Python

Methodologies for Data Science

Lars Sorensen - 16:137:603
Fall 2015 - biglars@cs.rutgers.edu

Unit Two

mailto:biglars@cs.rutgers.edu

P s’ hOn Methodologies for Data Sciences

Take a breath. You’ve done a lot in the last two weeks...

Loading Python on your machine - Figuring out how to run IDLE - Using the Python
interactive command window - Creating a programs -

Print function - Variables - Assignment - Arithmetic - Modulus - Strings - Integers -
Floats - Casting - Input function

Booleans - Arithmetic conditionals (>, <, ==, !=, <=, >=) - Boolean operators (And, Or,
Not) - if - elif - else

That’s a lot of stuff....

P s’ hOn Methodologies for Data Sciences

This is why I bring it up though. Learning how to program is like building a pyramid. What you have learned
the last two weeks will be used by you from now until you stop programming. They are the basics and you need
to practice them again, and again and again.

We are going to move on and talk about sequences now. They are just the way that Python organizes lists of
things. There are just three of them: strings, lists, and files (and we’re not worrying about files until Unit 3).
After that we are going to discuss one of the most important concepts in programming, iteration.

Even though we are moving on do not think that what you’ve done the last few weeks can be put aside. You
need to code. You need to practice. You’ll see what I mean as we continue down the Python road. Right now
we’re going to talk about strings. Then we’ll look at Lists and after a break, we’ll look at iteration. This i1s when
things get fun and the usefulness of your code is going to skyrocket, trust me. Computers are dumb, they only
do what we tell them to, but man they do it fast and we’re going to see just how fast when we do iteration and
loops.

P s’ hon Methodologies for Data Sciences

Strings

P s’ hon Methodologies for Data Sciences

A string is just a “sequence” of INAE 1 VR W
characters. We will define the variable Type "copyrignt®, "cred:
strl and assign it the string ‘hello’ >>> strl = 'hello’
>>> type({=2trl)
Now, look at the third command in the <class 'str'>
window to the right, str1[0]. This »»» strljo]
“index” is how we can refer to individual ‘h*
characters in a string. Here, the zero >»>» strl[3]
refers to the first character in the string. e T
>3 |
In Computer Science we start counting at 0. You are a
programmer now, so get used to it.

P s’ hOn Methodologies for Data Sciences

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bdBafb3%0ebf2, Sep 29 2012, 10:57:17) [MSC v.l1l600 o4 bit (&M
Ded)] on win32

Starting at zero, you can
access all of the characters

Ina string by using the Type "copyright", "credits™ or "license ()" for more information.
index, but don’t go too RREAEL= LR
. g
far! As you can see, if 53> Strl[0]
you try to access a part of o
the string that does not >;> strlral
exist you will get an error. >>> stri[3]
1 ll
. >»> strl[5]
This used to be called an Traceback (most recent call last):
“out of bounds” error, but File "<pyshell#5>", line 1, in <module>
. str1[5]
Python calls it out of L R b :
, IndexEYror: Etr_ng index out of range
range now. We’ll find out >35>

why soon.

P s’ hon Methodologies for Data Sciences

We can use arithmetic in an index if 555 Strl[5-2] y

we like. We can also do ‘negative’ .
>>> strl[-1]
indexing (which starts at the end of Yo
: : >>> strl[-5]
the string and goes backward; -1 1s o

the last element here) >>>

Try some on your own....

P s’ hOn Methodologies for Data Sciences

We can also do ‘Slicing’

o

>>»> s5trl
'hello®

>»>» strl1[0:3]
'hel"

>»> strl([3:5]
Ilol

>»> strl[:2]
lhel

b

P s’ hOn Methodologies for Data Sciences

e
>»> str2
We can also find out the ' spam’
)) >>> str3
length of a string using 'This is a really really really long string'
(4 9 }}}
len() >>> len(str2)
4
>»> len(str3)
42

FEr

P s’ hOn Methodologies for Data Sciences

See Z 132 ;;; a = ord{'a')
x> a
. 97
We can take characters and get their >>> b = ord('b')
. »»> b
Unicode values, and take a value ag
. . >> ¢ = chr (98
and get its Unicode character. £ i
't
. . >»> d = chr{57)
Use chr to look at Unicode 960 like >>> d

Ial

they suggest in Z. >3 |

P s’ hon Methodologies for Data Sciences

Now, here is a little bit of what we call JIT (Just in
time). The 411 on these commands is as follows.

Strings are what programmers call objects.

Objects have certain functions that work for just
them and their data. These functions are called
Methods.

count, replace, lower and upper are methods that
work with the string object.

To use them you type the variable name, a period,
the name of the method and a parameter list (or two
empty parens () if there are no parameters)

| 3>
| >»> MyString

'I like to prgram with Python'

| »>>> MyString.count('1i')

|2

| >>> MyString.replace("I", "wWe")
| '"We like to prgram with Python'
| >>> MyString.lower ()

'1 like to prgram with python'

| »>>>» MyString.upper ()

'I LIKE TO PRGRAM WITH PYTHON'

| >5>

P s’ hon Methodologies for Data Sciences

We can see that the count method counts all the ‘1’s
in the string.

replace does just that; my “I”” is now a “We,” but it
does not change the variable value. If we wanted
this change to be permanent we would assign the
results here to a new variable.

upper and lower are self-explanatory, yes? If you do
not save this to a variable the change does not
remain. Methods have return values and it’s up to
the programmer to save those results to a variable if
they desire (with strings, we’ll learn why later in
these slides).

| 3>
| >»> MyString
|'I 1like to prgram with Python'
| »>>> MyString.count('1i')
2
| >>> MyString.replace("I", "wWe")
| '"We like to prgram with Python'
| >>> MyString.lower ()

'1 like to prgram with python'

| »>>>» MyString.upper ()

'I LIKE TO PRGRAM WITH PYTHON'

| >5>

P s’ hon Methodologies for Data Sciences

S id.py - C:/SimplePython/PythonPrograms/id.py lE
File Edit Format Run Options Windows Help
this is a comment
#
Author : Lars Scrensen
Thls 1S Zelle S userld # id.py - this program asks a user for their first and last names and
makes a computer system ID for them ;-)
program. +
print{"This is the computer ID program"™)
Type it in and run it. birse = impucl ‘Elesse
last = input{"Please

userid first[0] + last[:71
userid = userid.lower ()

print{"\nYour computer userid is : ", userid, "\n'}

P s’ hon Methodologies for Data Sciences

46 id.py - C;/SimplePython/PythonPrograms/id.py w=

File Edit Format Run Options Windows Help

this is a comment

#

Ruthor : Lars Sorensen

#

id.py - this program asks a user for their first and last names and

& = pil i S i .
1; makes a computer system ID for them ;-) Can you explaln what happened here?
print{"This is the computer ID program™)

first = input{"Please Enter irst Name: ")

last = input ("Please Enter ¥« st Name: ")

userid = first[0] + last[:7]

userid = userid.lower () S

This is the computer ID program
Please Enter Your First Name: Lars
Please Enter Your Last Name: Sorensen

print {"\n¥Your computer userid is : ™, userid, "'\n')

Your computer userid is : lsorense

P s’ hOn Methodologies for Data Sciences

>

>>> MyString

'I like to prgram with Python'

>>> MyString.split ()

[*1', *1ake!, "6, "Drgram', "saithH', "Pyvthon')
>>> MyList = MyString.split()

>>> MyList[3]

'"pPrgram’

-

split is a method that breaks up the words in a string and puts them into a List. Later, you will see
that this is a very important tool, but the first thing we have to do is learn what a List is...

P s’ hon Methodologies for Data Sciences

[1sts

P s’ hon Methodologies for Data Sciences

Look to the right. The first time I assign the variable grades
a value it’s five individual characters inside of brackets (not
braces, brackets).

This creates a list. A list is similar to a string in that it is a
sequence. Strings are sequences of characters that can be
indexed or referred to by their place in line. Lists are the
same in that regard.

You can see that underneath the list I re-assign the variable
“grades” to a string. I can do the same indexing.

The question you might be asking now is “Why do we need
lists if they act like strings?”

The answer is, they don’t act like strings. They are strings
on steroids.

>z
E
>z
IRI
o>
] DI
>z
E
Ipll
E
L] DI
FE

grades = ['A',
grades[0]

grades[3]

grades = "LBCDFE"
grades[0]

grades[3]

P s’ hon Methodologies for Data Sciences

Here’s the first difference: A list can hold items
with different data types. Right now, while we’
re only dealing with Integers and Floats and
Strings that may not seem like that big a deal,
but later, when we have more complicated data
types to deal with it’s going to become
important.

In Python we call a sequence or collection of
commonly kept items a list. In other languages
you may have heard them referred to as arrays.
What’s important, as we will see in the second
half of our slides, is that these items are all kept
under the same variable name but at a different
index.

3

>>»> Mylist = [2, 'Spam', 34,
>>> Mylist[0]

2

>»> Mylist[3]

.Egg5 L}

>>>

P s’ hon Methodologies for Data Sciences

This is the month program from Zelle. Type
it into IDLE and run it.

Note that we use a complex conditional to
make sure that the input to the program
makes sense. There is no month 22, why
should I except that? This is an example of
what’s called “error trapping.”

Notice also that we minus 1 from the index
when we refer to our list. Computer
Scientists start counting at 0, remember?
months[0] = ‘Jan’ and months[1] = ‘Feb’.

& months.py - C:/SimplePython/PythonPrograms/months.py

File Edit Format Run Options Windows Help
This is a comment

#
Author: Lars Sorensen
#
This is a program that takes a number from 1-12 and gives you the
¥ mokth for it...
#
menths = ["dan';,'"Feb','Mar", "Apr";
Moy Taunt . dult . TEug T,
"Septt; "ok tHow ; "BecT]

rint {("\n This is the month program\n™)
number = int (input("What is your month number? : "))

if (number < 13) (number > 0):
print {"Your month is", months[number-1] }

print {("That number made no

0]

ense? Iy agaile-- ")

P s’ hOn Methodologies for Data Sciences

Lists have methods just like strings do. Two of the important
ones are split and append.

split lets you take a string and break it’s words out into a list.
Computer folk often call individual words “tokens” and this
makes life very easy when we need to examine sentences.

>

»>> MyString

'I like to prgram with Python'
>>> MyString.split ()

[T, "lake!, "ta', "prgram’',
>>> MyList = MyString.split()
>>> MyList[3]

'with', '"Python']

'prgram’
append lets you add to a list. There are also methods that let PR
you remove things from a list as well.
>3) _
[45, '=spam', 7, 'eggs', 9] MyList = [45, 'spam', 7, '=ggs', 9]
Yo RES print (MyLi=t)
>)
[45, 'spam', 7, 'eggs', 9] MyLi=st.append {'spamagain')
[45, '"spam', 7, 'eggs', 9, 'spamagain'] print (MylList)

g o

P s’ hon Methodologies for Data Sciences

thi= i=s a comment

Now we see another difference between strings and lists.

Lists are “mutable.” All that means is that we can change
them and they can keep the same name. Strings do not have
this property in Python: they are what’s called “immutable.”

If you want to change an item in a list you can use an
assignment and re-assign that element of the list as we do to
the right. We have taken the third item (index 2) and
changed it from the string ‘spam’ to the string ‘eggs’.

Underneath that we try the same thing with a string. Any
guesses as to what will happen?

(Go into the SAKAI forums and tell me what “\n’ does for
an extra point towards your quizzes.)

A program to fiddle w strings and lists

MylList = ["teac™, 34, "spam™, 349.5, Irus

print (MyList)

MyStcring[2] = 'H!
print (MyScring)

1]
Nl

Zn do?

P s’ hon Methodologies for Data Sciences

this is a comment

That’s right, it blows up into little Python meatballs.

Strings cannot be changed on the fly like lists can because lists are
mutable and strings are not. Being able to store any data type you
want as an item and being able to dynamically alter a list are two of
the reasons why lists are one of the most used data type in Python. It
really is in your best interest to use them, practice with them and
understand all you can do with them...

L program to fiddle w =2trings and li=sts

MyList = ["test™; 34, "apam®, 34.5. Trues]
print (MyLis=st)

1]

HyListlE] = MpemaW

print (MyList, '\n') # «—— what doez ‘\n do?

x> RESTART

>
[*Eese"; 34, "spam', 34.5; True=]
[*E=st*,; 34, 'sgga"; 34.5; Tru=]

Tennis Anyone?

Can we do the same w Strings?

MyString = "Tenni=z Anyone?™

Traceback (most recent call last): print (MyString)
File "C:/Users/Lars/Google Drive/PMD5/Unit Two/code/scratch.py™, line 18, in <
module>

[2] = '\
IypeError: 'str' object does not support item assignment
>

MyString[
'

MyString[2] = '"H!

P s’ hon Methodologies for Data Sciences

No I’m not going to leave you hanging. Below is the way you can change a character in a string. You have to use the replace method
and you have to assign the results to a new string. The old string cannot be changed, it’s immutable, but we can have a method
examine the existing string and write out a new one with the changes you want. That’s what replace does. Nuff said.

Lookup how replace works on the web to find out what that 1 is doing at the end of the parameter list.

Tl
T
["E=aE', 34, "ospam',
["t=aE', 39, "eEggo’,

Tenni=s Anyvone?
TeNni=s Anvone?
Tl

34.5,
34.5,

True]
True]

Can we do the same w Strings?

My5tring = "Tenni=s Anyone?"™
print (My5tring)

HewString = MyS5tring.replace('n',"H',1)
print (HewString)

P s’ hon Methodologies for Data Sciences

q 51 1:"...:!..\.3'.

Okay. For the first time we will get a look at Rush = ['2112', 'FlyByb
something that’s actually useful for data
science. Look at the code to the right. .

ght', 'Hemispheres', 'TestForEchoc'
("Houses0fTheHoly"' in Rush):

print ("Thi=s i= a BRush Album"™)

The list I call Rush is a list of record albums L B -
from the band Rush. With a simple if PEINE{TERIN 18 HOT N RUAk ALDUS)
statement I check to see if the string

“HousesOfTheHoly” (It’s a Led Zeppelin

album, not Rush) is in the list.

Note the keyword ‘in.” It’s a beautiful thing

‘in’. Even with a list of one million items >z o =
you could use ‘in’ to test for inclusion in a >xr
list. Sound handy? You have no idea. Thi=s i= not a Rush Album

g g

P s’ hon Methodologies for Data Sciences

Bush = ['2112"', "FlyByNight', '"Hemispheres", '"TestForEcho']
We can also use variables and test for
inclusion in a list with the variable’s EegE = "2112"
value.
if {test in BRuash):
When we do loops (in, oh, about 5 print ("This is a Rush Album")
minutes if you don’t take a break... but else -
do take the break) you are going to find print {"Thi= is not a Rush Album")
out how powerful this is. |

Finally, some next level stuff that we
can apply to data science and real
problem solving. >
This is a Rush Album

Just one more thing.... S

P s’ hon Methodologies for Data Sciences

Looking ahead for just a
heartbeat. Look at the code.

Two lists. One if statement.
That “for’ keyword will be
explained shortly, suffice it to
say that we have a loop there
that runs through the contents
of the list testList and checks to
see if the items are also in the
list Rush.

Imagine if testList had a million
items. It would still work.

Bush = ["2112', 'FlyByMNight',;
testList = ['5150°" "British Steel"™,
for testalbum in testlist:
if {testalbum in Eush) :
print ("Thi= i= a Bu=sh albumv)
print {("Thi= iz not a Bush alb

Now, after a unit and a half, we are finally
going to get to the point where our
programs are useful and even more fun.
NOW we can think of data sciency things
just a little bit. Most of the basics are out
of the way. Once we have loops we’ll
have some powerful tools to use to solve
problems. But first, take a break and
absorb your strings and lists....

This
This
This
This
This

| >»>

i=
i=
is=s
i=
iz

B Computer™]

not a Bush album
not a Bush album
a Bush album

not a Bush album
not a Rush album

P 5’ hOn Methodologies for Data Sciences

Strings and Lists are incredibly important. Make
sure you know what they are and what their
differences are.

They are both sequences and as we do loops you
are going to see how important that is.

First, take a break for a while. Then move on to
the second half of these Unit 2 slides as we look at
the main event, loops.

P s’ hon Methodologies for Data Sciences

Loops

P s’ hOn Methodologies for Data Sciences

Now we’re ready for the next level. We are going to look at “Iteration.”
Iteration is just the repetition of a process. Let’s say you have a sequence, in
our case a string or a list. What if you wanted to perform the same operation
on every character in your string or every item in your list? 3

>>>» for i in range(
That’s where loops come in. To the right you can see what’s called a “for” print (i)
loop. The range function is a special function that makes lists of numbers.
Python only iterates over sequences, so if we want to do something six times
we merely create a list numbered from 0 (remember, we’re programmers, we

i T

=3}

0
start counting at 0) to 5. 1

2
Underneath the “for” loop we put the block of code we want executed for 5
every item of the sequence. Here we merely print the variable i. When

. . 4

programmers learn to code we are taught to use 1, j and k as the variables to
use when we loop. I have no idea why, but I am passing this tradition on to 5

=g

you so when you see it elsewhere you’ll know why.

Seems even programmers can’t agree where it came from

(http://stackoverflow.com/questions/1147312/who-invented-i-j-k-as-integer-counter-variable-names

P s’ hOn Methodologies for Data Sciences

The key to using loops in Python at first is learning how to use the range function.
Unlike other languages, Python only iterates or “loops” over lists so if we want to
do something 10 times we need to use the range function to make a list from 0-9.

We can also use different increments and decrements like we do in the examples
to the right. The first example has a start and an end. The second adds an
increment, we start at 0, go until 10 and increment by 3. The last example shows
that we can even go backwards with the range function.

Note that the last number of the range is never used. The front of the range is
inclusive (start with 5) and the end of the range is exclusive (do not use 10).
That’s why we do not list -100 in the last example.

range (5, 10}
5 through 9

range (0, 10, 3)
B -3 B 9

range (-10, -100, -30)
=30, =46 —3f

P s’ hon Methodologies for Data Sciences

i forloops.py - C/SimplePython/PythonPrograms/forloops.py M e HESTART =
File Edit Format Run Options Windows Help 7R
This is a comment This is my for loop program
3= 0
Author : Lars Sorensen g e
i= 2
Program to show how for loops work.. i= 3
i= 4
i= 5
print{"\n This is my for loop program") 1= &
i= 7
for i in range({10): i= 8
print{" 1 =" 1) i= 9
print {"\nThe End") The End
B>

Type in the above code and give it a try. Change the value and see what happens. What if you put in a negative
number? What about zero?

P s’ hon Methodologies for Data Sciences

limit = int (input ("Enter the limit: ™}) low = int (input ("Enter the low end: "}}
high = int {input ("Enter the high end: "}}
for 1 in range{limit) :
print (i) for i in range (low, high}: Enpew e, 1es) =ha T2
print (i) Enter the high end: 34

P 1z

e 13

Enter the limit: 12 14

- 15

o 1&

: ! 19

2 We can use variables in our range functions. Here we create two loops 18

3 with user input. Notice how the last iteration is one less than the high end ;O

4 limit, keep that in mind, the range function is exclusive at the end of the 21

5 range. (if you want to see 34 just create the range from (low, high+1), this =

g 1s how things are usually handled. 24

o 25

; 26

g You can also print 1-12 by adding 1 to the i in your print statement if you 27

= need to print a list from 1 through 12 (print(i+1)). This is a shortcut f’i

10 though, the do it properly use range(1,13). o

11 31

32

>>> e

o

P s’ hon Methodologies for Data Sciences

Cuter loop iteration 1
inner loop iteration 1
inner loop iteration 2
o 1. 1ID TAnge |: 5 :I u inner loop iteratiom 3
-y T rl '\n-‘ﬁ - " 7 ! '-:'\n' ™ -3 -\.-\.—"
F""“t' |: mricte e i ke ol i e 1+1:| Outer loop iteration 2
for :| in randge |: 3 :| - inner loop iteration 1
s - = e o inner loop iteration 2
print ("inner loop iteration®,j+1) inner loop iteration 3
Cuter loop iteration 3
L. inner loop iteration 1
(13 2

You can run loops inside of loops. We call these “nested” loops. They show up PR M . —
quite a bit in programming so it’s a good idea to understand what’s going here. inner loop iteration 3
Later, we will look at two dimensional lists. They are just lists where the data is i
d with indi . It’s h idi inner loop iteration 1
accesse Wlt two 1ndices, not just one. It’'s how we represent a grid in inner loop irerarion 3
programming. Anyway, nested loops are a good way to traverse (go across) one of inner loop iteration 3

these and look at every item. You’ll see more in the coming weeks. Until then
just know that you can run another loop inside your top most loop. A SO
inner loop iteration 1
inner loop iteration 2
inner loop iteration 3

i

P s’ hon Methodologies for Data Sciences

T listiter.py - C./SimplePython/PythonPrograms/listiter.py

|MyList = [2,4,6,8,10,12]

~ i in MyList:
pript{™ i = ™; d}

| print ("\nThe End")

File Edit Format Run Options Windows Help

|# This is a comment

| #

|# Author : Lars Sorensen

| #

|# Program to show how to iterate over a list..
| #

R et e e RESTART

his is my for loop program
= 2

T
T
3
gl ==
3
T
i

1l
el == I
(3.5 Bl 3 |

You don’t have to use range. You can iterate over any list
you have. Here I create a list that includes the numbers
from 2 through 12 by 2.

Type this in and give it a try...

P 5’ hOn Methodologies for Data Sciences

Behind the Curtain

b S
>»>> thelist = range (12)

>>> thelist

range (0, 12)

>>> thelist = list(range(l2))

>»> thelist

L s TR O O SO R I - I - P L G
>

Here’s some insider information. range doesn’t really create a
list. It’s something in Python called a “generator.” That means
that it doesn’t create a list, it just generates the next number in the
sequence it has been given. This saves memory if we use
insanely large numbers in our loops (Calculate Pi anyone?)

Loops can use generators just fine so this is usually not an issue,
but just in case you want an honest to goodness list | show you
how above. All we do is cast the results of range to a list (just
like we casted with int or float). If this hurts your brain you have
my permission to forget about it for a while, I just wanted you to
have the real 411 from the beginning.... onwards...

P s’ hOn Methodologies for Data Sciences

OK. The kind of loop to your right is called a
“definite” loop. Come hell or high water that
loop is going to “print(i)” only 10 times and
then move on to the rest of the program.

What if we have situations where we don’t
know how many times we want to go through a
process? What if we want to keep going until a
certain condition is true?

===
>»>» for 1 in range(10):
print (i)

Weouo o =0 &y N D a2 O

P s’ hon Methodologies for Data Sciences

& whileloop.py - C:/SimplePython/PythonPrograms/whileloop.py

Type this program in and run
it.

Now change the condition.

What would happen if you
comment out the

c=c+1

line?

File: Edit Format Run Options Windows Help
this is a comment
#
Ruthor : Lars Sorensen
#
a simple program to play with a while loop
#
print {("\nThis is the while loop program")
c =210
e {c<10)
print{c, "is less than 10!")
c=c+t+1l

P s’ hon Methodologies for Data Sciences

T T e RESTART
. . : >

& whileloop.py - C/SimplePython/PythonPrograms/whileloop.py
File Edit Format Run Options Windows Help This is the while loop program
e h T == 0 is less than 10!
1'* this 1s a comment 1 is less than 10!
2 is less than 10!
Buthor Lars Sorensen 3 is less than 10!
4 is less than 10!
a simple program to play with a while loop 5 1s less than 10!
6 is less than 10!
) 7 is less than 10!

. K s " o Eoou 8 is less than 10!
print{("\nThis 1s the while lcop program™) 9 is less than 101

c =10 The End
>>>
niie {c<10)
print{c, "is less than 101")
c=c +1

This is a while loop. It just keeps going until the condition it’s
watching is False. We kept adding 1 to ¢ (that’s called a counter, it’s
just a variable that increments 1 every time through a loop.) until ¢ <10
print ("\nThe End") was False (when ¢ = 10). Then the loop stopped.

While loops are examples of “indefinite loops”. We don’t know how
many times through they will go; they have to meet a condition.

P s’ hon Methodologies for Data Sciences

Now, you might be saying:

“Wait a minutes. That last while loop was going to stop
when c got to ten no matter what. That means it’s
definite!”

You’re right. In a sense we used an indefinite loop
structure (while) to create a definite loop.

Check out this code. Type it in and run it. This is
indefinite. It’s going to run until you enter an ‘a’

#& whileloop.py - C:/SimplePython/PythonPrograms/whileloop.py

T

le Edit Format Run Options Windows Help

this is a comment
&
Ruthor : Lars Sorensen
2
a simple program to play with a while loop
4
print ("\nThis is the indefinite while loop program")
Lot
vhile (c =k
pri nt("”*“ char i85 =7, ¢
¢ = input ("Enter the next char: ")

print ("\nThe End")

P s’ hon Methodologies for Data Sciences

#& whileloop.py - C:/SimplePython/PythonPrograms/whileloop.py x> o= e = = RESTART =
File: Edit Format Run Options Windows Help s
this is a comment This is the indefinite while loop program
* The char is & ¢
Ruthor : Lars Sorensen Enter the next char: f
2 The char is : f
¢ a simple program to play with a while loop Enter the next char: g
The ‘char is = g
Enter the next char: t
print ("\nThis is the indefinite while loop program") The char is : t
Enter the next char: y
S T The char is : vy
Enter the next char: u
hile: (o I'= Tal') : The char is : u
print {"The char is :", c) Enter the next char: j
¢ = input ("Enter the next char: ") The chariis 2 j

Enter the next char: a
print ("\nThe End")

The End

>0

Here’s the run. Can you think of a good use for this?

P s’ hon Methodologies for Data Sciences

Guess a number between 1 and 100: 33

Guess the number game Sorry, that was wrong

Do wou want to try again? (yv/n): ¥

Guess a number between 1 and 100: 3&

Sorry, that was wrong

while (keep going = '¥'}: Do wou want to try again?(v/m): ¥
guess = int (input ("Guess a number between 1 and 100: ™)) Guess a number between 1 and 100: 89

F
Author : Lars
F
5

The Number = 77
keep going

if {(guesz = The Number}): &
print ("YOU GOT IT!!") Sorry, that was wrong
keep going = 'm’ Do wyou want to try again? (yv/n): v
glsze: . _ Gue=s=z a number between 1 and 100: 77
peeditn (*Seery, GRAT G weung)| o YOU GOT IT!!
keep going = input ("Do vou want to try again? (yv/n): ") ; .
- Thank=s for Playing!
print ("Thanks for Playing!™) >

Now we have a way to keep our programs running and not have to keep starting them over and over again. Just put your
code in a while loop, test to make sure your “flag” variable (keep going) is ‘y’, and allow the user to make it an ‘n’ (or
anything besides ‘y’) and you’ll fall out of the loop, Print “Thanks for Playing” and you’re done. This is how games STILL
let you leave. When you input that “Q” or “Quit” it’s being tested in a while loop!

P s’ hOn Methodologies for Data Sciences

A few extra lines of code and it’s a real high/low guess game!

F
RAuthor : Lars
F
Guess the number game
The Number = 77
keep going = 'y
while (keep going = 'y'}:
guess = int {input {"Guess a number between 1 and 100: "))
if (guess == The Number):
print {"¥OU GOT IT!'!"™)

keep going = 'n’

if (guess > The Number)

print ("Sorry, that guess was too high™)
print {"Sorry, the guess was too low™)
keep going = input ("Do you want to try again?(y/n -

Type this in and try it!
Can you make it better?

Guess a number between 1 and 100:
Sorry, the guess was too low

Do you want to try again?(y/n): ¥
Guess a number between 1 and 100:
Sorry, the guess was too low

Do you want to try again?(yv/n): ¥
Guess a number between 1 and 100:
Sorry, that guess was too high

Do you want to try again?(y/n): y
Guess a number between 1 and 100:
Sorry, that guess was too high

Do you want to try again?(y/n): ¥
Gues=z a number between 1 and 100:
Sorry, that guess was too high

Do you want to try again?(yv/n): ¥
Guess a number between 1 and 100:
Sorry, the guess was too low

Do you want to try again?(y/n): ¥
Guess a number between 1 and 100:
¥OoU &OT IT!!

Thank= for Playing!

o

50

=]
=]

P s’ hOn Methodologies for Data Sciences

Other Kinds of Loops

We have looked at Definite loops (with for and the range function) and Indefinite loops (with while).
There are other kinds, but they are implemented with “for”’s or “whiles”s
e Interactive Loops - Like the guessing game, the loop runs until user input says to stop

e Sentinel Loops - Loops that go through lists until they see a certain value. Here you would use !=in
the while condition. While (‘a !=999) for example

e File Loops - we’ll see these in Unit 3. This is when you read a file until it’s done even though you do
not know how long it is before you start.

P s’ hOn Methodologies for Data Sciences

Finally!!!

I think everyone who teaches programming waits for this moment. You have
simple data under your belt. You know about conditionals. You know about lists
and sequences of data. Now you have loops.

We can finally do some interesting things....

P s’ hon Methodologies for Data Sciences

Bush = ['2112', '"FlyByNight', 'Hemispheres', ’?aa:?::ichc’ﬂ
testList = ["2150"; "British S5teel™, "Hemispheres'", "Alive II" "OE Computer™
for testalbum in testList: L

if ({testalbum in Rush):
print ("Thi= i=z a Bush album"™)

Thi= iz not a Bush album
Thi= iz not a Rush album
Thi=z iz a Rush album

Thi= iz not a Bush album
Thi= iz not a Rush album

print ("Thi= i= not a Bush album"™)

Now that we understand loops we can look at our list code again. Understand what’s happening?

We go into a loop and for every item in testList the loop places that item in the variable “testalbum” and tests for inclusion in
the list “Rush.”

This is a simple, small example. What if testList had a million items? This could be rather handy when examining data, yes?

P s’ hOn Methodologies for Data Sciences

What if we had data like this?

This is a list that contains
5 ’ 1 63 names. (well, it’s a snippet of said list)

How can I test it to see if my
name appears there?

["MARY" , "PATRICIA","LINDA", "BARBARA","ELIZABETH", "JENNIFER", "MARIA", "SUSAN", "MARGARET", "DOROTHY", "L
"EDITH", "KIM", "SHERRY","SYLVIA","JOSEPHINE", "THELMA" ,"SHANNON", "SHEILA","ETHEL", "ELLEN", "ELAINE","
STANCE","LILLIE","CLAUDIA","JACKIE","MARCIA", "TANYA", "NELLIE", "MINNIE","MARLENE","HEIDI", "GLENDA",
TE", "MELODY", "LUZ","SUSIE","OLIVIA", "FLORA", "SHELLEY", "KRISTY", "MAMIE","LULA","LOLA", "VERNA", "BEUL
" "DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE", "SONJA","LILA","LANA", "DARLA", "MAY", "MINDY","E
ROSETTA", "DEBORA" , "CHERIE", "POLLY", "DINA", "JEWELL", "FAY","JILLIAN", "DOROTHEA" , "NELL", "TRUDY" , "ESPE
"DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE", "WINNIE", "MARCY","LUISA","JERI", "MAGDALENA", "OFEL
I","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA", "TANISHA","K
A", "AISHA", "WILDA", "KARYN", "CHERRY", "QUEEN", "MAURA", "MAI","EVANGELINA", "ROSANNA", "HALLIE","ERNA","
MBERLEE", "JASMIN", "RENAE","ZELDA","ELDA", "MA","JUSTINA","GUSSIE","EMILIE", "CAMILLA", "ABBIE","ROCIO
YNN", "LUCRETIA", "KARRIE", "DINAH", "DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY",
CARIDAD", "VADA", "UNA", "ARETHA" , "PEARLINE", "MARJORY", "MARCELA", "FLOR", "EVETTE", "ELOUISE", "ALINA","T
GERTIE", "DARLEEN","THEA", "SHARONDA" , "SHANTEL", "BELEN", "VENESSA" , "ROSALINA" , "ONA" , "GENOVEVA" , "COREY
TRID","SIDNEY","LAUREEN", "JANEEN","HOLLI","FAWN","VICKEY", "TERESSA","SHANTE", "RUBYE", "MARCELINA","
PEGGIE","NOVELLA", "NILA","MAYBELLE","JENELLE","CARINA","NOVA","MELINA", "MARQUERITE", "MARGARETTE","
"JOSE", "INGEBORG" , "GIOVANNA", "GEMMA" , "CHRISTEL", "AUDRY", "ZORA", "VITA", "VAN", "TRISH", "STEPHAINE","S
ITA","GLADIS","EVELIA", "DAVIDA", "CHERRI","CECILY", "ASHELY", "ANNABEL","AGUSTINA", "WANITA","SHIRLY",
DA","JULIANN","JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","A
LAVINIA","KUM", "KACIE","JACKELINE", "HUONG", "FELISA", "EMELTA", "ELEANORA" , "CYTHIA", "CRISTIN", "CLYDE"
ORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER", "TOMIKA","SHARITA", "RANA","NIKOLE","NEOMA", "MA
TE", "LUCRECIA", "KOURTNEY", "KATI", "JESUS", "JESENIA", "DIAMOND" , "CRISTA", "AYANA" , "ALICA", "ALIA", "VINN
" "JANETT", "HANNELORE" , "GLENDORA" , "GERTRUD" , "GARNETT" , "FREEDA" , "FREDERICA" , "FLORANCE" , "FLAVIA" , "DE
"MANDA" , "MACIE", "LADY","KELLYE","KELLEE", "JOSLYN", "JASON", "INGER", "INDIRA", "GLINDA", "GLENNIS", "FER
,"EMELDA", "ELENI","DETRA", "CLEMMIE","CHERYLL", "CHANTELL", "CATHEY", "ARNITA", "ARLA", "ANGLE" , "ANGELIC
NDYCE", "ARLENA", "AMMIE", "VANG", "WILLETTE","VANITA", "TUYET","TINY","SYREETA","SILVA","SCOTT", "RONAL
E","ALLINE","YUKO", "VELLA", "TRANG", "TOWANDA" , "TESHA" , "SHERLYN" , "NARCISA" , "MIGUELINA", "MERI", "MAYBE
"GENNIE","FRANCIE","FLORETTA","EXIE","EDDA", "DREMA", "DELPHA","BEV","BARBAR","ASSUNTA","ARDELL", "AN
,"MARIKO" , "MARGERT", "LORIS","LIZZETTE","LEISHA", "KAILA","KA","JOANNIE","JERRICA","JENE"," JANNET","
NE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA", "YON","YESSENIA","TOBI","TASIA","SYLVIE","
NNE", "SHALANDA" , "SERITA", "RESSIE", "REFUGIA", "PAZ","OLENE","NA", "MERRILL", "MARGHERITA" , "MANDIE" , "MA
OI","TARRA","TARI","TAMMERA","SHAKIA","SADYE", "RUTHANNE", "ROCHEL", "RIVKA", "PURA", "NENITA", "NATISHA
" "XENIA","WAVA", "VANETTA","TORRIE", "TASHINA", "TANDY", "TAMBRA", "TAMA","STEPANIE", "SHILA","SHAUNTA"
TTIE","KERA","KENDAL", "KEMBERLY", "KANISHA","JULENE","JULE","JOSHUA", "JOHANNE","JEFFREY", "JAMEE", "H
", "BRUNA", "BRITTANEY", "BRANDE", "BILLI", "BAO","ANTONETTA", "ANGLA", "ANGELYN","ANALISA", "ALANE", "WENO

P s’ hon Methodologies for Data Sciences

OK, I read this out of a file and we’re not there yet
so just know that I have a string variable, names,
that is one long string with all the names in it.

I strip out the “”’s, do a split so I turn my string
into a list, and then I sort the list (didn’t really
have to do this, just showing you).

Now I have a list I can test with the ‘in” keyword.
I test for my name (and get skunked, no surprise
there) and I also create a boolean variable.
Because “MARY™ is in the list this condition is
TRUE.

This program runs in less than a second.

I
This gets rid of the double guotes
names = names.replace('"', "'}

This creates a list fm the string w the comma as the delimeter

names = names.split (", ")
God bless =ort methods...
names.sort ()

Now we have all the names in a list
print ("There are",len{names),"in thi= list") # good 5163 names
Now we can examine our data...
test if item iz in list
if '"LARS' in names):
print ("That's a surprise™)
print {("as usual, funny ethnic name supression again...")

create a boolean variable based on name inclusion

a = FIART

print (a)

in names
o
There are 2163 in this list
as usual, funny ethnic name supression
True
oo

again. ..

P s’ thOn Methodologies for Data Sciences

Now we have the tools to work on some real problems! Go to projecteuler.net. If you want to,
create a userid and login (you don’t have to). With the tools you have now (variables, data types,
arithmetic, conditions, lists, and loops) you have enough to tackle some of these problems

- Archives Recent Progress Account

Where should I start?

That depends on your background. In the Problems table you will be able to see how many people have solved each
problem. As a general rule of thumb the more people that have solved it, the easier it is.

I've written my program but should it take days to get to the answer?

Absolutely not! Each problem has been designed according to a “one-minute rule”, which means that although it may
take several hours to design a successful algorithm with more difficult problems, an efficient implementation will allow
a solution to be obtained on a modestly powered computer in less than one minute.

Does it matter if it takes more than one minute to solve?

Of course not, but that should provide the impetus to return to the problem and see how you can improve your

approach. But remember that once you've solved a particular problem you will be able to access a thread relating to that problem and it is here that you
may be able to pick some tips from others that have solved it.

Some of them are hairy, [know. We’re going to look at an easy
one.

P s’ hOn Methodologies for Data Sciences

This is Euler #6. Give it a go. I will do a video and solve it next week, but try yourself first.

Problem 6
The sum of the squares of the first ten natural numbers is,

12+22+ .., +10% =385

The square of the sum of the first ten natural numbers is,

(1+2+...+10)2 =552 = 3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

P s’ hon Methodologies for Data Sciences

Other cool resources

I put a few free Python books in
the resources section of SAKAI
last week. Check them out!
There will be no readings or
assignments from them, I just
want you to be aware of all the
Python resources there are on the
web.

> »

How to Think Like a Computer Scientist

Learning with Python 3 (RLE)
Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)

http://openbookproject.net/thinkcs/python/english3e/

P s’ hOn Methodologies for Data Sciences

Dictionaries

For those of you keeping score at home, I know the syllabus mentioned that we would be covering
dictionaries in this unit. I thought better of it as I was doing the slides.

I gave you sequences and then I gave you loops. Dictionaries are a data structure that is not a sequence
per se and they do not lend themselves to being iterated over so I decided it made no sense to introduce
the topic as you were wrapping your novice Python heads around lists and loops.

I will get to Dictionaries in Unit three or four. They are important and will be covered, I’m just going to
do it later on.

Nuff said.

P s’ hOn Methodologies for Data Sciences

A few simple exercises

1. Print all the multiples of 3 up until 60.
2. Print the numbers from 30 to 1 backwards

3. Create a game that asks the player to guess a secret word, revealing one letter of the word
for every turn. At the end of the game tell the user how many guesses they made.

4. Print the nth term of the Fibonacci sequence where n is a number entered by the user. See
pg 262 of Zelle for better description, this is exercise 1.

