplicateSearch

Input: Q : a query sequence; θ : a similarity threshold;

f1, f2, · · · , fk : k independent hash functions.

Output: All the near-duplicate sequences of Q in the corpus.

begin1

get the k min-hash values of Q using f1, · · · , fk ;2

load the short inverted lists I1, I2, · · · , Ip into memory;3

group the compact windows by their texts;4

foreach group C of text T of size ≥ β − (k − p) do5

A = CollisionCount(C, β − (k − p));6

if A is not empty then7

locate and load the compact windows of T in the8

k − p long inverted lists and add them to C;
A′ = CollisionCount(C, β);9

foreach ([x ,x ′], [y,y′]) in A′ do10

foreach i ∈ [x ,x ′] and j ∈ [y,y′] do11

add near-duplicate sequence T[i, j] to Q;12

return Q;13

end14

Algorithm 4: CollisionCount(C,α)

Input: C: a collection of compact windows from the same text;

α : a collision threshold.

Output: Interval pairs containing all the sequences contained

by at least ≥ α compact windows.

X ← the left intervals [l , c] of all compact windows in C;1

A = IntervalScan(X,α);2

foreach (C′, [x ,x ′]) in A do3

Y ← the intervals [c, r] of all compact windows in C′;4

A′ = IntervalScan(Y,α);5

foreach (C′′, [y,y′]) in A′ do6

add the pair ([x ,x ′], [y,y′]) to the result set A′′;7

return A′′;8

Algorithm 5: IntervalScan(X,α)

Input: X: a collection of intervals; α : a collision threshold.

Output: All subsets of X with non-empty overlap and size ≥α .
foreach interval (W , [x ,y]) in X do1

add endpoints (x , 1,W) and (y + 1, 0,W) into ep;2

sort the endpoints in ep in ascending order;3

foreach distinct endpoint e in ep do4

foreach endpoint (e,b,W) in ep do5

if b is 1 then addW into C;6

if b is 0 then removeW from C;7

if |C| ≥ α then8

add (C, [e,next distinct endpoint)) to A;9

return A;10

c ≤ j ≤ r collides once with the query sequence. To find all the near-
duplicate sequences in a text that collide with the query sequence

enough times (i.e., at least ⌈kθ⌉ times), we aggregate the compact

windows in the k inverted lists by their text identifiers T. For each

group of compact windows, we aim to find all the sequences T[i, j]

reside in at least β = ⌈kθ⌉ compact windows ⟨l , c, r ⟩ in the group,

i.e., l ≤ i ≤ c ≤ j ≤ r .
For this purpose, we split each compact window ⟨l , c, r ⟩ into two

parts, the left interval [l , c] and the right interval [c, r]. For any
subset of compact windows in the group, let [x ,x ′] be the overlap of
their left intervals and [y,y′] be the overlap of their right intervals.

Then, every sequence T[i, j] where i ∈ [x ,x ′] and j ∈ [y,y′] must

collides with the query sequence s times, where s is the number of

compact windows in the subset. If s ≥ β = ⌈kθ⌉, T[i, j] must be a

near-duplicate sequence of the query sequence.

Based on the above observation, we propose an algorithm Colli-
sionCount to find all the “large enough” subsets of compact win-

dows whose left intervals and right intervals both have non-empty

overlaps. It processes the left intervals and right intervals separately

using our IntervalScan method. In a nutshell, given a collection of

intervals, IntervalScan first collects the endpoints of all intervals.

Then, it sorts the endpoints in ascending order and visits them one

by one. As each endpoint either means the start (entrance) of an

interval or the end (exit) of an interval, we can keep track of the

subset of intervals that already start but not end yet during visiting.

Clearly, the overlap of the subset of intervals must be non-empty.

Thus we report the subset if its size is “large enough”.

The pseudo-code of IntervalScan is shown in Algorithm 5. It

takes a collection of intervals X and an integer threshold α as

input and reports all the subsets of X whose overlaps are non-

empty and whose sizes are at least α . The algorithm first collects

the two endpoints x (means the interval starts) and y + 1 (means

the interval exits) of every interval [x ,y] in the input X (Lines 1

to 2). Then, it sorts all the endpoints in ascending order and visits

them in sequence (Lines 3 to 5). For each starting endpoint, its

corresponding interval is added to an array C (Line 6). For each

ending endpoint, its corresponding interval is removed from the

array C (Line 7). Once a distinct endpoint x is passed, we check

the status of the array. Let the next distinct endpoint be x ′. Then,
[x ,x ′) must be part of the overlap of all the intervals in the array

right now. This is because these intervals all have started but not

end yet in [x ,x ′). If there are at least α intervals in the array, we

report it, as well as the part of their overlap [x ,x ′) (Lines 8 to 9).

Lemma 1. IntervalScan generates every subset of X whose overlap
is non-empty and whose size is at least α once and only once.

We omit the proof due to space limit. Based on the IntervalScan
method, we can find all the “large enough” subsets of compact win-

dows whose left and right intervals both have non-empty overlaps.

As shown in Algorithm 4, it takes a group of compact windows from

the same text T and an integer threshold as input. It first collects the

left intervals [l , c] of every compact window ⟨l , c, r ⟩ in the group.

Then, it finds all the subsets of “large enough” left intervals with

non-empty overlaps using IntervalScan. For each of the subset, it

collects the right intervals of the compact windows from where

the left intervals in the subset come. It uses IntervalScan again to

find those large enough subset of right intervals with non-empty

overlaps. Finally, it adds the pair of non-empty interval overlaps to

the result set and returns the result set finally.

Complexity Analysis. Suppose there arem compact windows in

the group. The time complexity is O (m2
logm). This is because it

generates at most O (m) large enough subsets of left intervals with

5

non-empty overlaps. For each of them, it takes O (m logm) to sort

the endpoints of the right intervals. The scan takes linear time to

m. Thus the total time complexity is O (m2
logm). Note the size of

each compact window group is usually small. In addition, the I/O

cost dominates the query latency. Thus the time complexity of our

algorithm is affordable.

Prefix Filtering to Avoid Long Inverted Lists. Although each

(distinct) token has the same chance to be the min-hash of a se-

quence, the lengths of their inverted lists are vastly different. This

is because, in our compact window generation algorithm (that

designed specifically for the distinct Jaccard similarity instead of

the multi-set Jaccard similarity), if a token has the minimum hash

value in the input sequence, each occurrence of the token in the

sequence may produce a compact window, which is placed in the

same inverted list. Thus the length of the inverted list is propor-

tional to the token frequency. In the meanwhile, it is well known

that the word/token frequency in natural languages follows the

Zipf law [49], i.e., the frequency of the most frequent token is twice

that of the second most frequent token, three times that of the third

most frequent token, etc. Thus in each inverted index, there are a

few very long inverted lists.

When a query sequence contains min-hash values with long

inverted lists, it is time consuming to read the entire inverted lists.

To avoid this, we use the prefix filtering techniques [6, 7, 19, 65].

Specifically, among the k inverted lists, we only load those whose

lengths are smaller than a threshold. Suppose there are p of them.

Then we use ourCollisionCount algorithm to find all the candidates

that collide at least β−(k−p) times. For each text T in the candidates,

we locate its compact windows in the rest long inverted lists and

only load their compact windows into memory. After that, we

re-apply our CollisionCount algorithm to produce the final near-

duplicate sequences. The pseudo-code is shown in Algorithm 3.

ZoneMap. To facilitate locating compact windows of a specific text

in an inverted list, we create a zone map [52] for the long inverted

lists. Specifically, since the compact windows are ordered by the

text identifiers in the inverted list, we record the offset of every

other s text identifiers in the inverted list, where the step size s is a
parameter. A few works design cost-models to choose a good cutoff

of long and short inverted lists (a.k.a., prefix length) [7, 22, 62]).

Theorem 2. Algorithm 3 is sound and complete. The sequences
generated by the algorithm are all (approximate) near-duplicate to
the query sequence and all (approximate) near-duplicate sequences of
the query sequence are generated by the algorithm.

Remark. In practice, it is undesired to enumerate and show all

the (redundant) near-duplicate sequences to the users. Instead, we

merge the overlapping near-duplicate sequences such that all the

sequences we report are disjoint to each other.

4 Evaluating Near Duplicate Sequence Search

Datasets.We used two real-world datasets. Both of them are fre-

quently used in large neural language model pre-training. (1) Open-
WebText is a collection of web texts highly ranked on Reddit [30]. It

is an open-source replication of the WebText dataset, which is used

to train the LLMGPT-2 [50]. Note that both exact and near-duplicate

texts in OpenWebText have been removed. We downloaded the

dataset from huggingface
2
. It consists of around 8 million texts

and the raw size is around 40 GB. (2) The Pile [28] is constructed

from 22 diverse high-quality datasets. We downloaded it from hug-

gingface
3
. Its raw size is 825.18 GB. It was used to trained the LLM

GPT-Neo
4
.

BPE Tokenization. For OpenWebText, we trained a BPE model

with vocabulary size of 64000 using 1 million texts with maximum

length 10,000. After tokenization using the BPE model, the sizes of

OpenWebText was respectively 31GB (note that we used a 4-byte

integer to represent a token). For Pile, we used the GPT2Tokenizer
5

to tokenize the dataset. This BPE tokenizer’s vocabulary size is

50257. The dataset size after tokenization was 649 GB.

Environment. We implemented our algorithm using C++ and

compiled the programs using g++7.5 with -O3 optimization. All the

experiments were conducted on a machine with 24 2.40GHz Intel

Xeon Gold 6212U CPU cores (48 threads with hyper-threading)

and 64 GB memory and 20 TB hard disk. The operating system is

Ubuntu 18.04. We used OpenMP for parallel computation.

4.1 Evaluating Index Construction

In this section, we evaluate our compact window generation and

indexing algorithms.

Number of Compact Windows Generated: We first evaluate

the number of compact windows generated under various length

thresholds t , numbers of hash functions k , vocabulary sizes, and

dataset sizes n. As shown in Figures 2(a)-2(b), when we increased

the length threshold t , the numbers of compact windows gener-

ated linearly decreased. For example, for t = 25, 50, and 100, the

numbers of compact windows generated were around 620 millions,

330 millions, and 180 millions for k = 1, 32K vocabulary size, and 8

million OpenWebText texts. This is because the number of compact

windows generated in expectation is 2
n+1
t+1 − 1, which is inversely

proportionally to the length threshold t . In addition, for the same

length threshold, a larger vocabulary size resulted in a bit less

compact windows. This is because the number of tokens n in a

text after encoding using a larger vocabulary was usually a little

smaller, while the number of compact windows is proportional to

n. Furthermore, the number of compact windows generated grew

linearly with the number of hash functions k . Moreover, as shown

in Figures 2(c)-2(d), when we increased the corpus size, the number

of compact windows generated grew linearly. For example, for 1M

(million), 2M, 4M, and 8M OpenWebText texts, with fixed k = 1,

vocabulary size 64K, and t = 100, the numbers of compact windows

generated were respectively 23 millions, 46 millions, 92 millions,

and 183 millions. This is consistent with our theoretical analysis.

Index Size. Next we evaluate the index sizes. Figures 2(e)-2(h)

show the results. The index size was proportional to the number

of compact windows and showed the same trends as the number

of compact windows. As we can see, each inverted index was only

around 2 GB when t = 100 on OpenWebText, while the dataset size

2
https://huggingface.co/datasets/openwebtext

3
https://huggingface.co/datasets/the_pile

4
https://huggingface.co/docs/transformers/model_doc/gpt_neo

5
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.

GPT2Tokenizer

6

https://huggingface.co/datasets/openwebtext
https://huggingface.co/datasets/the_pile
https://huggingface.co/docs/transformers/model_doc/gpt_neo
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

25 50 100

#
 o

f
C

o
m

p
a
c
t
W

in
d
o
w

s

Length Threshold t

32K
64K

128K

(a) OpenWebText (8M texts, k = 1)

 0

 2x10
10

 4x10
10

 6x10
10

 8x10
10

 1x10
11

 1.2x10
11

 1.4x10
11

25 50 100

#
 o

f
C

o
m

p
a
c
t
W

in
d
o
w

s

Length Threshold t

k=1
k=2
k=4

(b) Pile (825GB texts, 50K vocab.)

 0

 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

1M 2M 4M 8M

#
 o

f
C

o
m

p
a
c
t
W

in
d
o
w

s

of Texts

t=25
t=50

t=100

(c) OpenWebText (k = 1, 64K vocab.)

 0

 7x10
9

 1.4x10
10

 2.1x10
10

 2.8x10
10

 3.5x10
10

100GB 200GB 400GB 800GB

#
 o

f
C

o
m

p
a
c
t
W

in
d
o
w

s

Corpus Size

t=25
t=50

t=100

(d) Pile (k = 1, 50K vocab.)

 0

 2

 4

 6

 8

 10

25 50 100

In
d
e
x
 S

iz
e
 (

G
B

)

Length Threshold t

32K
64K

128K

(e) OpenWebText (8M texts, k = 1)

 0

 300

 600

 900

 1200

 1500

25 50 100

In
d
e
x
 S

iz
e
 (

G
B

)

Length Threshold t

k=1
k=2
k=4

(f) Pile (825GB texts, 50K vocab.)

 0

 2

 4

 6

 8

 10

1M 2M 4M 8M

In
d
e
x
 S

iz
e
 (

G
B

)

of Texts

t=25
t=50

t=100

(g) OpenWebText (k = 1, 64K vocab.)

 0

 50

 100

 150

 200

 250

 300

 350

100GB 200GB 400GB 800GB

In
d
e
x
 S

iz
e
 (

G
B

)

Corpus Size

t=25
t=50

t=100

(h) Pile (k = 1, 50K vocab.)

 0

 20

 40

 60

 80

25 50 100

E
la

p
s
e
d
 T

im
e
 (

s
)

Length Threshold t

32K
64K

128K

(i) OpenWebText (8M texts, k = 1)

 0

 3000

 6000

 9000

 12000

 15000

 18000

25 50 100

E
la

p
s
e
d
 T

im
e
 (

s
)

Length Threshold t

k=1
k=2
k=4

(j) Pile (825GB texts, 50K vocab.)

 0

 20

 40

 60

 80

1M 2M 4M 8M

E
la

p
s
e
d
 T

im
e
 (

s
)

of Texts

t=25
t=50

t=100

(k) OpenWebText (k = 1, 64K vocab.)

 0

 2000

 4000

 6000

 8000

 10000

100GB 200GB 400GB 800GB

E
la

p
s
e
d
 T

im
e
 (

s
)

Corpus Size

t=25
t=50

t=100

(l) Pile (k = 1, 50K vocab.)

Figure 2: Evaluating Index Construction.

after tokenization was around 31 GB. For Pile, each inverted index

was around 100 GB when t = 100, while the raw dataset size was

825 GB. Although k inverted indexes were constructed in total, the

index size was reasonable compared to the dataset size.

Index Time. We report the index time in Figures 2(i)-2(l). The

index time consists of the compact window generation time (the

lower bars in the figures) and the disk I/O cost (the upper bars in the

figures). As we can see, the index time was also linear to the dataset

size and the number of hash functions, while inversely linear to the

length threshold.

4.2 Evaluating Query Processing

In this section, we evaluate our query processing algorithm. We

downloaded a collection of texts generated by GPT-2 released by

OpenAI (the creator of GPT-2)
6
and randomly chose a few texts as

the query sequences for OpenWebText. For Pile, we first generated
a few texts using the GPT-Neo-1.3B model without prompt. Then

we slide a fixed-width window of 64 tokens over the generated

texts as the query sequences. We first vary the number of hash

functions k and the similarity threshold θ and report the query

latency and the number of near-duplicates found. Note the query la-

tency consists of two parts, the IO cost for loading inverted indexes

(lower bars in the figures) and the CPU computation cost (upper

bars in the figures). In addition, all the experimental results were

averaged over 100 random queries. Figures 3(a), 3(b), 3(e), and 3(f)

6
https://github.com/openai/gpt-2-output-dataset

show the results. As we can see from the figures, when the similar-

ity threshold decreased, the query latency significantly increased.

Furthermore, query latency was dominated by the IO cost when

the similarity threshold was low. This is because prefix filtering did

not filter all the sequences. A few texts need to access their zone

maps and long inverted lists, which incurred significant IO cost.

There was no clear trend between the number of hash functions

and the query latency. This is because for different k , the filtering
power of prefix filter differs. Furthermore, no exact duplicates (i.e.,

when the similarity threshold θ = 1) were found for the 100 random

query sequences, while for θ = 0.7, on average 13 near-duplicate

sequences were found in OpenWebText.
Next, we vary the dataset size, the similarity threshold, and the

length threshold and report the query latency. Figures 3(c), 3(g)

and 3(h) show the results. As we can see, when the dataset size

increased (i.e., the number of texts in the corpus), the query latency

linearly increased. This is because the inverted index grows linearly

with the dataset size, while both the IO cost and the computation

cost grow linearly with the dataset size. Moreover, for large dataset

sizes, the IO cost dominated the query latency. Furthermore, the

query latency was inversely proportional to the length threshold.

This is because the large length threshold results in less number of

compact windows and shorter inverted lists. Figure 3(d) shows the

query latency under various prefix lengths from 5% most frequent

tokens to 20%most frequent ones.We can see the total query latency

stayed roughly the same. However, the IO cost was proportional to

7

https://github.com/openai/gpt-2-output-dataset

the prefix length, while the CPU computation cost was inversely

proportional.

5 Evaluating Language Model Memorization

Settings. We focus on the GPT-2 [50] language models, which are

Transformer-based neural language model. Specifically, we down-

loaded the Mistral family pre-trained GPT-2 models
7
. It contains 5

small (117M parameters) and 5 medium (345M parameters) GPT-2

models. These models were trained using theOpenWebText dataset.
For each model, it has many checkpoints of the model in differ-

ent training steps. In our experiments, we used the small and the

medium GPT-2 models with seed 21 at training step 400,000. Fur-

thermore, we downloaded two GPT-Neo language models
8
. The

GPT-Neo-1.3B model contains 1.3 billion parameters, while the

GPT-Neo-2.7B model has 2.7 billion parameters. These models were

trained using the Pile dataset. For each of the four language model,

similar to the previous work [39], we used the top-50 sampling [38]

strategy to generate texts without prompts. The lengths of the gen-

erated texts were up to 512 tokens. The first column in Table 1 shows

a couple of example texts (snippets) generated by GPT-Neo-2.7B.

Evaluating Memorization. To evaluate the memorization behav-

iors in a reasonable time, given a text T generated by the models,

we used all the fixed-length sequences T[i · x + 1, (i + 1) · x] in the

text as the query sequences where x is the fixed query sequence

length and (i + 1) · x ≤ |T|. Then we used our near-duplicate se-

quence search algorithm to find near-duplicate sequences of the

query sequences in the training corpus. Finally, we report the ratio

of query sequences having near-duplicates in the training corpus

over all the evaluated query sequences. Table 1 lists a couple of

sequences generated by GPT-Neo-2.7B and their near-duplicate

sequences we found in the training dataset Pile.

We first evaluate the memorization behaviors of language mod-

els of various sizes. We set x = 32, t = 25, and k = 32 and varied

the similarity threshold θ . Figures 4(a) and 4(c) show the results.

As we can see, with the decrease of the similarity threshold, the

percentage of generated texts having near-duplicates in the train-

ing corpus increased. For example, there were around 2.3%, 3.3%,

and 4.8% of sequences generated by GPT-Neo-1.3B having near-

duplicate sequences in the training corpus Pile when the similarity

threshold were 1.0, 0.9, and 0.8. Furthermore, the GPT-Neo-2.7B

model memorized more sequences than the GPT-Neo-1.3B model.

For example, when θ = 0.8, around 7.2% and 4.8% of sequences

generated by GPT-Neo-2.7B and GPT-Neo-1.3B were memorized

respectively. This is consistent with previous studies [39], which

find that language models with more parameters tend to memorize

more training data. However, the small model with 117M parame-

ters in the Mistral GPT-2 family memorized more sequences than

the mediummodel with 345M parameters. It may because the model

sizes were not large enough. Note the previous work [39] used a

language model with 1.5 billion parameters.

We also measured the impact of the sliding window width x
(i.e., the query sequence length). Figures 4(b) and 4(d) show the

results. As we can see, the smaller sliding window usually entailed

7
https://github.com/stanford-crfm/mistral

8
https://huggingface.co/docs/transformers/model_doc/gpt_neo

a greater percentage of memorized sequences. This is because short

sequences are more likely to have near-duplicate sequences. The

reason that sliding window width x = 128 memorized more per-

centage of generated sequences than x = 64 for the GPT-Neo-2.7B

model was because the number of sliding windows (i.e., query se-

quences) of width 64 is more than twice the number of sliding

windows of width 128 (as the last 64-token sliding window in a text

may not be in the last 128-token sliding window in the text).

6 Related Work

Near-Duplicate Search andDetection.Near-duplicate detection

has been extensively studied in many fields [1, 17, 18, 48, 54, 63,

66, 67]. There are various definitions of near-duplicates based on

the data model (using q-grams, tokens, or characters as the units),

the metrics (weighted and unweighted, Jaccard similarity [40], co-

sine similarity, overlap similarity, edit distance, Soundex distance,

etc), and the problem settings (similarity joins [20, 42], similar-

ity search [19], approximate extraction [41], approximate align-

ment [25], etc). A frequently used heuristic for near-duplicate search

is seed-and-extend [5, 9, 11, 32, 34, 37, 45, 48, 54, 56, 63]. It first finds

seed matches between the query sequence and the data sequence

and then extends the seed matches as far as possible. However, this

heuristic does not have any guarantee. Moreover, it usually only

works for order-sensitive similarity metrics. For Jaccard similarity, a

sequence is a set of unordered tokens. Thus it is hard, if not impossi-

ble, to apply the heuristic. Moreover, it is suspicious if the heuristic

would work for terabyte data. Two most relevant works are Al-

lign [25] and TxtAlign [64]. TxtAlign focuses on text alignment,

which takes two texts as input and finds all the near-duplicate se-

quence pairs in the two texts. Allign focuses on partial plagiarism

detection, which detects near-duplicate sequences between a query

document and every data document.

Full-Text Search and Search Engine. Full-text search and search

engine support keyword searches, which finds all the documents

containing the query keywords [31, 33, 35, 43]. Fuzzy match, reg-

ular expression, boolean operators, and wildcards can be used for

keyword matches [4, 21]. For example, AI2 maintains a full-text

search service for the C4 dataset using ElasticSearch
9
[29]. Full-text

search and search engine cannot handle near-duplicate sequence

search, which is much more computational intensive.

Large Language Model Memorization Evaluation.Many stud-

ies show large, neural language models memorizes part of the

training data. However, existing works mostly focus on the ex-

act memorization behaviors [13, 14, 36, 50, 60]. For example, it

has been observed that GPT-2 memorizes long repeated strings

such as famous speeches (e.g., Gettysburg Address) [50]. However,

once the model drifts from the repeated strings (typically within

100-200 tokens), it displays widening diversity [50]. Tirumala et

al. [60] show that language models memorize the training data

before over-fitting and nouns and numbers are memorized first.

McCoy et al. [46] shows language models can memorize very long

sequences with over 1000 words from the training data. Carlini et

al. [15] shows it is possible to extract training data by querying

language models and demonstrate the training data extraction at-

tack [15] and the membership inference attack [13] on GPT-2 [50].

9
https://c4-search.apps.allenai.org/

8

https://github.com/stanford-crfm/mistral
https://huggingface.co/docs/transformers/model_doc/gpt_neo
https://c4-search.apps.allenai.org/

10
-2

10
-1

10
0

10
1

10
2

10
3

16 32 64

E
la

p
s
e
d
 T

im
e
 (

s
)

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(a) OpenWebText (8M texts, t = 50)

 0

 5

 10

 15

16 32 64

#
 o

f
N

e
a
r-

D
u
p
lic

a
te

s

k, # of Hash Functions

θ=0.70
θ=0.85
θ=1.00

(b) OpenWebText (8M texts, t = 50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1M 2M 4M 8M

E
la

p
s
e
d
 T

im
e
 (

s
)

of Texts

t=25
t=50

t=100

(c) OpenWebText (k = 32, θ = 0.9)

 0.1

 1

 10

 100

0.05 0.1 0.2

E
la

p
s
e
d
 T

im
e
 (

s
)

Prefix Length

32K vocab.
64K vocab.

128K vocab.

(d) OpenWebText (k = 32, θ = 0.9)

 0

 20

 40

 60

 80

 100

16 32 64

E
la

p
s
e
d
 T

im
e
 (

s
)

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(e) Pile (825 GB, t = 50)

 0

 10

 20

 30

 40

16 32 64

#
 o

f
N

e
a
r-

D
u
p
lic

a
te

s

k, # of Hash Functions

θ=0.7
θ=0.85

θ=1.0

(f) Pile (825 GB, t = 50)

 0

 20

 40

 60

100GB 200GB 400GB 800GB

E
la

p
s
e
d
 T

im
e
 (

s
)

Corpus Size

t=25
t=50

t=100

(g) Pile (k = 32, θ = 0.9)

 0

 5

 10

 15

 20

 25

100GB 200GB 400GB 800GB

E
la

p
s
e
d
 T

im
e
 (

s
)

Corpus Size

θ=0.7
θ=0.85

θ=1.0

(h) Pile (k = 32, t = 50)

Figure 3: Evaluating Query Processing.

 0

 0.5

 1

 1.5

 2

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

Small GPT-2 117M
Medium GPT-2 345M

(a) t = 25, x = 32, k = 32

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

t=25, x=32, k=32
t=50, x=64, k=64

t=100, x=128, k=64

(b) Medium GPT-2 345M Model

 0

 2

 4

 6

 8

 10

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

GPT-Neo-1.3B
GPT-Neo-2.7B

(c) t = 25, x = 32, k = 32

 0

 2

 4

 6

 8

 10

1.0 0.9 0.8

P
e

rc
e

n
ta

g
e

Similarity Threshold θ

t=25, x=32, k=32
t=50, x=64, k=64

t=100, x=128, k=64

(d) GPT-Neo-2.7B Model

Figure 4: Evaluating Language Model Memorization.

Table 1: Examples of generated texts (query sequences) and their near-duplicate sequences in the training corpus Pile.

Generated Text Training Text

Copyright (C) 2016 Turi\n *\n * This program is free software: you can redistribute it

and/or modify\n * it under the terms of the GNU General Public License as published

by\n * the Free Software Foundation, either version 3 of the License, or\n * (at your

more details.\n *\n * You should have received a copy of the GNU General Public

License\n * along with this program. If not, see <http://www.gnu.org/licenses/>.\n

*/\n#ifndef GLSUB_BINARY_H\n#define GLS

Copyright 2016 by Sehraf*\n *\n * This program is free software: you can redistribute it

and/or modify*\n * it under the terms of the GNU Lesser General Public License as *\n

* published by the Free Software Foundation, either version 3 of the *\n * License, or (at

your option) any later version. *\n * See the GNU General Public License for\n * more

details.\n *\n * You should have received a copy of the GNU General Public License

along\n * with this program. If not, see <http://www.gnu.org/licenses/>.\n */\n\n#ifndef

TRINITY_AREA_BOUNDARY_H\n#define TRINITY_AREA_BOUNDARY_H\n

UNPUBLISHED\n\n UNITED STATES COURT OF APPEALS\n FOR THE FOURTH

CIRCUIT\n\n\n No. 09-4269\n\n\nUNITED STATES OF AMERICA,\n\n Plaintiff - Ap-

pellee,\n\n v.\n\nTHOMAS JOHNSON,\n\n Defendant - Appell

UNPUBLISHED\n\nUNITED STATES COURT OF APPEALS\nFOR THE FOURTH

CIRCUIT\n\n\nNo. 11-4269\n\n\nUNITED STATES OF AMERICA,\n\nPlaintiff - Ap-

pellee,\n\nv.\n\nJOHN MOWAD JOHNSON,\n\Defendant -

Lee et al. shows that over 1% of tokens generated unprompted by a

language model are part of a memorized sequence and deduplicat-

ing training data offers significant advantages (including reducing

memorization) and no observed disadvantages to language mod-

eling [39]. Kandpal et al. [36] shows that empirically the rate a

training sequence is emitted by a language model is superlinear to

the sequence’s frequency in the training corpus. For example, on

average, a sequence that appears 10 times in the training corpus is

generated 1000×more often than a unique sequence in the training

corpus. At the same time, Carlini et al. [14] found that the chance

language models emit memorized training data significantly (su-

perlinearly) grows when the model size, the sequence’s frequency

in the training corpus, or the context length increases.

7 Conclusion

In this paper, we study how many texts generated by large neu-

ral language models have near-duplicates in the training corpus.

However, as modern language models are trained on larger and

larger corpora (up to 1 terabytes) and the number of sequences in a

text is quadratic to the text length, it is computational challenge to

search near-duplicates in the large-scale text corpus. To address this

issue, we develop an efficient and scalable near-duplicate sequence

search algorithm based on the min-hash techniques. Experimental

results show that our algorithm achieved high performance and

good scalability.

9

References

[1] E. Agirre, C. Banea, D. M. Cer, M. T. Diab, A. Gonzalez-Agirre, R. Mihalcea,

G. Rigau, and J. Wiebe. Semeval-2016 task 1: Semantic textual similarity, mono-

lingual and cross-lingual evaluation. In Proceedings of the 10th International
Workshop on Semantic Evaluation, pages 497–511. The Association for Computer

Linguistics, 2016.

[2] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A

survey and a new algorithm for a distributed environment. Theory Comput. Syst.,
37(3):441–456, 2004.

[3] M. Artetxe, G. Labaka, E. Agirre, and K. Cho. Unsupervised neural machine

translation. arXiv preprint arXiv:1710.11041, 2017.
[4] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463.

ACM press New York, 1999.

[5] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

[6] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In

WWW, pages 131–140, 2007.

[7] A. Behm, C. Li, and M. J. Carey. Answering approximate string queries on large

data sets using external memory. In ICDE, pages 888–899, 2011.
[8] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest

common ancestors in trees and directed acyclic graphs. J. Algorithms, 57(2):75–94,
2005.

[9] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for digital

documents. In SIGMOD, pages 398–409. ACM Press, 1995.

[10] A. Z. Broder. On the resemblance and containment of documents. In SEQUENCES,
pages 21–29. IEEE, 1997.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering

of the web. Comput. Networks, 29(8-13):1157–1166, 1997.
[12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:1877–1901, 2020.
[13] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramèr. Membership

inference attacks from first principles. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 1897–1914. IEEE,
2022.

[14] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramèr, and C. Zhang. Quantifying

memorization across neural language models. CoRR, abs/2202.07646, 2022.
[15] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,

T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel. Extracting training

data from large language models. In M. Bailey and R. Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pages
2633–2650. USENIX Association, 2021.

[16] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,

H. W. Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling

with pathways. arXiv preprint arXiv:2204.02311, 2022.
[17] A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe. Collection statistics

for fast duplicate document detection. ACM Transactions on Information Systems
(TOIS), 20(2):171–191, 2002.

[18] J. G. Conrad, X. S. Guo, and C. P. Schriber. Online duplicate document detection:

signature reliability in a dynamic retrieval environment. In Proceedings of the
twelfth international conference on Information and knowledge management, pages
443–452, 2003.

[19] D. Deng, G. Li, and J. Feng. A pivotal prefix based filtering algorithm for string

similarity search. In SIGMOD Conference, pages 673–684, 2014.
[20] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for exact

set similarity joins. Proc. VLDB Endow., 9(4):360–371, 2015.
[21] D. Deng, G. Li, H. Wen, H. V. Jagadish, and J. Feng. META: an efficient matching-

based method for error-tolerant autocompletion. PVLDB, 9(10):828–839, 2016.
[22] D. Deng, Y. Tao, and G. Li. Overlap set similarity joins with theoretical guarantees.

In SIGMOD, pages 905–920. ACM, 2018.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[24] A. Fan, M. Lewis, and Y. N. Dauphin. Hierarchical neural story generation. In

I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 889–898. Association for Computational

Linguistics, 2018.

[25] W. Feng and D. Deng. Allign: Aligning all-pair near-duplicate passages in long

texts. In G. Li, Z. Li, S. Idreos, and D. Srivastava, editors, SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pages
541–553. ACM, 2021.

[26] J. Fischer. Optimal succinctness for range minimum queries. In A. López-

Ortiz, editor, LATIN 2010: Theoretical Informatics, 9th Latin American Symposium,
Oaxaca, Mexico, April 19-23, 2010. Proceedings, volume 6034 of Lecture Notes in
Computer Science, pages 158–169. Springer, 2010.

[27] P. Gage. A new algorithm for data compression. C Users J., 12(2):23âĂŞ38, feb
1994.

[28] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,

A. Thite, N. Nabeshima, S. Presser, and C. Leahy. The pile: An 800gb dataset of

diverse text for language modeling. CoRR, abs/2101.00027, 2021.
[29] R. Gheorghe, M. L. Hinman, and R. Russo. Elasticsearch in action. Manning

Shelter Island, NY, 2015.

[30] A. Gokaslan and V. Cohen. Openwebtext corpus.

[31] A. Halavais. Search engine society. John Wiley & Sons, 2017.

[32] O. A. Hamid, B. Behzadi, S. Christoph, and M. R. Henzinger. Detecting the origin

of text segments efficiently. In WWW, pages 61–70. ACM, 2009.

[33] J. R. Hamilton and T. K. Nayak. Microsoft sql server full-text search. IEEE Data
Eng. Bull., 24(4):7–10, 2001.

[34] T. C. Hoad and J. Zobel. Methods for identifying versioned and plagiarized

documents. J. Assoc. Inf. Sci. Technol., 54(3):203–215, 2003.
[35] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In

WWW, pages 433–439, 2009.

[36] N. Kandpal, E. Wallace, and C. Raffel. Deduplicating training data mitigates pri-

vacy risks in language models. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,

G. Niu, and S. Sabato, editors, International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 10697–10707. PMLR, 2022.

[37] J. W. Kim, K. S. Candan, and J. Tatemura. Efficient overlap and content reuse

detection in blogs and online news articles. In WWW, pages 81–90. ACM, 2009.

[38] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Ep-

stein, I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: a benchmark for

question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

[39] K. Lee, D. Ippolito, A. Nystrom, C. Zhang, D. Eck, C. Callison-Burch, and N. Carlini.

Deduplicating training data makes language models better. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 8424–8445, 2022.

[40] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets, 2nd Ed.
Cambridge University Press, 2014.

[41] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering algorithms for approximate

dictionary-based entity extraction. In SIGMOD Conference, pages 529–540, 2011.
[42] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-based method for

similarity joins. PVLDB, 5(3):253–264, 2011.
[43] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead search. VLDB J.,

20(4):617–640, 2011.

[44] P. Li, A. B. Owen, and C. Zhang. One permutation hashing. In NIPS, pages
3122–3130, 2012.

[45] U. Manber. Finding similar files in a large file system. In USENIX Winter 1994
Technical Conference, pages 1–10. USENIX Association, 1994.

[46] R. T. McCoy, P. Smolensky, T. Linzen, J. Gao, and A. Celikyilmaz. How much do

language models copy from their training data? evaluating linguistic novelty in

text generation using RAVEN. CoRR, abs/2111.09509, 2021.
[47] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Interspeech, volume 2, pages 1045–1048.

Makuhari, 2010.

[48] M. Potthast, A. Barrón-Cedeño, A. Eiselt, B. Stein, and P. Rosso. Overview of

the 2nd international competition on plagiarism detection. In CLEF 2010 LABs
and Workshops, Notebook Papers, volume 1176 of CEUR Workshop Proceedings.
CEUR-WS.org, 2010.

[49] D. M. Powers. Applications and explanations of zipfâĂŹs law. In New methods
in language processing and computational natural language learning, 1998.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
[51] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. arXiv e-prints, 2019.
[52] R. Ramakrishnan, J. Gehrke, and J. Gehrke. Database management systems,

volume 3. McGraw-Hill New York, 2003.

[53] J. Sarzynska-Wawer, A. Wawer, A. Pawlak, J. Szymanowska, I. Stefaniak,

M. Jarkiewicz, and L. Okruszek. Detecting formal thought disorder by deep

contextualized word representations. Psychiatry Research, 304:114135, 2021.
[54] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for

document fingerprinting. In SIGMOD, pages 76–85. ACM, 2003.

[55] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with

pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.
[56] J. Seo and W. B. Croft. Local text reuse detection. In SIGIR, pages 571–578. ACM,

2008.

[57] A. Shatdal and J. F. Naughton. Adaptive parallel aggregation algorithms. In

Proceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’95, page 104âĂŞ114, New York, NY, USA, 1995. Association for

Computing Machinery.

10

[58] N. Shivakumar and H. Garcia-Molina. Finding near-replicas of documents and

servers on the web. In TheWorldWideWeb and Databases, International Workshop
WebDB’98, volume 1590 of Lecture Notes in Computer Science, pages 204–212.
Springer, 1998.

[59] M. Thorup. Bottom-k and priority sampling, set similarity and subset sums with

minimal independence. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,

Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 371–380. ACM, 2013.

[60] K. Tirumala, A. H. Markosyan, L. Zettlemoyer, and A. Aghajanyan. Memorization

without overfitting: Analyzing the training dynamics of large language models.

CoRR, abs/2205.10770, 2022.
[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[62] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive frame-

work for similarity join and search. In SIGMOD, pages 85–96, 2012.

[63] P. Wang, C. Xiao, J. Qin, W. Wang, X. Zhang, and Y. Ishikawa. Local similarity

search for unstructured text. In SIGMOD, pages 1991–2005. ACM, 2016.

[64] Z. Wang, C. Zuo, and D. Deng. Txtalign: Efficient near-duplicate text alignment

search via bottom-k sketches for plagiarism detection. In Z. Ives, A. Bonifati, and

A. E. Abbadi, editors, SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1146–1159. ACM, 2022.

[65] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for

near-duplicate detection. ACM Trans. Database Syst., 36(3):15, 2011.
[66] H. Yang and J. Callan. Near-duplicate detection for erulemaking. In Proceedings

of the 2005 national conference on Digital government research, pages 78–86, 2005.
[67] H. Yang and J. Callan. Near-duplicate detection by instance-level constrained

clustering. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 421–428, 2006.

[68] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. Xlnet:

Generalized autoregressive pretraining for language understanding. Advances in
neural information processing systems, 32, 2019.

11

	Abstract
	1 Introduction
	2 Background: Large Language Models
	3 Near-Duplicate Sequence Search
	3.1 Problem Definition
	3.2 Min-Hash for Jaccard Similarity Estimation
	3.3 Efficient Min-Hash Generation
	3.4 Indexing Compact Windows
	3.5 Query Processing

	4 Evaluating Near Duplicate Sequence Search
	4.1 Evaluating Index Construction
	4.2 Evaluating Query Processing

	5 Evaluating Language Model Memorization
	6 Related Work
	7 Conclusion
	References

