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Abstract—Dictionary-based entity extraction has attracted
much attention from the database community recently, which
locates substrings in a document into predefined entities (e.g.,
person names or locations). To improve extraction recall, a recent
trend is to provide approximate matching between substrings of
the document and entities by tolerating minor errors. In this
paper we study dictionary-based approximate entity extraction
with edit-distance constraints. Existing methods have several
limitations. First, they need to tune many parameters to achieve
high performance. Second, they are inefficient for large edit-
distance thresholds. To address these limitations, we propose
a trie-based method to support efficient entity extraction. We
develop a partition scheme to partition each entity into a set
of segments and use a trie structure to index segments. To
extract similar entities, we search segments from the document,
and extend the matching segments in both entities and the
document to find similar pairs. We develop an extension-based
method to efficiently find similar string pairs by extending the
matching segments. We optimize our partition scheme and select
the best partition strategy to improve the extraction performance.
Experimental results show that our method achieves much higher
performance, compared with state-of-the-art studies.

I. INTRODUCTION

Entity extraction (also known as entity recognition and

entity identification) is an important operation in informa-

tion extraction that locates substrings from a document into

predefined entities, such as person names, locations, organi-

zations, etc. Dictionary-based entity extraction has attracted

much attention from the database community, which identifies

substrings from a document that match the predefined entities

in a given dictionary. For example, consider a document “An

efficient filter for approximates membership checking. kaushit

chekrabarti, suraijt chauduri, vankatesh ganti, dong xin.” and

a dictionary with two entities “surajit chaudhuri” and

“dong xin.” Dictionary-based entity extraction locates entity

“dong xin” from the document.

However, the document may contain orthographical or typo-

graphical errors and the same entity may have different repre-

sentations [26]. For example, the substring “suraijt chauduri”

in the above document has typographical errors. The tradi-

tional (exact) entity extraction cannot find this substring from

the document, since the substring does not exactly match

the predefined entity “surajit chaudhuri.” To improve

extraction recall, approximate entity extraction is a recent

trend [26], [18], which finds substrings from the document that

approximately match the predefined entities. This problem has

many real applications in bioinformatics, molecular biology,

and natural language processing.

To quantify the similarity between two strings, many sim-

ilarity functions have been proposed. Edit distance is a well-

known function which is widely adopted for tolerating typing

mistakes and spelling errors. The edit distance between two

strings is the minimum number of single-character edit op-

erations (i.e., insertion, deletion, and substitution) needed to

transform the first one to the second one. For instance, the edit

distance between entity “surajit chaudhuri” and substring

“suraijt chauduri” in the above document is 3. Suppose we use

edit distance with threshold 3. Approximate entity extraction

can locate the substring “suraijt chauduri” from the document

which is similar to entity “surajit chaudhuri.”

Faerie [18] and NGPP [26] have been proposed to address

this problem, however they have some limitations. Firstly,

they need to tune parameters to achieve a high performance,

which is a tedious and troublesome process (see Section II-B).

Secondly, they are inefficient for large edit-distance thresholds.

To address these problems, we propose a trie-based method

for dictionary-based approximate entity extraction with edit-

distance constraints, called TASTE. TASTE does not need

to tune parameters. Moreover TASTE achieves much higher

performance, even for large edit-distance thresholds.

To achieve our goal, we propose a partition scheme to

partition entities into several segments. We develop an efficient

algorithm based on the fact that if a substring of the document

is similar to an entity, the substring must contain a segment of

the entity [23]. To this end, we first search segments of entities

from the document, and then extend the matching segments in

both entities and documents in order to find similar pairs. To

facilitate the segment identification, we use a trie structure

to index the segments and develop an efficient trie-based

algorithm. We develop an efficient extension-based framework

to find similar pairs by extending the matching segments. To

summarize, we make the following contributions.

• We propose a partition scheme to partition entities into

segments and utilize these segments to address the

dictionary-based approximate entity extraction problem.

• We build a trie-structure for segments of entities to

facilitate searching segments from the document. We

propose an extension-based framework to efficiently find

similar string pairs based on the matching segments.

• As they may be large numbers of partition strategies to

generate segments of entities, we study how to select the

best partition strategy to improve performance.



• We have implemented our method, and the experimental

results show that our method achieves much higher

performance, compared with state-of-the-art studies.

The rest of this paper is organized as follows. We first

formulate the problem of dictionary-based approximate entity

extraction in Section II. We propose a trie-based framework in

Section III. Section IV gives efficient algorithms to find similar

pairs. We discuss how to select the best partition strategy in

Section V. Experiment results are provided in Section VI. We

make a conclusion in Section VII.

II. PRELIMINARIES

We first formulate the problem of dictionary-based approx-

imate entity extraction, and then review related works.

A. Problem Formulation

To tolerate inconsistencies between substrings and entities,

in this paper, we use edit distance to quantity the similarity

between two strings. The edit distance between two strings

r and s, denoted by ED(r, s), is the minimum number of

single-character edit operations (i.e., insertion, deletion, and

substitution) needed to transform string r to string s. For

example, ED(marios, maras) = 2. In this paper two strings

are similar, if their edit distance is not larger than a predefined

edit-distance threshold τ . Next we formulate our problem.

Definition 1 (Approximate Entity Extraction): Given a dic-

tionary of entities E = {e1, e2, . . . , en}, a document D, and

a predefined edit-distance threshold τ , approximate entity ex-

traction finds all “similar” pairs 〈s, ei〉 such that ED(s, ei) ≤ τ ,

where s is a substring of D and ei ∈ E.

Example 1: Consider dictionary E and document D in

Table I. Suppose the edit-distance threshold τ = 2. 〈“surajit

chaudhuri”, “surajit chaudri”〉 and 〈“kaushit chekrab”,

“caushit chakrab”〉 are two example answers.

TABLE I
A DICTIONARY OF ENTITIES AND A DOCUMENT.

(a) Dictionary E (b) Document D
ID Entities Len

1 vancouver 9
2 vanateshe 9
3 surajit chaudri 15
4 caushit chaudui 15
5 caushit chakrab 15

Document

an efficient filter for approximates

membership checking. kaushit

chekrabarti, surajit chaudhuri,

vankatesh ganti, dong xin.

vancouver, canada. sigmod 2008.

B. Related Works

Approximate Entity Extraction: There have been some

recent studies on approximate entity extraction [26], [9], [20],

[1], [4], [5]. Li et al. [18] and Wang et al. [26] studied

the same problem as ours. The former (Faerie) proposed

a unified framework to support various similar functions.

Although Faerie can support edit distance, it is not specially

designed for edit distance. In addition, Faerie used gram-based

index structures which involved larger index sizes than our

method. The latter (NGPP) used a neighborhood-generation-

based method. NGPP first partitions entities into different

partitions, and guarantees that an entity and a substring are

similar if they have two similar partitions with edit distance

no larger than 1. Then NGPP generates neighborhoods of

each partition by deleting one character, and the edit distance

between two partitions is not larger than 1 if the two partitions

have a common neighbor. NGPP involves larger indexes than

gram-based methods [26]. To achieve a high performance,

Faerie needs to tune the parameter gram length q and NGPP

needs to tune the parameter prefix length lp. In addition, they

are inefficient for large edit-distance thresholds(Section VI-C).

Chakrabarti et al. [4] proposed an inverted signature-based

hash-table for membership checking, using a matrix identifi-

cation based method. Lu et al. [20] improved this method [4]

by using a tighter threshold. Agrawal et al. [1] used inverted

lists for ad-hoc entity extraction. Chandel et al. [5] studied the

problem of batch top-k search for dictionary-based exact entity

extraction. Chaudhuri et al. [9] mined document collections to

expand a reference dictionary.

Approximate String Search & Similarity Join: Many meth-

ods [4], [13], [2], [8], [6], [10], [16], [17], [15], [28], [29],

[11], [12] have been proposed to study the approximate string

search problem, which, given a set of strings and a query

string, finds all similar strings of the query string from the

set. Existing methods usually employ a filter-and-verify frame-

work. Similarity join has also been extensively studied [28],

[27], [3], [7], [25], [24], which, given two sets of strings, finds

all similar string pairs from the two sets. Existing methods

usually employ a prefix-filtering-based framework to address

this problem. Although we can extend the methods for approx-

imate string search and similarity join, they are inefficient for

approximate entity extraction (also proved in [26], [18]). The

main reason is that they need to enumerate large numbers of

overlapped substrings of the document. Different from [19]

which used a partition-based method to support similarity

joins, we use the partition scheme to support approximate

entity extraction and develop effective trie-based indexes and

search algorithms. Moreover, we propose effective techniques

to optimize the partition scheme.

It has been shown that approximate entity extraction can

improve extraction recall [26]. In this paper, we emphasize on

improving the performance with a predefined threshold τ .

III. TRIE-BASED FRAMEWORK

We first introduce a partition scheme to partition each entity

into different disjoint segments (Section III-A), and then use

a trie structure to index the segments (Section III-B). Finally,

we propose a framework to use the trie structure to efficiently

find similar pairs (Section III-C).

A. Partition Scheme

Given an entity e, we partition it into τ + 1 disjoint

segments, e1, e2, · · · , eτ+1, and the length of each seg-

ment is not smaller than 1∗. For example, consider entity

e2=“vanateshe”. Suppose τ=2. We have several ways to

partition e2 into 3 segments, such as {“vana”,“tes”,“he”}
and {“van”,“ate”,“she”}.

∗The length of entity e(|e|) should be larger than τ , i.e., |e| ≥ τ + 1.



For a substring s of document D, if s has no substring

which is exactly a segment of e, s cannot be similar to entity

e [23], which can be proved using the pigeon-hole principle.

Given an entity, there could be many strategies to partition

the entity into τ + 1 segments. Here we give an intuitive

method, and we will discuss how to select the best parti-

tion strategy in Section V. Intuitively, the shorter a segment

is, the higher probability it appears in a substring of the

document, and thus the more substrings will be taken as

candidates of those entities which contain the segment. In

this way, we do not want to keep a short segment in the

partition. In other words, each segment should nearly have

the same length. Based on this observation, we propose an

even-partition scheme. Consider an entity e with length |e|.

Let k = |e| − ⌊ |e|
τ+1⌋ ∗ (τ + 1). In even partition, the first k

segments have length ⌈ |e|
τ+1⌉, and others have length ⌊ |e|

τ+1⌋,

thus the maximal length difference between two segments is

1. For example, in even partition e2=“vanateshe” has three

segments {“van”, “ate”, “she”}.

B. Trie Index

For each substring of the document, we need to check

whether it contains a segment of every entity. For efficient

checking, we use a trie structure to index the segments of

every entity. Each segment corresponds to a unique path from

the root of the trie to a leaf node. The label of the root node is

ǫ, where ǫ is a special mark and denotes the empty string. Each

of other nodes on the path has a label of a character in the

segment. For simplicity, a node is mentioned interchangeably

with its corresponding string in the remainder of the paper.

Each leaf node has an inverted list of IDs of entities that

contain the corresponding segment.

Example 2: Consider entities in Table I. Suppose we use

the even partition and τ = 2. Figure 1 shows the trie structure

for the segments. The inverted list of node 25 (“it cn”) is

3, 4, 5, since entities e3, e4, e5 contain the segment.
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Fig. 1. Trie structure for segments in Table I.

Space Complexity: Each entity has τ + 1 segments, thus the

space complexity of inverted lists is O
(

(τ +1)× |E|
)

, where

|E| is the number of entities. We use the compression ratio to

evaluate degree of prefix sharing, which is the ratio of the sum

of entity length to the number of nodes on the corresponding

trie structure, denoted by λ. On real datasets λ ∈ [3, 10]. Thus

the space complexity of the trie is O
(

∑

e∈E
|e|

λ

)

.

C. Trie-based Framework

We propose a trie-based framework to find substrings from

document D that approximately match entities. For each

substring s of D, we use the trie structure to find its similar

entities. A naive method is to use every substring of s to search

the trie structure. If a substring of s corresponds to a leaf node,

the pair of s and every entity in the inverted list of the leaf node

is a candidate pair. However this method is rather inefficient

as s may have large numbers of substrings.

To improve the performance, we give an alternative method.

For each suffix of substring s, we find the suffix in the

trie structure. If we reach a leaf node, s has a substring

corresponding to the leaf node. We retrieve the entities in the

inverted list, which may be similar to substring s.

Valid Substrings: We observed that some substrings of doc-

ument D will not be similar to any entity. For instance,

the substring “approximates membership” cannot be similar

to any entity, as its length is too large. To address this

problem, we define valid substrings that are potentially similar

to some entities. Let Lmin and Lmax respectively denote

the minimal entity length and the maximal entity length in

the dictionary. Obviously all the substrings of document D

with length smaller than Lmin − τ or larger than Lmax + τ

can be pruned based on length filtering. We call the sub-

strings of document D with length between Lmin − τ and

Lmax + τ valid substrings, which may have similar entities

in the dictionary. For instance, consider the dictionary and

document in Table I. Lmin = 9 and Lmax = 15. Suppose

τ = 2. The substrings with length between 7 and 17 could

have similar entities, and others can be pruned. Thus we only

enumerate valid substrings and use the above method to find

their similar entities. This method is called TRIE-SEARCH.

However many substrings share common segments and TRIE-

SEARCH involves duplicated computations. Consider valid

substrings “surajit chaudhuri”, “urajit chaudhuri”, and “surajit

chaudhur”. They share a common segment “it ch”. TRIE-

SEARCH searches “it ch” multiple times and accesses entities

in the inverted list of “it ch” repeatedly. To avoid duplicated

computations, we propose efficient algorithms in Section IV.

IV. TRIE-BASED ALGORITHMS

We first propose a search-and-extension-based algorithm

(Section IV-A), and then develop a trie-based pruning tech-

nique to improve the performance (Section IV-B).

A. Search-and-Extension-based Algorithm

To avoid the duplicated computations on the shared segment

across different substrings, we propose a search-and-extension-

based algorithm. For each segment shared by multiple sub-

strings, we only access the inverted list of the segment once.

To achieve our goal, we first use a SEARCH operation to locate

the segment using the trie and then employ an EXTENSION

operation to find similar entities. For example, consider valid

substrings “surajit chaudhuri”, “urajit chaudhuri”, and “surajit

chaudhur”. We first locate the segment “it ch”. Then we

extend the segment to find similar pairs, such as 〈“surajit

chaudhuri”, “surajit chaudri”〉.



For ease of presentation, we introduce several notations.

Let D[i, j] denote the substring of D starting with the i-

th character and ending with the j-th character. Let D[i]
denote the i-th character of D. Specially, D starts with

the 1-st character and ends with the |D|-th character, i.e.,

D = D[1, |D|]. Next we introduce the two operations:

• SEARCH: For each 1 ≤ i ≤ |D|, the SEARCH operation

checks whether each substring of D starting with the i-th

character, e.g., D[i, j](j ≥ i), is a trie leaf node (i.e., a

segment), and finds all such leaf nodes, which are called

candidate nodes.

• EXTENSION: For each candidate node D[i, j] found in

the SEARCH operation, the entities in its inverted list

also contain segment D[i, j], thus they may be similar to

substrings that contain D[i, j]. The EXTENSION operation

extends D[i, j] to substrings D[m,n](m ≤ i, n ≥ j)
which are similar to an entity in the inverted list.

Our algorithms first calls the SEARCH operation for 1≤
i≤|D| to find substrings of the document starting with D[i]
that correspond to trie leaf nodes, e.g., D[i, j]. Then for

each candidate node D[i, j], the EXTENSION operation extends

D[i, j] to find similar substrings for every entity in the inverted

list of D[i, j]. Iteratively, we can find all similar pairs.

Example 3: Consider D[59, 73]=“kaushit chekrab”. Let i =
59. The SEARCH operation finds leaf nodes corresponding to

substrings starting with D[59], and there is no such node. Next

the SEARCH operation searches for i = 60, 61, 62, and so on.

When i = 64, the SEARCH operation finds candidate node

25 (“it ch”=D[64, 68]). Entities e3, e4, e5 in the inverted list

may be similar to substrings containing D[64, 68]. Next the

EXTENSION operation extends D[64, 68] to find substrings

which are similar to one of the three entities, e.g., D[59, 73]
similar to e5=“caushit chakrab”.

Implementation of the SEARCH operation: Given D[i], we

find the candidate nodes from the root as follows. If the root

has no child with a label D[i], we terminate the SEARCH

operation on D[i]; otherwise we visit its child with label D[i]
and check whether the node is a leaf node; if so, it is a

candidate node. Next we continue to check whether the node

has a child with label D[i + 1] and repeat the above steps.

When reaching the node corresponding to D[j] which has no

child with label D[j+1], we terminate the SEARCH operation

on D[i]. This is because if there is no trie node corresponding

to D[i, j + 1], there will not exist a node corresponding to

D[i, k](k > j). For example, consider D[64, 70]= “it chek”.

Suppose i = 64. The SEARCH operation first checks whether

the root has a child with label D[64]=“i”, and locates node 21.

Then it locates nodes 22, 23, 24, 25. Node 25 is a candidate

node as it is a leaf node. As node 25 has no child with label

D[69]=“e”, we terminate the SEARCH operation for i = 64.

The complexity of this method is O(|D|×L) where L

is the depth of the trie. To improve the performance, we

can extend the Knuth-Morris-Pratt (KMP) algorithm [14] to

support our SEARCH operation. KMP is used to search for

occurrences of a “word” within a “text string”. Its main idea
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Fig. 2. EXTENSION on D[i, j] for entity e.

is when a mismatch occurs, the word itself embodies sufficient

information to determine where the next match could begin,

and thus we can bypass re-examination of previously matched

characters. For example, consider we search for “abcac” in

“abcabcabcac”. When we find that “abcac” doest not match

“abcab”, we do not need to search from the second character.

Instead we search it from the current mismatch position, that is

searching “abcac” from “abcabcabcac”. To this end, we add

some pointers on the trie structure to implement the “partial

match table” [14] (a.k.a. “failure function”) and use the “partial

match table” to bypass re-examination of previously matched

characters. Thus we can improve the complexity to O(|D|).

Implementation of the EXTENSION operation: Consider a

candidate node D[i, j]. Suppose entity e is in the inverted

list of D[i, j](entity e contains segment D[i, j]). Based on the

segment, we can partition entity e into three parts: the left

part of e before the segment (denoted by el), the matching

part (denoted by em = D[i, j]), and the right part of e after

the segment (denoted by er). Next we find the set of substrings

similar to er starting with D[j+1], denoted by Sr, and the set

of substrings similar to el ending with D[i − 1], denoted by

Sl. For each (sl=D[l, i− 1])∈Sl and (sr=D[j +1, r])∈Sr, if

ED(sl, el)+ ED(sr, er) ≤ τ , the concatenate string of D[l, i−
1], D[i, j], and D[j + 1, r], i.e., D[l, r], is similar to entity e.

We propose two operations to compute Sr and Sl (Figure 2).

(1) RIGHT EXTENSION: It extends D[i, j] on the right side to

generate Sr. Based on the length pruning, the maximal length

of strings similar to er is |er|+τ , thus we at most extend it to

D[j+1, n] where n = j+ |er|+ τ . We can use the dynamic-

programming algorithm to compute the edit distance between

er and D[j+1, n] (Figure 2). Note that in the Figure, we only

need to compute the shaded entries [22]. If all the entries in a

same column are larger than τ , we can do an early termination

and prune entity e; otherwise, we get the 2× τ + 1 entries of

the last column, denoted by Mer [n − 2 × τ · · ·n], which are

respectively edit distances between er and D[j + 1, n − 2 ×
τ ], . . . , D[j + 1, n]. For k ∈ [n − 2 × τ, n], if Mer [k] ≤ τ ,

D[j+1, k] is similar to er. Thus Sr = {D[j+1, k] | Mer [k] ≤
τ, n− 2× τ ≤ k ≤ n}.



(2) LEFT EXTENSION: It is similar to RIGHT EXTENSION and

extends D[i, j] on the left side to generate Sl. Based on the

length pruning, we at most extend it to D[m, i−1] where m =
i−(|el|+τ). We can use the dynamic-programming algorithm

to compute the edit distance between the reversed string of el
and the reversed string of D[m, i− 1] (Figure 2). Finally, we

get the entries of the last column, denoted by Mel [m · · ·m+
2 × τ ], which are respectively edit distances between el and

D[m, i− 1], D[m+1, i− 1], . . . , D[m+2×τ, i−1]. Obviously

Sl = {D[k, i− 1] | Mel [k] ≤ τ,m ≤ k ≤ m+ 2× τ}.

After RIGHT EXTENSION and LEFT EXTENSION, we get

a set of similar substrings of er (Sr) and a set of similar

substrings of el (Sl). Then we generate strings by concate-

nating a substring in Sl, D[i, j], and a substring in Sr. If the

sum of the edit distance of the first substring and that of the

second substring is not larger than τ , the pair of the generated

string and e is a similar pair. The correctness of our method

is formalized in Theorem 1.

Theorem 1: The search-and-extension-based method can

find all similar pairs correctly and completely.

Here we give the high-level idea about the correctness

of Theorem 1. Firstly if a substring s is similar to an

entity, s must contain a segment of the entity. Consider a

transformation from entity e to substring s with ED(e, s)
operations. In the transformation, there must exist a segment

of e such that the number of edit operations in the segment

is 0 (otherwise ED(e, s) ≥ τ + 1 > τ ). We partition e(s)
into three parts: (1) the part before the segment, denoted by

el(sl); (2) the matching part, denoted by em(sm); and (3) the

part after the segment, denoted by er(sr). Obviously we have

ED(e, s) = ED(el, sl)+ ED(em, sm) + ED(er, sr). In this way,

our extension-based method can find all such similar entities.

Note that although a segment may have multiple occurrences

in entity e, our method will consider all such cases. Thus our

search-and-extension-based method finds results completely.

Example 4: For candidate node D[64, 68] =“it ch”, its

inverted list contains three entities, e3, e4, and e5. Con-

sider e5=“caushit chakrab”. el=“caush”, em=“it ch”,

and er=“akrab”. For er, we use the dynamic-programming

algorithm to compute the edit distance between er
and D[68 + 1, 68 + 5 + 2]=“ekrabar”, and get Sr =

{D[69, 72]=“ekra”, D[69, 73]=“ekrab”, D[69, 74]=“ekraba”}.

Similarly we compute the edit distance between the re-

versed string of el and the reversed string of D[64-

(5+2), 64-1]=“.∼kaush”, and get Sl={D[58, 63]=“∼kaush”,

D[59, 63]=“kaush”, D[60, 63]=“aush”, D[61, 63]=“ush”}. Fi-

nally, we enumerate Sl and Sr to generate answers, e.g.,

the concatenate string of D[59, 63], D[64, 68], D[69, 73] (i.e.,

D[59, 73]=“kaushit chekrab”) is similar to e5.

To concatenate strings in Sr and Sl, we do not need to

do Cartesian product on Sr and Sl. Instead we first partition

substrings in Sr and Sl into different buckets based on their

edit distances. We only concatenate the strings in two buckets

with the sum of their edit distances no larger than τ . In

Left 

subtrie

Right 

subtrie

…

4 5 3 5 3 4 We only need to keep the two sorted lists.

Fig. 3. Two-level trie structure.

addition, without loss of generality, suppose we first compute

Sr. Let the minimal edit distance of substrings in Sr be τr. To

compute Sl, we will use the threshold τ − τr, instead of using

τ . In this way, we can avoid many unnecessary computations.

We give the time complexity. For each entity e in the in-

verted lists of a candidate node, the extension time complexity

is O
(

(2τ + 1) × (|e| − |em|)
)

= O
(

τ(2τ+1)
τ+1 |e|

)

= O(τ |e|),
where em is the matching segment. Suppose the total number

of entities for all candidate nodes is C and the average entity

length is Lavg. The extension complexity is O
(

τLavgC
)

†.

Thus the total time complexity of the search-and-extension-

based method is O
(

|D| + τLavgC
)

. We can use the average

entity length in the dictionary do estimate Lavg . We discuss

how to compute C in Section V-A.

B. Improving The Extension Operation

In the EXTENSION operation, there may be large numbers of

entities in the inverted list of a candidate node. It is expensive

to do the EXTENSION operation for every entity. To address

this issue, we propose a trie-based method.

In the trie structure, for each leaf node, we will not keep

an inverted list of entities. Instead we maintain two subtries:

one subtrie for right parts of the entities in the inverted list,

and the other subtrie for the reversed strings of left parts of

the entities. This new trie structure is called two-level trie. For

example, Figure 3 shows a two-level trie. Consider leaf node

“it ch” in the upper level trie. Entities e3, e4, and e5 contain

the segment. In the right subtrie of “it ch”, we keep right

parts of the three entities, i.e., “audri”, “audui”, “akrab”.

In the left subtrie, we keep the reversed strings of left parts,

i.e., “suraj”, “caush”, “caush”.

The two-level trie has the following advantages. Firstly, as

some entities share a common prefix (i.e., some trie nodes

have a same ancestor), we can share the computations on

the common prefix of these entities. Secondly, if the common

prefix (i.e., a trie node) is not similar enough to a substring, we

can prune all entities having the prefix (i.e., leaf nodes under

the trie node w.r.t. the common prefix). This called subtrie

†The total time complexity of concatenating strings in Sr and Sl is O(C).
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Fig. 4. Incremental EXTENSION operation.

pruning [21]. Based on these observations, we use the two-

level trie structure to improve the EXTENSION operation.

Incrementally Computing Sr and Sl: Given a candidate node

D[i, j], we use the right subtrie and left subtrie to compute

Sr and Sl respectively. We propose an incremental extension

operation (Figure 4). We first consider the right subtrie. For

any trie node u, we keep an array Mu[0 · · · 2 × τ ], which

is used to maintain the edit distance between node u and its

similar substrings D[j+1, j+|u|−τ ], . . . , D[j+1, j+|u|+τ ],
where |u| is the level of node u in the subtrie (the level of

the root node is 0). Obviously Mu[k] corresponds to the edit

distance between D[j + 1, j + |u| − τ + k] and node u.

Initially, for the root node, only the substring D[j + 1, j +
k](0 ≤ k ≤ τ) ‡ is similar to the empty string ǫ (i.e., the root)

with edit distance k, thus we set Mǫ[k] = k. Next we discuss

how to compute Mu incrementally.

Suppose we have computed Mu. Then we use Mu to

compute Mv, where v is a child of u. Based on the dynamic-

programming algorithm (Figure 4), for 0≤k≤2×τ , we have

Mv[k] = min(Mu[k] + c,Mu[k + 1] + 1,Mv[k − 1] + 1),

where c = 0 if the character D[j + |v| − τ + k] is the same

as the label of v; otherwise c = 1. Especially, Mv[−1] =
ED(v,D[j+1, j+ |v|−τ−1]) > τ . As we only keep the value

no larger than τ , we set Mv[0] = min(Mu[0] + c,Mu[1] +
1). Similarly, as Mu[2 × τ + 1] > τ , we set Mv[2 × τ ] =
min(Mu[2× τ ] + c,Mv[2× τ − 1] + 1).

Based on the recursion formula and initial values, we can

compute Mv based on Mu. If each value in Mv is larger than

τ , we will not visit v’ children (subtrie pruning); otherwise, we

continue the EXTENSION operations for v’s children. Finally,

for each leaf node l, if Ml[k] ≤ τ , the entities in l’s inverted

list are similar to D[j + 1, j + |l| − τ + k]. Thus for each

entity er in the inverted list of l, if Ml[k] ≤ τ , we insert

D[j+1, j+ |l|− τ +k] into Sr for er. Similarly, we compute

Sl using the left subtrie. The correctness of the incremental

extension based method is formalized in Theorem 2.

Theorem 2: The incremental extension based method com-

putes Sr and Sl correctly and completely.

‡Especially D[j + 1, j] = ǫ.

The basic idea of Theorem 2 is to use the dynamic pro-

gramming algorithm to compute Sr and Sl incrementally. For

example, consider the two-level trie in Figure 3. For the right

subtrie, we compute Maudr and Maudu based on Maud. Thus

we avoid the duplicated computations on the common prefix

“aud”. For substring D[69, 71]=“ekr”, as it is not similar to

“aud”, we prune the subtrie rooted at “aud”.

SORT-BASED EXTENSION METHOD: However, the trie-

based extension needs to construct subtries for each leaf node

which will involve large indexes. To address this issue, we

propose a SORT-BASED EXTENSION METHOD, which does not

construct the subtries but achieves the same high performance.

Consider a leaf node in the upper level trie. We traverse its

subtrie in preorder. When reaching a node v, we compute

Mv using its parent array Mu (which has been computed in

preorder). We keep Mv as it will be used by its children. When

backtracking to node v, we delete Mv as its children have

been visited and Mv will not be used for subsequent nodes.

The number of kept arrays is at most the depth of the subtrie.

To this end, for each leaf node, we sort the right parts of

entities in its inverted list in lexicographic order (also sort the

reversed strings of left parts). Instead of keeping two subtries,

we maintain two sorted lists of IDs of entities based on their

lexicographic order. For RIGHT EXTENSION, we access entity

IDs in order. Consider two adjacent entities e and e′. Suppose

we have computed Me for the right part of e. Then we compute

Me′ as follows. We first find the longest common prefix of

right parts of e and e′, denoted by c. As we have computed Mc

when computing Me, we use Mc to compute Me′ (Figure 4).

Example 5: Consider the sorted right parts of e5, e3, e4
(“akrab”, “audri”, “audui”). As “audri” and “audui”

share a prefix “aud”, when computing the array for “audui”,

we use that of “aud” which has been computed by “audri”.

Next we give the space and time complexity analysis of the

sort-based method. The space complexity of the trie structure

is still O
(

∑

e∈E
|e|

λ

)

. For the inverted lists, for each leaf node,

we keep two sorted lists, thus the space complexity of inverted

lists is O
(

2(τ +1)×|E|
)

. For time complexity, we also share

the computations of common prefixes for the right parts and

left parts. Suppose the compression ratio is λ§. The total time

complexity of the sort-based method is O
(

|D|+
τLavgC

λ

)

.

V. OPTIMIZING PARTITION SCHEME

In this section, we first introduce how to evaluate the quality

of a partition strategy (Section V-A) and then study how

to select the best partition strategy (Section V-C). Finally

we develop effective pruning techniques and algorithms to

efficiently find the best partition strategy (Section V-B).

A. Evaluating Partition Strategies

Given an entity ei ∈ E, let Pei denote the set of partition

strategies on ei. It is easy to figure out that the set of partition

strategies for all entities is P = Pe1 × · · · × Pen . Consider a

§Although the compression ratio is a little different from that of the trie
structure, they are similar. Thus here we use λ for simplicity.



partition strategy p ∈ P . Let Gp denote the set of segments in

partition strategy p. For each segment g ∈ Gp, let Lg denote

the number of entities containing g, i.e., the size of the inverted

list of leaf node w.r.t. g. Let Wg denote the occurrence number

of g in the document, which is called the weight of g.

Recall our search-and-extension based method, for the

SEARCH operation, we need to find candidate nodes. For each

candidate node, we need to do the EXTENSION operation for

the entities in the inverted lists of the candidate node. We call

such entities candidates. Obviously for a partition p, there

are Cp =
∑

g∈Gp
Wg × Lg candidates. Based on the time

complexity O
(

|D| +
τLavgCp

λ

)

, the smaller Cp, the higher

performance. Thus we want to find the best partition strategy

p ∈ P to minimize Cp, that is,

argminp∈P

∑

g∈Gp

Wg × Lg. (1)

Example 6: Consider entity e2 = “vanateshe”. The even

partition has three segments “van”, “ate”, “she”. The oc-

currence number of “van” in the document is 2, thus its

weight is 2. Similarly the weights of “ate” and “she” are

respectively 2 and 1. In the EXTENSION operation, e2 will be

considered five times. If we partition e2 into “vana”, “tes”,

“he” with weights respectively 0, 1, 0, we only extend e2
once. Thus we want to select the best partition scheme.

A brute-force algorithm to find the best partition strategy

first enumerates all partition strategies, and then computes

the number of candidates for each partition strategy. Finally

it selects the partition strategy with the minimum candidate

number. However this method is inefficient as there are larger

numbers of partition strategies. Consider entity ei. To partition

ei into τ + 1 segments, there are |Pei | =
(

|ei|−1
τ

)

partition

strategies. On the other hand, the number of entities is large.

This algorithm needs to enumerate |P | = |Pe1 × · · · × Pen |
partition strategies, which is nearly incalculable. To address

this issue, we propose an efficient algorithm in Section V-B.

B. Algorithms to Minimize Cp

Given a partition strategy p, as Lg is the number of entities

that contain segment g, we have Lg =
∑

ei∈E

∑

g∈Gpei

1,

where pei is the partition strategy for entity ei in partition p.

Based on this observation, we rewrite Formula 1 as follows.

argminp1∈Pe1
,...,pn∈Pen

∑

ei∈E

∑

g∈Gpei

Wg. (2)

That is for each entity ei, we only need to find the best

partition strategy pei ∈ Pei to minimize Wpei
=

∑

g∈Gpei

Wg

(Wpei
is called the partition weight of pei), i.e.,

argminpei
∈Pei

∑

g∈Gpei

Wg. (3)

A straightforward algorithm first enumerates all partition

strategies for entity ei, and then selects the partition strategy

pei with the minimum weight Wpei
. However there are

(

|ei|−1
τ

)

partition strategies. If τ is large, the algorithm is

rather expensive. To address this issue, we propose a dynamic-

programming algorithm.

Given an entity e = c1c2 · · · c|e|, we consider its last

segment. Note that only c|e|, c|e|−1c|e|, · · ·, cτ+1cτ+2 · · · c|e|
could be the last segment. Suppose the last segment is

ck · · · c|e| (τ+1 ≤ k ≤ |e|). We need to partition the other part

c1 · · · ck−1 into τ segments. Suppose the minimal weight to

partition c1 · · · ck−1 into τ segments is Wk−1, and the minimal

weight to partition e into τ + 1 segments is W|e|. We have

W|e| = min{Wk−1 + Wck···c|e| | τ + 1 ≤ k ≤ |e|}. In this

way, we can devise a dynamic-programming algorithm.

We use a (τ+1)×|e| matrix M to compute the best partition

strategy. In the matrix, M [i][j] denotes the minimal weight to

partition c1 · · · cj into i segments. Specially M [τ + 1][|e|] is

the minimal weight to partition e into τ+1 segments. Initially

M [1][j] = Wc1···cj for 1 ≤ j ≤ |e|. Next for i > 1 and

i ≤ j ≤ |e|, Equation 4 gives the recursion formula.

M [i][j] = min











M [i− 1][i− 1] +Wci···cj
...

M [i− 1][j − 1] +Wcj

(4)

Based on the initial values and the above recursion formula,

we can easily compute all values in the matrix and get the par-

tition strategy with the minimum weight using backtracking.

The time complexity for partitioning entity e is O(τ |e|2), and

the total partition complexity is O(τ ×
∑

e∈E |e|2).
If we partition entities offline, the dynamic-programming

algorithm is acceptable, since entities are not very long. If we

need to partition entities online (Section V-C), the partition

time is included in the extraction time and we need to improve

the partition performance. To this end, we propose several

pruning techniques.

(1) Using Segment Length to Do Pruning. Given an entity,

consider the matrix M [τ + 1][|e|]. For the i-th row M [i][∗],
we do not need to compute all entries from j = 1 to j = |e|.
Next we give the start position and the end position of j.

Consider an entry M [i][j], which denotes partitioning the first

j characters of e into i segments. As each segment has at

least 1 character, we have j ≥ i. In addition, as we partition

e into τ + 1 segments, there are τ + 1 − i segments in the

last |e| − j characters. Thus |e| − j ≥ τ + 1 − i, that is j ≤
|e| − (τ + 1 − i). In this way the start position is i and the

end position is |e|− (τ +1− i). Thus in the i-th row, we only

need to compute |e|−τ entries M [i][i] · · ·M [|e|−(τ+1− i)].
The complexity is improved to O

(

τ(|e| − τ)2
)

.

(2) Using Even-Partition Weight as An Upper Bound. As

the weight of the best partition strategy is not larger than

that of the even partition, we can use the weight of the even

partition as an upper bound when selecting the best partition

strategy. Suppose the weight of even partition is Weven. If we

can easily deduce that M [i][j] > Weven, we do not need to

compute the value M [i][j]. The above length based technique

only uses the fact that each segment has at least one character.

By using the bound of even partition, next we give tighter start

position and the end position of j.



Suppose e = c1c2 · · · c|e| where ci is a character. We have

Wci···cj ≥ Wci···cj+1
for i < j. We find the shortest substring

of e starting with the first position, denoted by c1 · · · cs1 ,

whose weight is not large than Weven, that is

Wc1···cs1
≤ Weven & Wc1···cs1−1

> Weven
¶.

Thus the end position of any segment starting with the first

position must be no smaller than s1. Next from the position

s1 + 1, we find the shortest substring of e, denoted by

cs1+1 · · · cs2 , whose weight is not larger than Weven, that is

Wcs1+1···cs2
≤ Weven & Wcs1+1···cs2−1

> Weven.

Similarly we generate τ positions s1, s2, · · · , sτ . The value si
means that if a prefix of e has i segments, the prefix length

cannot be smaller than si. In other words, for the i-th row, the

start position of j must be not smaller than si, i.e., j ≥ si.

We do not need to compute sτ+1, as in the (τ + 1)-th row,

we only compute M [τ + 1][|e|] and do not use the bounds.

Similarly we can also find τ positions from the end position

of e and get d1, d2, · · · , dτ such that for 1 ≤ i ≤ τ ,

Wcdi ···cdi−1+1
≤ Weven & Wcdi+1···cdi−1+1

> Weven.

Note that d1 > d2 > · · · > dτ . Especially d0 + 1 = |e|.
For the i-th row, the end position of j must be not

larger than dτ+1−i, i.e., j ≤ dτ+1−i, thus we only compute

M [i][si], · · · ,M [i][dτ+1−i] as formalized in Lemma 1.

Lemma 1: Consider j < si or j > dτ+1−i. If we partition

the first j characters of e into i segments and other characters

into τ + 1 − i segments, then the partition weight must be

larger than Weven.

In addition, we observe that the weight of a string is not

larger than the weight of any of its substrings. That is for

x ≤ j, if Wcx···cj > Weven, we have

Weven < Wcx···cj ≤ Wcx+1···cj ≤ · · · ≤ Wcj .

Let dmin denote the start position of the shortest substring with

end position j, whose weight is not larger than Weven. We call

dmin the minimal end position for j. When computing M [i][j],
we only use entries M [i−1][x] for x<dmin and prune the en-

tries M [i−1][y] for y≥dmin, as M [i−1][y]+Wcy+1···cj>Weven.

Based on Lemma 1 and this observation, we give a new

method to compute the best partition strategy. We still use the

matrix M but we only need to compute some entries of M .

Initially for s1 ≤ j ≤ dτ , M [1][j] = Wc1···cj . Next for i > 1
and si ≤ j ≤ dτ+1−i, Equation 5 gives the recursion formula.

M [i][j] = min











M [i− 1][si] +Wcsi+1
···cj

...

M [i− 1][dmin − 1] +Wcdmin
···cj

(5)

where dmin is the minimal end position of j.

Moreover, we observed that for any i and j, M [i][j − 1] ≥
M [i][j]. Thus we can deduce a tighter start position bound

¶If Wc1
≤ Weven , s1 = 1.

(si). When calculating the i-th row of the matrix M , if

M [i][j − 2] is larger than Weven and M [i][j − 1] is not larger

than Weven, we can set si = j − 1. Then when computing

the (i+1)-th row, we can deduce a new tighter start position

bound si+1 using the old bound si.

Based on this observation, when computing M [i][j], we use

M [i][j − 1] as a tighter bound which is not larger than Weven.

To this end, after computing M [i][j − 1], we can keep the

position smax such that M [i−1][smax−1] > M [i][j−1] and

M [i−1][smax] ≤ M [i][j−1]. smax is called the maximal start

position for j. Then to compute M [i][j], we can directly start

from the smax-th position, i.e. M [i−1][smax]+Wcsmax+1···cj .

Then we update the position smax for M [i][j], that is M [i−
1][smax − 1] > M [i][j] and M [i− 1][smax] ≤ M [i][j].

In this way, we use the following formula to compute the

matrix M , which prunes many unnecessary entries.

M [i][j] = min











M [i− 1][smax] +Wcsmax+1···cj
...

M [i− 1][dmin − 1] +Wcdmin
···cj

(6)

where dmin is the minimal end position and smax is the

maximal start position for j.

Next we give the time analysis of the method using this

pruning technique. Usually the weight of a segment to the

segment length roughly follows a power law distribution. That

is F (x) = α × xβ , where F (x) is the weight of segment

with length x. Thus we have Weven = α × ( |e|
τ+1)

β × (τ + 1).

Consider the minimal segment length is lm. If α× lβm > α×

( |e|
τ+1)

β × (τ + 1), we can prune the segment. In other words

we have lm ≤ |e|(τ + 1)
1
β
−1. In this way, in the i-th row, we

only need to compute the columns M [i][j] for i × lm ≤ j ≤
|e|− (τ +1− i)× lm. Thus for each row, we at most compute

|e|−(τ+1)×lm entries. It is easy to figure out that this pruning

technique reduces the time complexity to O
(

τ(|e|− |e|τ
1
β )2

)

.

C. Determining Segment Weights

In this section, we discuss how to determine the weight

Wg of segment g. If the document is given, we can construct

a suffix tree. The suffix tree for document D is a tree

structure, where the paths from the root to leaves have a one-

to-one correspondence with the suffixes of D. For ease of

presentation, we use a trie to represent the suffix tree.

To construct the trie structure, a straightforward method

inserts all suffixes of D into the trie structure. For each trie

node, the string from the root to the node corresponds to a

possible segment, and the number of its leaf descendants is

exactly its occurrence number in the document, i.e., the weight

of the segment. In this way, we can easily get the weight of

each segment using the trie structure.

However, we do not need to use all the suffixes of D to

construct the trie structure, because some long suffixes will not

correspond to any segment. For example, consider the suffix

“vancouver, canada. sigmod 2008”. As its length is longer

than the maximal entity length, we do not need to insert it

into the trie structure. Based on this observation, we propose



an alternative method. Suppose Lmax is the maximal entity

length. The maximal length of a segment is Lmax − τ . We

only need to insert the substrings of D with length no larger

than Lmax − τ into the trie structure. In this way, we can

reduce the size of the suffix trie. The total number of inserted

substrings is
∑Lmax−τ

l=1 |D| − l + 1. The time complexity of

inserting a substring with length l is O(l), thus the total time

complexity is O
(
∑Lmax−τ

l=1 l(|D| − l + 1)
)

.

Actually, if we use the document to determinate weights,

the time of constructing suffix trie and partitioning the entities

should be included in the running time for online extraction.

Note that it is rather time and space expensive to build a

suffix trie for a very large document, which is even longer

than the extraction time using the even partition. To address

this problem, we propose two alternative methods.

(1) Using Even Partition (EVEN). We use the even partition-

based method. We can partition the entities offline. Thus the

online time complexity is O
(

|D|+
τLavgCE

λ

)

, where CE is the

number of candidates using the even-partition-based method.

(2) Using Both Dictionary and Document to Determine

The Weights (DICT+DOC). We use both dictionary and

documents to accurately compute the segment weights based

on the following observation. If a substring g of document D

does not appear in the dictionary (g is not a segment of any

entity), we have Lg = 0. In this way, g will not contribute to

any partition strategy. In other words, we only need to use the

weights of substrings which appear both in the dictionary and

the document. To this end, we first build a suffix trie using

the dictionary offline. Then for each suffix of document D,

we check whether it appears in the trie structure. If yes, we

add the weight by one. However this method is expensive and

we can also extend the KMP algorithm [14] to improve the

performance as follows.

For each trie node for a substring c1c2 · · · cx, where ci is

a character for 1 ≤ i ≤ x, we add a pointer to the trie

node w.r.t. its suffix “c2 · · · cx”. Then given the document

D = c1c2 · · · c|D|, we search the document from the root

node and find the maximal matching node which matches

the longest substring of D. For example we find trie node

w.r.t c1c2 · · · ci, and it has no child node matching ci+1.

Then based on the pointer, we locate to node c2 · · · ci and

check whether it has a child matching ci+1. If yes, we

find the maximal matching node under c2 · · · ci+1; otherwise

we locate to node c3 · · · ci. Iteratively we can find all the

maximal matching nodes. The time complexity of finding

maximal matching nodes is O(|D|). Next for each maximal

matching node, we increase the weight of its ancestors by

one (including itself). The time complexity of increasing the

weight is O(
∑

|maxnode|), where |maxnode| denotes the

depth of a maximal matching node.

Notice that constructing the suffix trie structure can be done

offline, and determining weights
(

O(|D| +
∑

|maxnode|)
)

,

selecting partition strategy
(

O(
∑

e∈E τ(|e| − |e|τ
1
β )2)

)

, and

building trie and inverted lists
(

O(
∑

e∈E |e|)
)

are included in

the online extraction time. Thus the total time complexity of

this method is O(|D| +
∑

|maxnode|) + O
(
∑

e∈E τ(|e| −

|e|τ
1
β )2

)

+O(
∑

e∈E |e|) +O
(

|D|+
τLavgCD

λ

)

, where CD is

the number of candidates using the DICT+DOC based method.

Note that the partition time is very small compared with the

extraction time (Section VI-B), and the DICT+DOC based

method can minimize the number of candidates, thus the

DICT+DOC based method can improve the performance.

VI. EXPERIMENTAL STUDY

In the paper we focus on evaluating the performance of

different methods. We have implemented our proposed algo-

rithms and compared with state-of-the-art methods NGPP [26]

and Faerie [18]. We downloaded the binary codes of

NGPP [26] from its project website‖. We implemented Faerie

by ourselves. All the algorithms were implemented in C++ and

compiled using GCC 4.2.3 with -O3 flag. All the experiments

were run on a Ubuntu machine with an Intel Core E5420

2.5GHz CPU and 4 GB memory.

We used three real datasets, DBLP∗∗, PUBMED††, and Wiki

WEBPAGE‡‡. PUBMED is a medical-publication dataset. We

selected 300k author names as entities and 10k publication

records as documents. DBLP is a computer-science publi-

cation dataset. We selected 100k paper titles as entities and

10k paper records as documents. WEBPAGE is a set of web

pages including articles and URLs. We selected 100k URLs

with highest PageRank scores from Sogou URL dataset10 as

entities. We used 1k Webpages as documents (each document

contains thousands of tokens). Table II shows the statistics of

the three datasets, where len, max, min respectively denote

the average length, maximal length, and minimal length.

TABLE II
DATASETS.

Datasets Size len max min Details

PUBMED Dict 300k 16.55 19 13 Author
PUBMED Docs 10k 161.9 481 56 Papers

DBLP Dict 100k 56.7 73 36 Title
DBLP Docs 10k 1056 1964 82 Papers

WEBPAGE Dict 100k 26.5 78 20 URL
WEBPAGE Docs 1k 2879 14771 71 Web Pages

A. Search-Extension vs Sort-based Extension

In this section, we compare our search-and-extension-based

method (SEARCH-EXTENSION, see Section IV-A) with the

sort-extension-based method (SORT-EXTENSION, see Sec-

tion IV-B). As TRIE-SEARCH (Section III-C) was very

slow, even 2-3 orders of magnitude slower than SEARCH-

EXTENSION, we did not report its results. In addition, the

trie-based extension achieved the same performance as SORT-

EXTENSION, but at expense of involving large space for

maintaining the two-level trie structure. Thus we only reported

the results of SORT-EXTENSION. In this section, we used the

even partition to partition entities. Figure 5 shows the results.

‖http://www.cse.unsw.edu.au/∼weiw/project/simjoin.html
∗∗http://www.informatik.uni-trier.de/∼ley/db
††http://www.ncbi.nlm.nih.gov/pubmed
‡‡http://dumps.wikimedia.org/enwiki/20110620/
10http://www.sogou.com/labs/dl/t-rank.html
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Fig. 5. Performance comparison: SEARCH-EXTENSION vs SORT-EXTENSION.
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Fig. 6. Partition comparison: Dynamic Programming vs Weight Pruning.

On the PUBMED (AUTHOR + PAPER) and WIKI (URL

+ WEBPAGE) datasets, as entities have small lengths (about

20, see Table II), we used thresholds 1, 2, 3, 4, 5. On the

DBLP (TITLE + PAPER) dataset, as entities have large lengths

(about 60, see Table II), we used thresholds 2, 4, 6, 8, 10. From

Figure 5, we can see that SORT-EXTENSION was much better

than SEARCH-EXTENSION, especially for large edit-distance

thresholds. For example, on the PUBMED (AUTHOR + PAPER)

dataset, for τ = 5, SORT-EXTENSION was about 3-4 times

faster than SEARCH-EXTENSION. This is because for each en-

tity SEARCH-EXTENSION needs to compute its edit distances

with large numbers of substrings, and neglects that many

entities share common prefixes. SORT-EXTENSION shares the

computation on the common prefixes for different entities,

thus can improve the performance. Obviously the larger τ ,

the higher overhead to compute the edit distances for every

entity. As SORT-EXTENSION shares more duplicated compu-

tations on larger thresholds, SORT-EXTENSION significantly

outperforms SEARCH-EXTENSION for larger thresholds.

B. Evaluation on Partition Strategies

In this section, we compare the performance of different

partition strategies. We first evaluated the partition time 11.

We implemented two methods (see Section V-B): (1) Dynamic

Programming; (2) The weight pruning which used the weight

of even partition as an upper bound to do effective pruning.

Figure 6 shows the results. We can see that the weight pruning

technique can significantly improve the partition time, even 1-

2 orders of magnitude better than the dynamic programming.

For example, on the PUBMED (AUTHOR + PAPER) dataset,

for τ = 5, dynamic programming took 60 seconds and the

weight pruning technique can improve the time to 5 seconds.

This is because we can prune many unnecessary entries in the

matrix using the weight of even partition as an upper bound.

11The time for determining the weights is very small and usually less than
1 second.

Compared with the extraction time in Figure 5, for τ = 5, the

extraction time was larger than 2000 seconds, and the partition

time was only 5 seconds. Thus we can select a better partition

strategy to improve the performance of even partition.

Then we compared the overall performance of different

partition methods. We implemented two partition methods

as discussed in Section V-C. (1) EVEN: We used the even

partition. (2) DICT+DOC: We used the dictionary and doc-

uments to determine the segment weights. Figure 7 shows

the performance comparison. We can see that DICT+DOC

outperformed EVEN and achieved higher performance. This is

because DICT+DOC minimized the number of candidates and

decreased the extension time significantly. Although EVEN did

not need to partition entities on-the-fly, it may involve large

numbers of candidates for large thresholds and thus may lead

to low performance. Notice that the partition time was very

small compared with the extraction time. For example, on the

DBLP (TITLE + PAPER) dataset, for τ=10, EVEN took 14,000

seconds and DICT+DOC improved the time to 3500 seconds.

In addition, we compared the number of candidates for

different methods. Figure 8 shows the results. We can see that

DICT+DOC had smaller numbers of candidates that EVEN.

On the WIKI (URL + WEBPAGE) dataset, for τ = 1, EVEN

had 40 million candidates and DICT+DOC decreased it to 20

thousand. Thus DICT+DOC can improve the performance.

C. Comparison with Existing Methods

In this section, we compare our algorithms TASTE-

EVEN (using EVEN partition) and TASTE-DICT+DOC (using

DICT+DOC partition) with state-of-the-art methods Faerie [18]

and NGPP [26]. We tuned parameters lp for NGPP and q for

Faerie, and reported their best performance. The three methods

constructed the dictionary index offline, and thus the indexing

time was not included in the runtime. The indexing time of

our even partition method was very small compared with the

extraction time. For example, on the PubMed dataset with
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Fig. 7. Partition strategy selection: performance comparison of different partition strategies.
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Fig. 8. Partition strategy selection: the numbers of candidates of different partition strategies.

τ = 3, the indexing time was less than 1 second while the

extraction time was about 60 seconds. The indexing time of

our DICT+DOC partition method was included in the online

time, since it partitioned entities on the fly. NGPP and TASTE

have the limitation that they need to build different indexes

for different τ values. Faerie has no such limitation.

Figure 9 shows the results. We see that our methods out-

performed Faerie and NGPP significantly, especially for large

thresholds. On the PUBMED (AUTHOR + PAPER) dataset for

τ = 5, on the DBLP (TITLE + PAPER) dataset for τ = 8, 10,

and on the WIKI (URL + WEBPAGE) for τ = 4, 5, NGPP

took more than 10 hours (36000 seconds). In the figures

we did not show the numbers larger than 10 hours. On the

DBLP (TITLE + PAPER) dataset for τ = 10, Faerie also took

more than 10 hours. Our method TASTE-DICT+DOC only took

about 4000 seconds. On the WIKI (URL + WEBPAGE) dataset

for τ = 4, NGPP took more than 10 hours, Faerie took about

3000 seconds, and our method TASTE-DICT+DOC took less

than 200 seconds.

Notice that although NGPP achieved high performance for

small edit-distance thresholds, it is inefficient for large thresh-

olds. The reason is that it needs to enumerate neighborhoods

of entities and an entity has larger numbers of neighborhoods

for larger thresholds (lpτ
2). Faerie also performed worse for

large τ as it has low pruning power for large τ , since it needs

to select a smaller gram length for a larger threshold and a

smaller gram length leads to lower pruning power.

We also compared index sizes of different methods. Table III

shows the results. On DBLP (TITLE + PAPER), for τ = 4, the

index size of NGPP was 252 MB. Faerie involved 51.8 MB for

q = 2. TASTE-EVEN took about 23.1 MB as it only needed to

maintain a trie structure and inverted lists. TASTE-DICT+DOC

needed to maintain a suffix trie, thus its index increased

to 221 MB. Note that TASTE-DICT+DOC can improve the

performance against TASTE-EVEN. Thus if a user prefers high

performance and has a large memory, she can use TASTE-

DICT+DOC; otherwise she can use TASTE-EVEN.

NGPP had different index sizes for different edit-distance

thresholds, as NGPP needs to use τ to generate neigh-

borhoods. The larger the thresholds, the larger numbers of

neighbors of an entity, and thus the larger indexes. Faerie had

different sizes for different q values as the number of q-grams

of an entity is l − |q| + 1 where l is the entity length. Note

that the index sizes of Faerie are independent on τ .

The inverted-list sizes of our method are linear with the

increase of threshold τ , as we need to keep τ+1 segments for

every entity. While NGPP is quadric, as it needs to maintain

lpτ
2 substrings. The trie size of our method depends on the

number of distinct keywords in the datasets which is usually

smaller than the dataset sizes.

TABLE III
INDEX SIZES.

Algorithms
Index Sizes (MB)

PUBMED DBLP WIKI

NGPP (τ = 4) 252 575 203

Faerie 51.8 (q=2) 125 (q=7) 48 (q=4)
TASTE-EVEN (τ = 4) 23.1 26.4 13.4

TASTE-DICT+DOC (τ = 4) 221 364 187

D. Scalability

This section evaluates the scalability of our algorithm

TASTE-DICT+DOC. We varied the number of entities in the

dictionary. Figure 10 shows the results on the three datasets.

We observe that our method scaled well as the dictionary size

increased. For example, on the PUBMED (AUTHOR + PAPER)

dataset, for τ = 5, our method took 600 seconds for 50k

entities and 2000 seconds for 300k entities.

VII. CONCLUSION

In this paper, we have studied the problem of approximate

entity extraction with edit-distance constraints. We partition

entities into different segments and use a trie structure to index

the segments. We traverse the trie structure to identify the

answers and propose a search-and-extension based method to
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Fig. 9. Performance comparison with state-of-the-art studies.
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Fig. 10. Scalability on the three datasets.

efficiently find similar entities. We develop sort-based pruning

techniques and algorithms to improve the performance. We

optimize the partition scheme to select the best partition

strategy in order to achieve high performance. Experimental

results show that our method achieves higher performance and

significantly outperforms state-of-the-art approaches.
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