
Computer Science Department - Rutgers University Fall 2017

CS 520: Planning Example for Wolf/Goat/Cabbage 16:198:520

Instructor: Wes Cowan

Consider the classic problem: you are on one side of a river with a wolf, a goat, and a cabbage. You want to transport

all three to the other side of the river, but you can only transport one object at a time. You cannot leave the wolf

and the goat alone, or the cabbage and the goat alone; you are the only thing keeping them from eating each other.

How can you transport everything from one side of the river to the other? How can we get a computer to solve the

problem? One thing we can do is to try to formulate it in terms of a Planning Domain Definition Language

(PDDL).

1 Formulation

We may define a set of objects relevant to the problem, in particular: Wolf, Goat, Cabbage, You. It may

additionally be convenient to define the locations Bank1 and Bank2. Once we have these, we may define the state

of the problem in terms of relationships between these objects. In particular, we have an initial state:

Initial State: On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1).

We may specify the goal state similarly:

Goal State: On(Wolf, Bank2) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank2) ∧ On(You, Bank2).

The state of the problem at any point in time may be framed in terms of a conjunction of these kinds of relationships;

the state as a logical expression expands or contracts depending on the actions taken. It is worth noting that in

general, the goal state does not need to be a complete specification of a state. For instance, if we only wanted to

transport the goat and the cabbage to the other side (for instance if the wolf is not our wolf, just some random wolf

prowling the bank), we need only specify On(Goat, Bank2) ∧ On(Cabbage, Bank2) ∧ On(You, Bank2) - any state

that satisfies this expression, regardless of where the wolf is! is treated as a successful goal state.

We may then define a set of actions on these state descriptions, modeling actions that can be taken in the problem.

In particular, we are interested in Transport, which allows us to take an object from one side to the other: Trans-

port(Object, Loc1, Loc2). Note that there are some states in which a given move action may not be applicable

- the current state must satisfy the preconditions of the action, in order to execute it. In particular, in order to

transport an Object from Loc1 to Loc2, not only must Object be in Loc1, but you must be in Loc1 as well.

Preconditions of Transport: On(Obj, Loc1) ∧ On(You, Loc1).

What is the effect of this action? On(Obj, Loc1) and On(You, Loc1) are no longer true, and On(Obj, Loc2) ∧
On(You, Loc2) become true,

Effect of Transport: ¬ On(Obj, Loc1) ∧ ¬ On(You, Loc1) ∧ On(Obj, Loc2) ∧ On(You, Loc2).

New statements that are true can essentially be thought of as being tacked on to the current state description. State-

ments that are now false may be thought as being deleted from the state description. Hence, calling Transport(Goat,

Bank1, Bank2) will result in a new state:

On(Wolf, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank2) ∧ On(Goat, Bank2).

1



Computer Science Department - Rutgers University Fall 2017

At this point, we might introduce some extra bookkeeping to introduce efficiency. For instance, calling Transport(Obj,

Loc1, Loc1) may be a perfectly executable statement - but it has no serious effect or advantage to consider, and in

fact could potentially make searching the whole state space that much less efficient. We could avoid this by adding

in the precondition that Loc1 6= Loc2.

Similarly, it is worth noting that we could affect the operation of going back to the other side simply by calling

Transport on You (i.e., the object you transport is yourself). However, we can gain some clarity simply by introducing

a new operation Move(Loc1, Loc2):

Move(Loc1, Loc2)

Preconditions for Move: On(You, Loc1) ∧ Loc1 6= Loc2

Effect of Move: ¬ On(You, Loc1) ∧ On(You, Loc2).

At this point, we have enough structure to begin affecting a search: we can start at the initial state, and sequentially

explore possible actions to take from there and the resulting states, either in a BFS or DFS type search (or, as we

will discuss, A∗).

However, one thing has not yet been addressed - the restriction that the wolf and goat cannot be alone together,

and that the goat and the cabbage cannot be alone together. This can be incorporated into the problem in one of

two ways: one, we could extend the preconditions on Transport and Move to account for this (how?); alternately,

we could introduce the notion of states to avoid, for instance any state that satisfies:

On(Goat, Loc1) ∧ On(Wolf, Loc1) ∧ On(You, Loc2) ∧ Loc1 6= Loc2

or

On(Goat, Loc1) ∧ On(Cabbage, Loc1) ∧ On(You, Loc2) ∧ Loc1 6= Loc2

Alternately, these could be combined into a single logical description of a state to avoid. Note that since Loc1, Loc2

aren’t necessarily specified explicitly (though they could be, expanding the bad-state definition), there may be some

work to determine when the preconditions or terminal states are satisfied as well.

At this point, we have defined the problem to the point of being able to search, to try to find paths from the initial

state to the goal state. Approaching this in terms of BFS, the reachable states from the initial state are

On(Wolf, Bank2) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank2)

On(Wolf, Bank1) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank1) ∧ On(You, Bank2)

On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank2) ∧ On(You, Bank2)

On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank2)

But of these, three satisfy the ‘states to avoid’ condition, leaving only:

On(Wolf, Bank1) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank1) ∧ On(You, Bank2).

At this point, the applicable actions are either move or transport. Avoiding loops in our search space leads to

On(Wolf, Bank1) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1).

This search process can be continued, ultimately arriving at a total path of:

2



Computer Science Department - Rutgers University Fall 2017

Transport(Goat, Bank1, Bank2)

Move(Bank2, Bank1)

Transport(Wolf, Bank1, Bank2)

Transport(Goat, Bank2, Bank1)

Transport(Cabbage, Bank1, Bank2)

Move(Bank2, Bank1)

Transport(Goat, Bank1, Bank2).

This is not necessarily the only path, but it is correct and discoverable via search.

2 Backwards Search

In some cases, it may be useful to consider the problem of searching backwards - given that we want to end up at

the goal, how could we have arrived there? Note in particular that in this case, we can consider inverting actions,

and construct what the state must’ve been prior to actions being taken.

If our goal state is

On(Wolf, Bank2) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank2) ∧ On(You, Bank2),

then our immediately previous state must’ve been one of the following:

On(Wolf, Bank1) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank2) ∧ On(You, Bank1)

On(Wolf, Bank2) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank2) ∧ On(You, Bank1)

On(Wolf, Bank2) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1)

On(Wolf, Bank2) ∧ On(Goat, Bank2) ∧ On(Cabbage, Bank2) ∧ On(You, Bank1),

but of these only one is acceptable as a state of the problem:

On(Wolf, Bank2) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank2) ∧ On(You, Bank1).

If we consider what the state must’ve been prior to this, we have a couple of options, but avoiding loops (i.e., carrying

the goat back), we have

On(Wolf, Bank2) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank2) ∧ On(You, Bank2).

Prior to this, (again avoiding loops), we must’ve had one of the following:

On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank2) ∧ On(You, Bank1)

On(Wolf, Bank2) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1),

and we could again consider completing this process to reconstruct a full path.

One important aspect of backwards search - it may not immediately be apparently which object was used in a given

action. For instance, if we are talking planes transporting cargo, and the goal state is the cargo in a given location,

then a plane must’ve delivered it there, but we have no way of being sure which plane. One way to approach this

would be to consider all possible planes and work backwards from that, another might be to introduce a ‘dummy’

variable plane, and execute backwards operations on that, until it becomes clear which plane the dummy variable

must have been. Again, satisfiability orbits at the periphery.

3



Computer Science Department - Rutgers University Fall 2017

3 Heuristics

As is ever the case with search algorithms, the worst possible case yields an exponential runtime in terms of the length

of the path to the goal state. We could try to improve upon this by using an informed search algorithm like A∗, but

what would we use for a heuristic? There are possible ways of measuring the distance between state descriptions

(comparing the number of satisfied clauses, etc) but two frequent approaches are to consider relaxations of the

original problem, problems that are easier to solve and therefore yield a lower bound on the number of steps needed

to solve the original problem. Both of these consider the ‘abstract’ formalized state-search problem, rather than the

modeled problem itself. This can lead to some confusion in interpretation, but the results are still meaningful.

3.1 Ignoring Deletions

Consider the effect of actions if we ignore negated clauses. In this case, actions will only ever increase the size of

the state description, taking on ever more (potentially contradictory) clauses. This means that we will reach a state

that satisfied the goal sooner than we would be able to otherwise. As applied to this problem, we might apply

Transport(Cabbage, Bank1, Bank2) to the initial state, yielding a state of

On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1) ∧ On(Cabbage, Bank2) ∧
On(You, Bank2).

Obviously this state description describes something that cannot occur, but is still functional in terms of our for-

malized representation and operation. Note then that at this point, with this state, we are still able to call Trans-

port(Goat, Bank1, Bank2) and Transport(Wolf, Bank1, Bank2), yielding a final state of (ignoring redundancies)

On(Wolf, Bank1) ∧ On(Goat, Bank1) ∧ On(Cabbage, Bank1) ∧ On(You, Bank1) ∧ On(Cabbage, Bank2) ∧
On(You, Bank2) ∧ On(Wolf, Bank2) ∧ On(Goat, Bank2).

At this point, note that we have reached a (formal, abstract) state that satisfies the goal state! And we have done so

in three steps. What we can conclude from this is that since the original problem can be no harder than this relaxed

problem (since ignoring deletions means the goal state will be satisfied sooner), the original problem must take at

least three steps to get from the start to the end.

Using the solution to the relaxed problem (which may be solved by BFS, IDFS, etc) does not yield valid results

for the original problem (generally), but the length of the path / number of steps in the resulting schedule can be

informative, and be used as an admissible heuristic for A∗ in the original problem.

3.2 Ignoring Preconditions / Bad States

Consider the effect of ignoring preconditions. Preconditions potentially restrict what actions are applicable at any

given time. By ignoring the preconditions, we are essentially expanding the set of available actions. With an

increased set of actions, we must be able to reach something satisfying the goal state at least as quickly as we

could paying attention to the preconditions. Applying this line of thought in this case we can consider calling

Transport(Goat, Bank1, Bank2), and then (ignoring preconditions and potential bad states) Transport(Wolf, Bank1,

Bank2), Transport(Cabbage, Bank1, Bank2). These are not ’allowable’ moves in the original problem, but in this

relaxed version of the problem they are completely acceptable, arriving at a state that satisfies the goal.

Again, we may conclude that the original problem may be solved in no fewer than three steps.

4


	Formulation
	Backwards Search
	Heuristics
	Ignoring Deletions
	Ignoring Preconditions / Bad States


