Python

Methodologies for Data Science

Lars Sorensen - 16:137:603

Fall 2015 - biglars@cs.rutgers.edu
Unit Three

mailto:biglars@cs.rutgers.edu

P s’ hOn Methodologies for Data Sciences

Take a breath. You’ve done a lot in the last month...

Loading Python on your machine - Figuring out how to run IDLE - Using the Python interactive command window
Creating programs - Print function - Variables - Assignment - Arithmetic

Modulus - Strings - Integers - Floats - Casting - Input function

Booleans - Arithmetic conditionals (>, <, ==, !=, <=, >=) - Boolean operators (And, Or, Not) - if - elif - else
Sequences - strings - slicing - indexing, reverse indexing - len function - ord, chr - string methods

Lists - split method - append method - mutability of lists - mixed data types of lists

Loops - Iteration - for loops - range function - nested loops - while loops - sentinel loops - counters - accumulators

Interactive loops - definite loops - indefinite loops - keyword ‘in’ as set conditional

Now that’s a whole lot of stuff....

P s’ hOn Methodologies for Data Sciences

Everyone is doing great. Unit 3 is the last of what I see as the “basics” of imperative (writing programs like
recipes... remember) programming. [explained a bunch of what I’'m talking about in the second in-person class,
suffice it to say that I want the first half of the class to be absorbing the basics and the second half of the class to
learn special programming topics with Data Science playing a role in the Unit assignments.

All that said, we’re almost there. One more Unit to go. You know about data, you know about sequences. You
now know how to navigate through your data with loops. Things are beginning to take shape. Just a few more
major concepts to cover. They all relate to one topic though, modularity.

Modularity, compartmentalization, you pick the name. What we want to do is show that it is often more efficient
to break down big problems into little ones and stack the little ones up until they solve the big ones. It makes
code easier to understand and aides us in reusing pre-written code and saving time. OK. We’re off to learn
about functions, File I/O and using modules, or third party libraries.

P s’ hon Methodologies for Data Sciences

Functions

P s’ hon Methodologies for Data Sciences

A function is a named sequence of statements that performs a
calculation or computation. When we define a function we

specify the name and the sequence of statements and then you 4
“call” that function by name.

think about: N\

\
/
\

f(x)=x+4
So...f(4) =8 and f(6) =10 and so on...
If we do g(x) = f(x) + 3 then g(3) = 10...

But with programming statements. ..

P s’ hon Methodologies for Data Sciences

Anatomy of a Function

The result is called the

BPython 3.3.0 (v3.3.0:bd8afb%0ebf2, ‘return value’
D64)] on win3Z2

Type "copyright", "credits"™ or "li¢

>>> type (64)

<class 'int'>

>>> type('Hello World') The expression in
<class 'str'>
g

The name of the
function 1s ‘Type’

parens is called

the ‘argument’

A function can take an argument, processes it, and return a result. Some
functions do not take an argument and some do not return a value.

P s’ hon Methodologies for Data Sciences

Some functions are built-in to Python and are ready for use.
We have already seen a bunch of them.

The casting functions are all built-in functions in Python.
Later, when we see the math module, we will see that these

functions, while not built-in to Python, can be imported from
another file for us to use in our programs.

>>> import

FEE
g
5.0
>
>
2>
>z

e

FEE
32

-5 S

78
>>>
34.0
>>>
'34.
>>>

math

math.sgrt (25)

degrees = 435

int (32_4)

float(34)

(34.56)

wnowm

on ot
-

radians = degrees / 360.0 * 2 * math.pi
math.sin(radians)
0.7071067811865475

P s’ hOn Methodologies for Data Sciences

2. Built-in Functions

The Python interpreter has a number of functions and types built into it that are always available. They are list
More functions that we have not used
are built-in to Python and are ready for

Built-in Functions

abs() dict() help() min() setattr()
use as VVGII. all() dir() hex() next() slice()

any() divmod() id() object() sorted()
You can find the documentation for ascii() enumerate () input() oct() staticmethod()
these functions here: bin() eval() int() open() str()

bool() exec() isinstance() ord() sum()
https://dOCS.python. bytearray() filter() issubclass() pow() super()

N . bytes() float() iter() print() tuple()

org/3/library/functions.html Callab1e() format() Len() roperty() type0)

chr() frozenset() list() range() vars()
CheCk out Sum() and pOW() classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __dimport__ ()

complex() hasattr() max () round()

delattr() hash() memoryview() set()

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

P s’ hOn Methodologies for Data Sciences

S funcsl.py - C/SimplePython/PythonPrograms/funcsl.py

Using built-in functions is convenient, but
defining your own functions is easy. Use the
‘def” keyword, give your function a name, a
parameter list (none in the example, but the
parenthesis are still required) and then a colon.

We then give the function a definition by coding
what we want it to do. Here we just want it to
print four lines of text.

Remember

- Functions have the same naming rules as
variables.

- Functions must appear in the code before they
are called.

File Edit Format Run Options Windows Help

print("This is the function program\n"})
print drc()

this is a comment

#

Buthor Lars Sorensen

=

This program uses functions

#

d print drc():
print{"I feel uptight on Saturday night...™)
print ("Nine o'clock, the radicg's the only 1i

rint ("I hear my song and it pulls me throu

print {("Comes on strong, tells what I got to

P s’ hon Methodologies for Data Sciences

T funcsl.py - C:/SimplePython/PythonPragrams/funcsl.py

We see the code run below. We print the “This

File Edit Format Run Options Windows Help
this is a comment is...” line and then we call the function. Then the
function named print_drc() prints four lines.
Buthor : Lars Sorensen - .
" Control returns to the spot after where the function
This program uses functions was called and the program ends.
#
def print drc(): Interesting, but why bother?
print {"I feel u 1 urd 1gl
print ("Nine o'c iy
print{"I hear m
print ("Comes Sy
»»» So=====s=—=——=—==———=—=——c————=== RESTART —===========:
>
rint("This is the function program\n") This is the function program
print drc()
I feel uptight on Saturday night...
Nine o'clock, the radio's the only light...
I hear my song and it pulls me through
Comes on strong, tells what I got to do...
3>

P s’ hon Methodologies for Data Sciences

7 funcs2.py - C/SimplePython/PythonPrograms/funcs2.py

File Edit' Format Run Options Windows Help

this is a comment

=

Luthor Lars Sorensen

5
I
=
0

program uses functions

I T T T TR

def print drc():

print("Nine o'cloc
print ("I hear my s
L

print("Comes on s

def print drc twice(}:
print drec()
print drc()

print("This is the function program\n™}
print drc twice()

Because it cuts down on repetition. I can run the
function twice and print 8 lines.

What if I wanted to print it 10 times?

>>> =========
ez
This is the function program

RESTART ===

I feel uptight on Saturday night...

Nine o'clock, the radio's the only light...
T hear my song and it pulls me through
Comes on strong, tells what I got to do...
T feel uptight on Saturday night...

Nine o'clock, the radio's the only light...
I hear my song and it pulls me through
Comes on strong, tells what I got to do...
BS54

P s’ hon Methodologies for Data Sciences

this is a comment

Playing w Functions

def print drc()
print ("\tI

for i in range (10):
print_drc()

Now we can see that using functions is saving us time.
Without the use of functions it would take 40 lines of code to
do this program. With functions we can cut that down to
seven. All we did was to run the function inside of a loop so it
was run 10 times.

Hine a'clock, the radia's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Hine a'clock, the radia's the only light...

I hear my =song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Hine a'clock, the radia's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Hine o'clock, the radio's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Hine o'clock, the radio's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Nine o'clock, the radio's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

I feel uptight on Saturday night...
Nine a'clock, the radia's the only light...

I hear my song and it pulls me through
Comes on strong, tells what I got to do...

P s’ hon Methodologies for Data Sciences

thizs is a comment

b: Lars

e che cHe She e

Plaving w Functions

I
h

print _drc():

print {("\wtI feel uptight on Saturday night lh

print ("Hine o'clock, the radio'=s the only light el
print {("wtI hear my song and it pulls me through™)
print ({"Comes on strong, tells what I got to do sl

for i in range (10} :
print_drc()

This is a very simple
function. It takes no
parameters and it returns no
values.

We can save time and
coding this way, but we can
do much more by passing
parameters and returning
values.

P s’ hOn Methodologies for Data Sciences

Here we define a function that takes two
numbers as arguments. Our function takes the
two numbers and prints their product.

As we have seen, this function requires
‘arguments.” At the call of the function those
variable names are called parameters. In the
function definition’s header (the line with ‘def’
in it), we call them arguments. An argument
can be a variable or an expression. Inside the
function they act as normal variables.

74 times.py - C:/SimplePython/PythonPrograms/times.py

ile” Edit Format Run Options Windows Help
this is a comment

Buthor: Lars Sorensen

This program uses a small multiplication function

e e e e e e

def times{a, b):
rint (a*h)
print("This is the multiplication function program\n")
times(2,5)
times (100,4)

>>>
This is the multiplication function program

10
400
B3

P s’ hOn Methodologies for Data Sciences

& times.py - C\SimplePython\PythonProgramsitimes.py

—-e —ot Format Run Options Windows Help
#t is a comment

#

Buthor: Lars Sorensen

#
This program uses a small multiplication function
#

F times(a, b):
print (a*b)

print("This is the multiplication function program\n")
times(2,5)

times (100,4)

print(a)

P ===== RESTART

Scope
Look at the last line of our program. We ask to print
the variable a, but if you look at the run we see that
this produces an error.

When the function ends, so does the existence of the
variables within it. They are called “local” variables
and cannot be accessed outside of their “scope” or the
function where they are defined and used.

>3
This is the multiplication function program

10
40
Traceback (most recent call last):
File "C:\SimplePython\PythonPrograms\times.py",
print(a)
NameError: name ‘'a' is not defined

line 14, in <module:

P s’ hon Methodologies for Data Sciences

Now we’ve put it all together. We have a
definition with parameters and a function body that
returns a value. Now that’s a function!

Once you return a value the function call is over.
You can return any variable type you like int, float,
string, or even lists.

Any code after a return is reached will not be
executed and is referred to as ‘dead code.” Creepy.

In my comment in the code to the right I said this
was a “fruitful function.” What’s that all about?

Return Values

T

ite Edit Format Run Options Windows Help
this is a comment

buthor: Lars Sorensen

This program uses a small multiplication function

S oo o o S s

def times{a, b):
rn a*b
print ("This is the multiplication function program\n")
a = times(2,5) # remember, times is a fruitful function
print (a)

BeW ————————————— e OESTART ==
e
This is the multiplication function program

10
>

P s’ hOn Methodologies for Data Sciences

(3 L3
Fruitful vs Void
T tiny.py - C:/SimplePythc 4 tiny.py - C/SimplePython/Py
File Edit Format Run File Edit Format Run Opt
tiny prog # tiny prog
bort math
rt math
a = math.sqgrt(25)
math.sgrt (25)
| 3> RESTART -
== EESTART = | 33>
- |>>> a
5.0
EE [>>>

Some functions return values, like math.sqrt(25) (We will discuss importing modules in five
minutes ;-), well, actually, after a break...) and some just perform a group of actions, like the
function we wrote to print the song lyrics. The issue here is that if you use a fruitful function, one
that returns a value, in a program and do not assign the result to a variable it will be lost forever!

P s’ hOn Methodologies for Data Sciences

This i=s a comment

Playing around w Functions

I wrote up this snippet to def times(a, b):

just a comment

lllustrate some Of the print ("this is the times function™)

print ("Ins=side j@s",id(numl],idinuﬂﬁ]]

behaviors of functions. print ("Can I print a global var decl bf the func def?”, before)

print ("Can I print a global after the func def?™, after)
a = a+l
print (id(a}))
mylist[2] = 7
r i a*b
after = "CALL"™
myli=st = [2,3,4,.5]
numl, nuom2 = 3,12
print ("Outside IDs",id(numl}) ,id (num?})
print (times (12, 3))
print (mylist)
print (numil)

P s’ hOn Methodologies for Data Sciences

Can you trace through this code? It teaches us
a few things about scope, returning values
from fruitful functions and a few other things.
[will be tracing this code in the first review
video, but see if you can do it yourself first.

e O

Cutside IDs 2012395248 2012355536

this iz the times function

Inside Function IDs 2012395248 2012395536

Can I print a global var decl bf the func def? GLOBAL
Can I print a global afrer the func def? C4LL
2012395568

39

[2: 2 T: 5]

3

e

F

This is a comment

¥

F L: Lars

7

Playing around w Functions

before = 'GLOBAL'

def times(a, b):
just a comment
print [("thi=z i= the times function™)
print ("Ins=side j@s",id(numl],idinuﬂﬁ]]
print ("Can I print a global var decl bf the func def?™, before)
print ("Can I print a global after the func def?™, after)
a = a+l

print (id(a}))
mylist[2] = 7

return a*b
after = "CALL"
mylist = [2,3,4,5]
numl, nuom2 = 3,12

print ("Outside IDs",id(numl}) ,id (num?})
print (times (12, 3))

print (mylist)

print (numil)

P s’ hOn Methodologies for Data Sciences

Functions

So we have different types of functions....

Void — these functions do not return a value

Fruitful — these functions do return a value

Functions with no arguments — just names for blocks of code
Functions with arguments — parameters that are used inside the
function, like our times function

P s’ hOn Methodologies for Data Sciences

Why Bother with Functions?

Creating functions gives us a way to name a block of code. This can make programs more readable, and easy to
debug.

Functions make programs smaller because you do not have to retype things over and over again. Also, if you
want to make a change later you only have to do so in one place.

Dividing programs into smaller hunks make them easier to manage when your programs begin to get larger.
This ‘modularity’ will be discussed in the second half of this Unit.

Well designed functions can be used by more than one program! You can save time and energy by merely
reusing your functions later!

P s’ hOn Methodologies for Data Sciences

Ok, Now you have functions under your belt.
take a break. Think about it. Now you can
have a bunch of sub-programs and one main
program to call them all. It’s all so organized.

When I do my Unit 3 review video I will not
only trace the crazy function I listed before, but
I will re-write Euler 6 using functions to make
solving this problem even easier AND to create
some reusable code along the way.

Take a break, you deserve it, but come back for
the second half of the Unit where we look at
File I/0 (that’s Input and Output) and we learn
about modularity and how we can keep our
code in multiple files and begin to use other
pre-written libraries for our programs.

print {"\nThe Euler & Program‘n™}

limit = int{input {"Enter the last number of the

Find the sum of the squares

203 = 0

for i in range{l,limit+l):
303 = sas + 1#%2

print {("sum of sguaresz i=", =as3)

Find the sgquare of the sum
thesum = 0O

for i in range{l,limit+l):
thesum = thesum + 1
so0sg = thesum**2
print {"The square of the sum i=s",3035qg)

find the answer
anawer = =203g - 303
print ("The answer i=s ",answer)

range:

”:I:I

P 5’ hOn Methodologies for Data Sciences

We’re almost there. After we
finish this unit you will have
the basics of Python down....

But for now take a break, you
need to absorb all of that
information about functions...

Ready? OK, good. Go to the next slide for the
home stretch where we learn about files and
then modularity...

P s’ hon Methodologies for Data Sciences

Files

P s’ hOn Methodologies for Data Sciences

"MARY", "PATRICIA", "LINDA", "BARBARA", "ELIZABETH", "JENNIFER", "MARIA","SUSAN", "MARGARET", "DOROTHY", "L
"EDITH", "KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA", "SHANNON","SHEILA","ETHEL", "ELLEN", "ELAINE","
STANCE", "LILLIE","CLAUDIA","JACKIE","MARCIA", "TANYA", "NELLIE","MINNIE","MARLENE", "HEIDI","GLENDA",
TE","MELODY", "LUZ","SUSIE", "OLIVIA","FLORA","SHELLEY", "KRISTY","MAMIE","LULA","LOLA","VERNA", "BEUL
" "DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA","MAY", "MINDY","E
ROSETTA", "DEBORA", "CHERIE", "POLLY", "DINA","JEWELL", "FAY","JILLIAN", "DOROTHEA", "NELL", "TRUDY", "ESPE
"DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE", "WINNIE","MARCY","LUISA","JERI", "MAGDALENA", "OFEL
I","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA", "TANISHA","K
A", "AISHA", "WILDA", "KARYN", "CHERRY", "QUEEN", "MAURA", "MAI" , "EVANGELINA", "ROSANNA", "HALLIE", "ERNA","
MBERLEE","JASMIN", "RENAE", "ZELDA", "ELDA","MA", "JUSTINA", "GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO
YNN", "LUCRETIA", "KARRIE", "DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA", "PORTIA","MERRY",
CARIDAD","VADA","UNA","ARETHA", "PEARLINE", "MARJORY" , "MARCELA","FLOR","EVETTE", "ELOUISE", "ALINA","T
GERTIE","DARLEEN","THEA", "SHARONDA", "SHANTEL", "BELEN", "VENESSA", "ROSALINA", "ONA", "GENOVEVA" , "COREY
TRID","SIDNEY","LAUREEN", "JANEEN", "HOLLI","FAWN", "VICKEY","TERESSA","SHANTE", "RUBYE", "MARCELINA","
PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA", "NOVA","MELINA","MARQUERITE", "MARGARETTE","
"JOSE", "INGEBORG", "GIOVANNA", "GEMMA" , "CHRISTEL", "AUDRY", "ZORA", "VITA", "VAN", "TRISH", "STEPHAINE","S
ITA","GLADIS","EVELIA","DAVIDA", "CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA", "WANITA", "SHIRLY",
DA™, "JULIANN","JOHNIE", "ELVERA", "DELPHIA", "CLAIR","CHRISTIANE","CHAROLETTE","CARRI", "AUGUSTINE","A
LAVINIA","KUM","KACIE","JACKELINE", "HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE"
ORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER", "TOMIKA","SHARITA","RANA","NIKOLE","NEOMA", "MA
TE", "LUCRECIA", "KOURTNEY", "KATI", "JESUS","JESENIA", "DIAMOND","CRISTA", "AYANA","ALICA","ALIA","VINN
", "JANETT", "HANNELORE", "GLENDORA" , "GERTRUD" , "GARNETT", "FREEDA", " FREDERICA", "FLORANCE", "FLAVIA", "DE
"MANDA" , "MACIE","LADY","KELLYE","KELLEE","JOSLYN", "JASON", "INGER","INDIRA","GLINDA", "GLENNIS", "FER
,"EMELDA", "ELENI","DETRA", "CLEMMIE", "CHERYLL", "CHANTELL", "CATHEY", "ARNITA", "ARLA", "ANGLE" , "ANGELIC
NDYCE", "ARLENA", "AMMIE", "YANG", "WILLETTE", "VANITA", "TUYET", "TINY", "SYREETA", "SILVA", "SCOTT", "RONAL
E","ALLINE","YUKO","VELLA", "TRANG", "TOWANDA", "TESHA", "SHERLYN" , "NARCISA" , "MIGUELINA", "MERI", "MAYBE
"GENNIE","FRANCIE","FLORETTA", "EXIE", "EDDA","DREMA", "DELPHA", "BEV", "BARBAR", "ASSUNTA" , "ARDELL", "AN
, "MARIKO" , "MARGERT", "LORIS", "LIZZETTE","LEISHA", "KAILA", "KA","JOANNIE","JERRICA","JENE","JANNET","
NE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI", "TASIA","SYLVIE","
NNE" , "SHALANDA" , "SERITA", "RESSIE", "REFUGIA","PAZ", "OLENE","NA","MERRILL", "MARGHERITA" , "MANDIE", "MA
OI","TARRA","TARI","TAMMERA", "SHAKIA","SADYE", "RUTHANNE","ROCHEL","RIVKA","PURA", "NENITA" , "NATISHA
", "XENIA", "WAVA","VANETTA", "TORRIE", "TASHINA", "TANDY", "TAMBRA","TAMA","STEPANIE", "SHILA", "SHAUNTA"
TTIE","KERA","KENDAL", "KEMBERLY", "KANISHA","JULENE","JULE", "JOSHUA","JOHANNE", "JEFFREY","JAMEE","H
", "BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN","ANALISA","ALANE","WENO

P s’ hOn Methodologies for Data Sciences

The picture to the right is a screenshot of a data file with
5,163 names in it. That may seem like a lot, but this is
actually a small and manageable data set.

Files are resources for data that are based on “durable”
storage. That’s a fancy way of saying that most of our data
so far has been held in RAM (random access memory) and
when we turn the computer off it goes away. Files are
usually written to a hard disk drive (or to a hard disk drive
somewhere else that we access across the Internet. Years ago
this was called online data and it scared people, they thought
this was insecure and dangerous. But now, ten years later,
with the only difference being that we call it the “cloud”, the
less intelligent among us can sleep at night and can’t seem to
get enough Dropbox or Drive storage for their mortgage
spreadsheets and cat pictures. I have no idea why this is.)

Durable file storage can save data, allow the computer to be
turned off and then still be accessible when the machine is
turned back on.

"MARY", "PATRICIA","LINDA", "BARBARA", "ELIZABETH", "JENNIFER", "MARIA", "SUSAN", "MARGARET", "DOROTHY", "L
"EDITH", "KIM", "SHERRY","SYLVIA", "JOSEPHINE", "THELMA", "SHANNON", "SHEILA","ETHEL","ELLEN", "ELAINE","
STANCE","LILLIE","CLAUDIA","JACKIE","MARCIA", "TANYA","NELLIE", "MINNIE", "MARLENE","HEIDI","GLENDA",
TE", "MELODY","LUZ","SUSIE","OLIVIA", "FLORA","SHELLEY", "KRISTY", "MAMIE", "LULA", "LOLA", "VERNA", "BEUL
", "DELIA","SOPHIE","KATE","PATTI","LORENA", "KELLIE","SONJA","LILA","LANA","DARLA", "MAY", "MINDY","E
ROSETTA", "DEBORA", "CHERIE", "POLLY", "DINA", "JEWELL","FAY","JILLIAN", "DOROTHEA", "NELL","TRUDY","ESPE
"DOLLY", "SYBIL","ABBY","LARA","DALE","IVY", "DEE", "WINNIE","MARCY","LUISA","JERI", "MAGDALENA", "OFEL
I","MARCIE","LIZA","ANNABELLE", "LOUISA","EARLENE", "MALLORY", "CARLENE", "NITA", "SELENA", "TANISHA","K
A", "AISHA", "WILDA" , "KARYN","CHERRY", "QUEEN" , "MAURA" , "MAI" , "EVANGELINA" , "ROSANNA" , "HALLTE", "ERNA","
MBERLEE","JASMIN", "RENAE", "ZELDA","ELDA","MA", "JUSTINA", "GUSSIE","EMILIE","CAMILLA", "ABBIE", "ROCIC
YNN", "LUCRETIA", "KARRIE", "DINAH" , "DANIELA", "ALECIA","ADELINA","VERNICE","SHIELA","PORTIA", "MERRY",
CARIDAD", "VADA", "UNA", "ARETHA", "PEARLINE", "MARJORY", "MARCELA", "FLOR", "EVETTE","ELOUISE","ALINA","T
GERTIE", "DARLEEN", "THEA", "SHARONDA" , "SHANTEL", "BELEN", "VENESSA", "ROSALINA", "ONA" , "GENOVEVA" , "COREY
TRID","SIDNEY","LAUREEN", "JANEEN","HOLLI","FAWN","VICKEY","TERESSA", "SHANTE", "RUBYE", "MARCELINA","
PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA", "NOVA", "MELINA", "MARQUERITE" , "MARGARETTE","
"JOSE", "INGEBORG" , "GIOVANNA", "GEMMA" , "CHRISTEL" , "AUDRY" , "ZORA" , "VITA", "VAN", "TRISH", "STEPHAINE","S
ITA","GLADIS", "EVELIA", "DAVIDA", "CHERRI","CECILY","ASHELY", "ANNABEL", "AGUSTINA", "WANITA","SHIRLY",
DA","JULIANN","JOHNIE", "ELVERA", "DELPHIA","CLAIR","CHRISTIANE", "CHAROLETTE", "CARRI", "AUGUSTINE","A
LAVINIA", "KUM", "KACTE", "JACKELINE", "HUONG" , "FELISA", "EMELIA", "ELEANORA" , "CYTHIA" , "CRISTIN", "CLYDE"
ORIAN", "DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA", "RANA", "NIKOLE","NEOMA", "MA
TE", "LUCRECIA", "KOURTNEY", "KATI", "JESUS", "JESENIA", "DIAMOND", "CRISTA", "AYANA" , "ALICA", "ALIA", "VINN
", "JANETT", "HANNELORE" , "GLENDORA" , "GERTRUD" , "GARNETT", "FREEDA" , "FREDERICA", "FLORANCE", "FLAVIA", "DE
"MANDA" , "MACIE","LADY", "KELLYE", "KELLEE","JOSLYN", "JASON", "INGER", "INDIRA", "GLINDA", "GLENNIS","FER
,"EMELDA", "ELENI", "DETRA", "CLEMMIE","CHERYLL" , "CHANTELL", "CATHEY", "ARNITA", "ARLA", "ANGLE", "ANGELIC
NDYCE", "ARLENA", "AMMIE" , "YANG" , "WILLETTE", "VANITA", "TUYET", "TINY", "SYREETA", "STLVA","SCOTT", "RONAL
E","ALLINE","YUKO","VELLA", "TRANG" , "TOWANDA" , "TESHA" , "SHERLYN", "NARCISA" , "MIGUELINA" , "MERI" , "MAYBE
"GENNIE","FRANCIE","FLORETTA","EXIE","EDDA","DREMA", "DELPHA", "BEV", "BARBAR", "ASSUNTA", "ARDELL", "AN
,"MARIKO" , "MARGERT", "LORIS", "LIZZETTE","LEISHA", "KAILA", "KA","JOANNIE","JERRICA", "JENE", "JANNET","
NE","BECKI","ARLETHA", "ARGELIA","ARA","ALITA", "YULANDA", "YON", "YESSENIA","TOBI", "TASIA","SYLVIE","
NNE", "SHALANDA", "SERITA", "RESSIE", "REFUGIA", "PAZ", "OLENE", "NA", "MERRILL" , "MARGHERITA", "MANDIE" , "MA
OI", "TARRA","TARI", "TAMMERA", "SHAKIA", "SADYE" , "RUTHANNE" , "ROCHEL" , "RIVKA" , "PURA" , "NENITA" , "NATISHA
", "XENIA", "WAVA","VANETTA","TORRIE", "TASHINA", "TANDY", "TAMBRA", "TAMA", "STEPANIE", "SHILA", "SHAUNTA"
TTIE","KERA","KENDAL", "KEMBERLY","KANISHA", "JULENE","JULE","JOSHUA", "JOHANNE", "JEFFREY", "JAMEE", "H
", "BRUNA", "BRITTANEY", "BRANDE","BILLI","BAO","ANTONETTA", "ANGLA", "ANGELYN", "ANALISA", "ALANE" , "WENQ

P s’ hOn Methodologies for Data Sciences

Reading from files in Python is easy.
It’s a three step operation. First we

. . . # Thi= i= a comment
associate our file with a variable #
. # Author : Lars Sorensen
name. In the old days this used to be sl
Called a “handle.” We then use thlS i Thi=z program ju=st reads from a file and prints it...
“file handle” or variable to read in the
print ("\nThis is the file reading programin®)
data.
fname = input ("Enter a filename: ")
infile = open(fname, "r")
When we are done using the data we e o

can close our file and let Python know
that we are done with it and will not
refer to it again.

infile.cloze ()

P s’ hOn Methodologies for Data Sciences

This i=s a comment

Open

huthor @ Lars Sorensen

This program just reads from a file and prints it...

e e e e e e

I{eaﬁi print ("\nThis i=s the file reading program\n™)

fname = input ("Enter a filename: "}
infile = open{fname, "r")

data = infile.read()

print (data)

Close infile.close ()

P s’ hon Methodologies for Data Sciences

. & filereader.py - C:/SimplePython/PythonProgram
Il’l the SAKAI resources fOldeI’ Unlt File Ec‘t __for'na‘r Run Options Windows Help

three I have a file called ‘numbers.dat’ S TURS N B m—

RButhor : Lars Sorensen

#

. # This prog:? jus is fro fil nd prints 1t ..
Code up the program to the right and e i
use 1t on numbers.dat. Remember, GEiRE(NaEhLE 18 Gie Eile Pealiny ProgTaEa)
you have to keep your program and fname = input ("Enter a filemame: ")
. . infile = (£)

your .dat file in the same directory. e e

print (data)

print ("The End")
What happens?

P s’ hOn Methodologies for Data Sciences

%6 filereader.py - C:/SimpIeP)rthon{PythonPr-

File Edit Format Run Options Windows Help

4 This is a comment

4a

R

Buthor : Lars Sorensen

+

This program just reads from a file and prints it...
+

print {"\nThis is the file reading program\n")

fname = input("BEnter a filename: "}

infile = open(fname, "r")
data = infile.read()
print (data)

print ("The End")

This is the file reading program

Enter a filename: numbers.dat
This is my number file
12

23

34

45

33

66

76

53

67

The End
=

You should see something just like this. Python prints the file
out just as it found it. Email me and tell me how many
characters are in this file and I will give you an extra credit
point towards the quiz for unit three.

P s’ hon Methodologies for Data Sciences

Thi= iz a comment X —

M The last line of the program shows us that data is just a

$# Author : Lars Sorensen string. It’s a big string though. It contains the entire first

T paragraph of the book Peter Pan.

This program just reads from a file and prints it...

* At the bottom of the program we print the 3rd and 23rd
SCNATIS 14 The e Eatiag Diontaaiy characters from the string. Count into the first sentence and

you’ll see...

fname = input ("Enter a filename: ")

infile = open (fname, "r"™)

data = infile.readl)

rint(data) Thizs iz the file reading program

rint (data[2], data[22]) Enter a filename: plaintext.tXt
| 211 children, except one, grow up. They soon know that they will grow up, and the way
Wendy knew was this. Ome day when she wa=s two vears old she was plaving in a garden, a
nd she plucked another flower and ranm with it to her mother. I suppose she muast have 1
ooked rather delightful, for Mrs Darling put her hand to her heart and cried, '"Ch, why
can't you remain like this for ever!' This was all that passed between them on the sub
ject, but henceforth Wendy knew that she must grow up. You always know after vou are ¢
wo. Two i= the beginning of the end.
1nmn

P s’ hOn Methodologies for Data Sciences

namesFile = open ("E22.CxL","r")
names = namesFile.read/()

Thi= get=s rid of the double gquotes
names — names.replace{('"', "™")

Thi= creates a list fm the =tring
names = names.split(",")

K

God ble=ss sort methods...
names.sort ()

the comma a= the delimeter

“MARY", "PATRICIA","LINDA", "BARBARA" , "ELIZABETH","JENNIFER", "MARIA", "SUSAN" , "MARGARET" , "DOROTHY" , "L
"EDITH", "KIM", "SHERRY", "SYLVIA", "JOSEPHINE" , "THELMA", "SHANNON", "SHEILA" , "ETHEL", "ELLEN", "ELAINE" "
STANCE", "LILLIE","CLAUDIA", "JACKIE", "MARCIA", "TANYA", "NELLIE" , "MINNIE", "MARLENE","HEIDI","GLENDA"
TE", "MELODY", "LUZ", "SUSIE", "OLIVIA", "FLORA", "SHELLEY", "KRISTY", "MAMIE", "LULA", "LOLA", "VERNA" , "BEUL
", "DELIA","SOPHIE", "KATE","PATTI", "LORENA","KELLIE","SONJA","LILA","LANA", "DARLA", "MAY", "MINDY","E
ROSETTA", "DEBORA", "CHERIE", "POLLY", "DINA", "JEWELL", "FAY", "JILLIAN", "DOROTHEA", "NELL", "TRUDY" , "ESPE
"DOLLY", "SYBIL","ABBY","LARA","DALE", "IVY","DEE", "WINNIE", "MARCY","LUISA","JERI", "MAGDALENA", "OFEL
I","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE", "MALLORY","CARLENE", "NITA","SELENA","TANISHA", "k
A", "ATSHA", "WILDA","KARYN", "CHERRY", "QUEEN", "MAURA" , "MAI", "EVANGELINA", "ROSANNA", "HALLIE", "ERNA","
MBERLEE", "JASMIN", "RENAE", "ZELDA", "ELDA" , "MA" , "JUSTINA", "GUSSIE", "EMILIE","CAMILLA", "ABBIE","ROCIO
YNN", "LUCRETIA", "KARRIE", "DINAH" , "DANIELA" , "ALECIA", "ADELINA","VERNICE", "SHIELA","PORTIA", "MERRY",
CARIDAD", "VADA", "UNA", "ARETHA" , "PEARLINE" , "MARJORY" , "MARCELA", "FLOR" , "EVETTE", "ELOUISE", "ALINA","T
GERTIE", "DARLEEN", "THEA", "SHARONDA" , "SHANTEL" , "BELEN" , "VENESSA" , "ROSALINA" , "ONA" , "GENOVEVA" , "COREY
TRID","SIDNEY", "LAUREEN", "JANEEN", "HOLLI", "FAWN", "VICKEY", "TERESSA", "SHANTE" , "RUBYE" , "MARCELINA","
PEGGIE", "NOVELLA", "NILA", "MAYBELLE", "JENELLE", "CARINA", "NOVA" , "MELINA" , "MARQUERITE" , "MARGARETTE", "
"JOSE", "INGEBORG" , "GIOVANNA" , "GEMMA" , "CHRISTEL", "AUDRY", "ZORA", "VITA" , "VAN", "TRISH" , "STEPHAINE","S
ITA","GLADIS", "EVELIA", "DAVIDA", "CHERRI", "CECILY","ASHELY","ANNABEL", "AGUSTINA", "WANITA","SHIRLY",
DA", "JULTANN", "JOHNIE", "ELVERA", "DELPHIA", "CLAIR", "CHRISTIANE", "CHAROLETTE", "CARRI", "AUGUSTINE" , "A
LAVINIA","KUM","KACIE","JACKELINE", "HUONG" , "FELISA", "EMELIA", "ELEANORA" , "CYTHIA", "CRISTIN", "CLYDE"
ORIAN", "DENITA","DALLAS","CHI","BILLYE","ALEXANDER", "TOMIKA", "SHARITA", "RANA", "NIKOLE", "NEOMA", "MA
TE", "LUCRECIA" , "KOURTNEY" , "KATI", "JESUS" , "JESENIA", "DIAMOND", "CRISTA", "AYANA", "ALICA" , "ALIA" , "VINN
", "JANETT", "HANNELORE" , "GLENDORA" , "GERTRUD" , "GARNETT" , "FREEDA" , "FREDERICA" , "FLORANCE" , "FLAVIA", "DE
"MANDA", "MACIE" , "LADY", "KELLYE", "KELLEE", "JOSLYN", "JASON" , "INGER" , "INDIRA" , "GLINDA" , "GLENNIS", "FER
,"EMELDA", "ELENI", "DETRA", "CLEMMIE" , "CHERYLL", "CHANTELL" , "CATHEY" , "ARNITA" , "ARLA", "ANGLE", "ANGELIC
NDYCE", "ARLENA" , "AMMIE" , "YANG" , "WILLETTE", "VANITA", "TUYET", "TINY", "SYREETA", "SILVA","SCOTT", "RONAL
E","ALLINE","YUKO", "VELLA", "TRANG", "TOWANDA" , "TESHA" , "SHERLYN", "NARCISA" , "MIGUELINA" , "MERL" , "MAYBE
"GENNIE", "FRANCIE", "FLORETTA","EXIE", "EDDA", "DREMA", "DELPHA", "BEV" , "BARBAR" , "ASSUNTA" , "ARDELL" , "AN
L "MARIKO" , "MARGERT" , "LORIS", "LIZZETTE", "LEISHA", "KAILA", "KA", "JOANNIE", "JERRICA", "JENE", "JANNET","
NE","BECKI", "ARLETHA", "ARGELIA", "ARA", "ALITA", "YULANDA", "YON" , "YESSENIA", "TOBI", "TASIA","SYLVIE","
NNE", "SHALANDA" , "SERITA" , "RESSIE" , "REFUGIA", "PAZ", "OLENE", "NA", "MERRILL" , "MARGHERITA" , "MANDIE" , "MA
OI","TARRA","TARI","TAMMERA" , "SHAKIA" , "SADYE" , "RUTHANNE" , "ROCHEL" , "RIVKA" , "PURA" , "NENITA" , "NATISHA
", "XENIA", "WAVA", "VANETTA", "TORRIE", "TASHINA", "TANDY" , "TAMBRA" , "TAMA" , "STEPANIE", "SHILA" "SHAUNTA"
TTIE","KERA", "KENDAL", "KEMBERLY", "KANISHA" , "JULENE" , "JULE", "JOSHUA", "JOHANNE", "JEFFREY" , " JAMEE", "H
", "BRUNA", "BRITTANEY", "BRANDE", "BILLI","BAO", "ANTONETTA", "ANGLA", "ANGELYN" , "ANALISA", "ALANE" , "WENO

Do you remember when I loaded all those names into a list last Unit so we
could look for my name? I told you that you would have to wait to see how

I loaded them from a file? Well, the wait 1s over...

P s’ hOn Methodologies for Data Sciences

Here is a program that reads the file (we do not
ask the user any longer, we hardcode the name of
our file in this example) and manipulates it so we
can put the names from the file into a list.

E22.txt is our file with 5,162 names in it. I read it
into a string called names. I use replace to get rid
of the quotes (we will do this to clean up data
files often), and we use split to take the parts of
the string delimited (just a place where we know
to break, here when we see a comma) by a
comma (the delimiter, the comma, is not saved)
and create a list with it.

Once we have a list we can iterate over it, print it,
do whatever we like with it.

Ruthor Lars

Load the names file into a list

Open the names file and create a big string called names with the

whole file in it
namezFile = open{"E2Z2.txt","r")
names = namesFile.read()

print the length

print {("This file has", len{names), "characters in ::.Zd"J

Lets make this a list
This gets rid of the double gquotes
it takes a "™ and makes it blank or ""

names = names.replace('™', ")

This creates a list fm the string w the comma as the delimeter
names = names.splic (", "

now I have a list with my names as items.

God bless sort methods...
names.s30rt ()

print the items out - wait for input tho
wait = input ("Press enter to list names™)
for 1 in names:

print (i)

P s’ hon Methodologies for Data Sciences

Author Lars

(= | FOL PNy
HR

HAE

HAT

Load the names file into a list

This program should print all

Open the names file and create a big string called names with the

whole file in it HATLEY 5,168 names to the screen (it
HAL . .

S . T e N HALEY takes a while, press CTRL-C if

ACEIEES =5 e e Eer) v gk you’re bored with it.) This is
HALLEY . .

print the length HALLTE not how long it takes to iterate

rint ("This file hasz", len({r , "characters in it.\m" HRN

pramn(es Ee T reninenss) o ¥ HANA through the file (we’ll actually

A e g show this with the time module

This gets rid of the double guotes F 2 .

it takesz a " and makes it blank or " HANK later), but how long it takes to

names = names.replace('™', "") HANHL . .

This creates a list fm the string w the comma as the delimeter HANNAH dlSplay thlngs on the screen.

names = names.splitc (", "} HANNELORE
HANE

now I have a list with my names as items. HARLAN Note Wha‘[we dld Wlth the

God bless sort methods... HRRLAND .

names.sort () HARLEY Input statement to create a
HLRMONY

print the items out - wait for input tho HAROCLD pause'“

wait = input ("Press enter to list names") HARRIET

for i in names: HALRRIETT

print (i)

P s’ hon Methodologies for Data Sciences

Because this is Python there has to be some
special, easy “Pythonic” way of doing
things efficiently.

Python gives us a special way to iterate
through a file line by line. By using “with”
and “as” we can handle opening and closing
automatically and iterate through a file line
by line.

Look at what the program to the right does
very carefully.

This iz a comment
=
buthor : Lars Sorensen
=
Thi=s program reads in Humbers.dat and finds the
zum of the numbers, skipping the header
=
accum = 0
with open("numbers.dat", "r"} a=s I:
for line in f:
if [line[0:4] = 'Thi='"}:
aLcum = accum + int {line)

il sl =]

L LIl

Fh

print ("The =sum

(]

ile's pumbers iz: ",

acocunm)

P s’ hon Methodologies for Data Sciences

This is a comment This is the output of the program. Notice how the first
thing we do in the loop is to test for the header. When
Author : Lars Sorensen we see it we want to do nothing. We can do this is

Python with the pass keyword.
This program reads in Humbers.dat and finds the
sum of the numbers, skipping the header Then, we iterate through the file, casting the string
numbers to integers and adding them to an accumulator.
When the loop is done we print the sum.

M e M He e e e

accum = 0
with open{"number=.dat"™, "r") a=s f:

s T
for line in I The sum of the file's numbers is: 409
if [line[0:4] = 'Thi=s')} .
accum = accum + int {(line)

When in doubt, use open and close, but if you
know that you want to quickly open a file and run
through it line by line, using with-as is a good
technique.

P s’ hon Methodologies for Data Sciences

Writing to files

We can read from files to get data to use in our
programs, but we can also create new files with the
data we create with our programs.

To write to a file we use the “open” function to
attach the file to a variable, but this time we use a
“w” to let Python know we intend to write data to
this file. Then, using the out file variable, we use the
write method to send the data to the writable file.

Examine the code to the right. Can you tell what it
does?

This i=s a comment

T

Author : Lars Sorensen

7

This program reads from a file and writes it to
another file.... backwards!

T

print ("\nThi=s i=s the backwards output program\n™)
rname = "plaintext.txc®

oname = "backwards.txt"

rFile = open(rname, "r")
aFile = open(oname, "wW")

data = rFile.read()
print (len(data))

for i in range(len{dataj)-1, -1, -1):
oFile.write (data[i]}|

rFile.close ()
aFile.close ()

P s’ hon Methodologies for Data Sciences

Thi=s is a comment

£

S S I used my file reading program below to examine my new

This program reads from a file and writes it to file, backwards.txt. The program read the entire first chapter

another file.... backwards! . :

s g Ll of Peter Pan into the string data. Then, character by
character, the program writes it to a new file, backwards.

print {"\nThis is the backwards output programin®)

rname = "plaintext.txt" Examine the for loop closely to see what we did.

oname = "backwards.txc®

rFile = open(rname, "r")

oFile = open(oname, "wW") This is the file reading program

data = rFile.read()

print {len{data}}

for i in range {len(data)-1,
oFile.write (data[i])]

rFile.clase ()
oFile.close ()

__"L'_

=

Enter a filename: backwards.txt

.dne eht fo gninnigek eht si owl .owt era uoy retfa wonk syvawla uo¥ .pu worg tsum ehs
taht wenk ydneW htrofecneh tub ,tcejbus eht no meht neewteb dessap taht 1lla =saw sihT !
lreve rof siht ekil niamer uoy t'mac vhw ,h3' ,deirc dna traeh reh ot dnah reh tup gni
lraD =rM rof ,lufthgiled rehtar dekool evah tsum ehs esoppus I .rehtom reh ot ti htiw
nar dna rewolf rehtona dekculp ehs dna ,nedrag a ni gniyalp saw ehs dlo sraey owt saw
ehs nehw vad enC .siht saw wenk ydneW wvaw eht dna ,pu worg lliw yeht taht wonk noos ye

hT .pu worg .,enc tpecxe ,nerdlihc 1134
ot

P s’ hon Methodologies for Data Sciences

This is a comment
F
Buthor : Lars Sorensen . .
$ Look at the file names in the code to the left. I just took the file that was
This program reads from a file and writes it to output in the previous program and I’'m reading it in as input for this
§ RUECE SlPsces WNERREERS program. To test things I reversed my output file yet again to return to
.. h
the original text. As you can read below, it worked.
print {("\nThis is the backwards output programin™}
The output files you write to one moment become the input files for
. - i ol other jobs later on. We can also open an existing file and “append” to it,
gname = "plainredux.txt” . .
} but that is for another time...
rFile = open({rname, "r")
oFile = open(oname, "w")
Setn = PRl rea) This i=s the file reading program

print(len(data)) Enter a filename: plainredux.t=xt

A1l children, except one, grow up. They =scon know that they will grow up, and the way

for i in range{len{data}-1, -1, -1}): Wendy knew was this. OCne day when she was two years old she was playing in a garden, a
oFile.write(data[i]) nd she plucked another flower and ran with it teo her mother. I suppose she must have 1
ooked rather delightful, for Mrs Darling put her hand teo her heart and cried, 'Ch, why

rFile.claose () can't you remain like this for ever!' This was all that passed between them on the sub

ject, but henceforth Wendy knew that she must grow up. You alwayvs know after you are t©
wo. Two is the beginning of the end.
>335 |

aoFile.close ()

Methodologies for Data Sciences

Pickles?

P 5’ hOn Methodologies for Data Sciences

As usual, Python has a quick and nifty way to write your data and read
it back in a more Pythonic fashion. It’s called Pickling.

When we get more involved with Python data types we will see that
there are a myriad of ways that we can structure our data. Using lists
to organize the elemental types like Integer, Float and Strings is just
scratching the surface. We will soon see objects that can keep many
different kinds of data.

In the past, saving these objects was a problem. A file wants a
sequential list of characters or binary digits. Programmers would have
to unpack their objects and make them linear in order to save them.
This process was called “serialization.” It was a pain. Now, we don’t
have to go through that tedious process any longer, most major
languages provide ways to write objects to data files (see JSON for
another popular method). Python lets us “pickle” them.

P s’ hon Methodologies for Data Sciences

In the code to the left we pickle a list.

First we type ‘import pickle’. This allows us to use the pickle
code in the built in pickle library. Can you say, “Great segue
Lars”? We’ll be learning about modules and libraries in about 5
minutes. More soon...

First we create a list. Then we open a file for writing. The ‘b’
next to the ‘w’ means that we want to open the file in ‘binary’
mode, we’ll be saving our data in binary.

Then we use the pickle library’s “dump” (an old and semi
unfortunate computer science term for quickly offloading and

saving data to file or device) method. This saves our list to a file.

This is not very helpful if we cannot read the list back when we
need it. We test this by opening the file again, only this time for
reading binary data. We then use the pickle.load method to get

our object (in this case a list) back from the file. When we print it

we see that it is our list.

This is a comment

=

Zuthor Lars

=

Playing w pickle

import pickle

create a list

myList = [3,2,4,5,6,7,8,54,2,1,
print ("My list before Pickling™)
print (myList)

save my list to a pickle file

oFile = "picklefile.dat™
open the file for writing
myFile = open{oFile, "wb')

this writes the object a to the
file named "testfile’
pickle.dump (myList,myFile)

here we cloze the fileObject
myFile.close ()

We have saved the List and maintained the 3t:;ct::d
How we test

we open the file for reading

fileCbject = open{oFile, "'rb')

load the object from the file into war b

b = pickle.load(fileObject)

print {"Back from pickling:™}

print (b}

56,12, 'four',23,23.4,56,22.4,55, 'six']

P s’ hon Methodologies for Data Sciences

This is a comment
4

Zuthor Lars

Don’t type this code in. I saved it to a file :

Playing w pickle

called “pickle.py” and put it up in the e pierie
SAKALI resources for Unit 3. B T

myList = [3,2,4,5.6,7,8,54,2,4,56,12, "fone" 23,33 .4,.56,233.4,55, "aix"]
print ("My list before Pickling™)

print (myList)

save my list to a pickle file

Go there, download it, and run it for
yourself. ¥ St Bl Bae it

myFile = open{oFile, "wb')

. . . # this writes the object a to the
Now change the List and try it again. # file named ‘testrile:
pickle.dump (myList,myFile)
here we cloze the fileObject
myFile.close ()

NOW try tO SaVe IntegeI'S and FlOatS. What # We have saved the List and maintained the 3t::.ct:.:e|
How we test
happenS? # we open the file for reading
fileCbject = open{oFile, "'rb')
load the object from the file into war b
b = pickle.load(fileObject)
print {"Back from pickling:™}

print (b}

P 5’ hOn Methodologies for Data Sciences

Behind the Curtain

The Data Science Tie-in

The next time you read or hear about “Marshalling
Big Data.” you can think about pickling.

Marshalling is what us computer geeks did to save
objects before we started calling it serialization in
the late eighties and nineties.

Now, for some unknown reason, we are using the
old Marshalling routines for Data Warehousing
and Data Mining again. This is likely because,
while older, Marshalling is seen as a more
complete process as data AND an object’s
codebase are maintained whereas with a regular
serialized object we only rebuild the data
component.

P 5’ hOn Methodologies for Data Sciences

@
KEEP
CALM

You're learning

Computer
Science

Two thirds of the way through.

Take a break. Think about what we have covered with
functions and file 1/O.

After that continue on to find out about modularity and
how we can not only use code that’s been pre-written and
kept in a library for us, but see how we can break up our
code into different files to keep it more organized.

P s’ hon Methodologies for Data Sciences

Modularity

P s’ hOn Methodologies for Data Sciences

Modularity is the idea that when we start
solving more complex problems with
our programs we are going to want to
start breaking them down into smaller
sub-problems, creating code for these
smaller problems and then stringing
together our small solutions to provide a

o i I'- ; el s R
big solution for the complex problem. +— . EER ﬁ 2 ala _] Iﬁ%

That sounds complicated, but it’s not. , : ® BT i
What we are going to discover is that v 1 S - - AL "
there is a world of pre-written code out & o 2L < - s

there for us to use and that it is simple to
begin creating and saving our own code,
getting more organized and promoting
code reuse.

P s’ hon Methodologies for Data Sciences

Remember at the beginning of the unit we
discussed the built in functions?

Imagine if there were scores and scores more
functions for us to use in our programming. It
turns out that there is, but if Python were to load
all of them into memory it would become very
sluggish and slow.

To combat this we have to tell Python that we
want to “load” or “import” particular libraries so
we can use the functions they offer. In this way
we only load into memory what we are going to
use.

2. Built-in Functions

The Python interpreter has a number of functions and types built into it that are always available. They are list

abs()

all()

any ()
ascii()
bin()
bool()
bytearray()
bytes()
callable()
chr()
classmethod()
compile()
complex()

delattr()

dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()
hasattr()
hash()

Built-in Functions
help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

Tdist()
locals()
map ()

max ()

memoryview()

min()
next()
object()
oct()
open()
ord()
pow()
print()
property()
range()
repr()
reversed()
round()

set()

setattr()
slice()
sorted()
staticmethod()
str()

sum()
super()
tuple()
type()
vars()

zip()
__dimport__()

P s’ hon Methodologies for Data Sciences

Importing and Using Python Standard Library Modules

Python offers a rich library of pre-written code
for us to use in our programs.

Clicking on the link below will take you to the
documentation for the Python Standard
Library. Being in the standard library just
means that these functions (and classes, we’ll
get to that in unit 5) are always available to
Python programmers when they install Python
on their systems.

LA L L Lo
L L]
- @ k4 - =
= @ W - L =3 -
- o o0 99 - -

oo @ - s O e @
- - & L] - e @ -
SO 2 DS - > >0 - ds
e @ €& * P00 D k- L
L3 - L2 T X 2 T 3 3 T J - -
- @ oe® @9 @ - - [1]
- - L L - -
L L 1 1 N N - = -
- e e L N K 1 1 J - - %
) - - s de -
e W ® WO o am
cTeoeee SESDD
- e o - o o® =@ @ *o®® DO -
- L L R 1 L -

https://docs.python.org/3/library/

P s’ hOn Methodologies for Data Sciences

Standard Library

The standard library documentation lets
you know what is available to you. It
lists the different “modules” that you can
import into your programs and use in
your code.

We are going to look at the Python
import command and use it to import
functions from three different modules
from the Standard library: math,
statistics and time.

s topic

Srammar specification
ic

Jction

ge
Bug
urce

earch
/[Go |

h terms or a module,
ction name.

The Python Standard Library

While The Python Language Reference describes the exact syntax and semantics of the
describes the standard library that is distributed with Python. It also describes some ¢
included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicatec
library contains built-in modules (written in C) that provide access to system function
inaccessible to Python programmers, as well as modules written in Python that provide
occur in everyday programming. Some of these modules are explicitly designed to en
programs by abstracting away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard |
components. For Unix-like operating systems Python is normally provided as a collection
packaging tools provided with the operating system to obtain some or all of the optional co

In addition to the standard library, there is a growing collection of several thousand compc
packages and entire application development frameworks), available from the Python Paclt

e 1. Introduction
e 2. Built-in Functions
e 3. Built-in Constants
o 3.1. Constants added by the site module

= A Duild im Tinman

https://docs.python.org/3/library/index.html

P s’ hOn Methodologies for Data Sciences

Import

Look to the right. We have a module in the standard library
called “math.” With the import command we tell Python that
we are going to be using functions from this library.

As you can see, we use the math code by calling a function
with the name of the module (math), a period, and then the
function we want to use.

We use the pre-written “sqrt” function to get square roots, we
can translate degrees to radians (Pythons trig functions use
radians) and we can even use a ‘constant.” (pi). A constant is
just a variable whose value never changes. The last time |
looked pi was still 3.141592... so this is a good candidate for a
constant variable. The math module knows this and defines it
ahead of time for us.

This is a comment
3
¥ Author: Lars
z
Play with modules
>
: 5.E30951884845301
lmport math 3.141592653580793
12
720
a = 34 ki
i " 1.0
b = -12 3g
k = 34.12 >>>

print (math.sgrt (324})
print (math.pi)
print [(abs (b})

print (math. factorial (&))
print (math.sin(math.radians (90}))
print ([math.ceil (c))

P s’ hOn Methodologies for Data Sciences

We can also use the ‘from’ command to tell Python to load
particular functions and constants into our ‘namespace.’
This is just a fancy way of saying that we don’t have to put
‘math.’ in front of our calls, we have tied this to the math
module with our from command.

As you can see to the right, now we just have access to sqrt,
pi or ceil (ceiling, it just rounds up) and do not have to call
them with math.* in front of the function call.

We can also use ‘from math import * This loads ALL of
the function names into the namespace. You may see this in
Zelle or other places so | wanted you to see it here, but I
recommend against using it. It loads things we will not need
into our code and can lead to confusion as you will have to
avoid EVERY function and constant name that the math
module uses. It’s best to avoid it.

L Dl Sgrt, ceil

-

Thi=s i=z a comment
F

buthor: Lars

F

Play with modules
from math impor

a2 34

= -12

o= 3412

print {=grt {34})
print {pi}
print {ceil {c})

5.830551854845301
3.141 5892653588753
b

L e

P s’ hOn Methodologies for Data Sciences

Remember, you can always
look up how functions work
by checking out the online
documentation. Reading and
understanding these
documents is crucial to
becoming a proficient
programmer so start looking
at them.

You do not have to
understand everything that is
there yet (you won’t, no
worries) but you should start
becoming familiar with these
online docs.

Table Of Contents

9.2. math — Mathematical

functions

= 9.2.1. Number-theoretic
and representation
functions

= 922 Power and
logarithmic functions

= 9.2.3. Trigonometric
functions

= 924 Angular conversion

= 9.2.5. Hyperbolic
functions

= 9.2.6. Special functions

= 9.2.7. Constants

Previous topic

9.1. numbers — Numeric
abstract base classes

Next topic

9.3. cmath — Mathematical
functions for complex numbers

9.2. math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if you require support
for complex numbers. The distinction between functions which support complex numbers and those which don’t is made since most users
do not want to learn quite as much mathematics as required to understand complex numbers. Receiving an exception instead of a
complex result allows earlier detection of the unexpected complex number used as a parameter, so that the programmer can determine
how and why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are floats.

9.2.1. Number-theoretic and representation functions

math. ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.__ceil__ (), which should
return an Integral value.

math. copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0,

https://docs.python.org/3/library/math.html

P 5’ hOn Methodologies for Data Sciences

More Behind the Curtain

| PsychoPy

= smtpd

| Python27 P Stplit
| Python34 ¥ sndhar
| DLLs P socket
I Doc ® socketserver
| include i sre_compile
| Lib = sre_constants
| _pycache__) sre_parse
| asyncio B ssl
| collections ™ stat
| concurrent \F statistics
I ctypes P string
B curses [B stringprep
I dbm P struct
K distutils i subprocess
A email I sunau

The code for the standard library modules is actually on your hard drive! When Python sees an import command it looks for the
code in three places. First, it will look in the directory where your program is (we’ll rely on this later when we write our own
modules). Second, it reads a special “environment’ variable that your OS (Windows, Linux, MAC) keeps called PYTHONPATH.
This variable keeps a list of directories that Python should use for code. Lastly, installations will have a special place for Python
libraries. I show a snip of a Windows library above. On LINUX systems the directory is usually usr/local/lib/python.

P s’ hOn Methodologies for Data Sciences

return _sum(data)/n

72 Bdef mean (data) :
73 N R I etlic me
74
80
81
82
83
Because the code is on your hard drive you can look
at it anytime you want! This is a great way to learn
about_ programming gnd see what the module . B o T id e bt
functions you are using are actually doing behind data = list(data)
. . 90 = len(d
the scenes. Here I look at the ‘mean’ function in the | . [~ 5"
Statistics module. Slnce we are a programming ClaSS 92 raise StatisticsError('mean requires at least one data point')
93

leaning towards Data Science, let’s go use the
statistics package...

P s’ hon Methodologies for Data Sciences

A quick look at the library documentation
for the statistics module shows me some
of the functions I can use.

I have mean, mode, median. I even have
spread functions so I can get a variance
and a standard deviation if I have a
population (or a sample). That means I
have what I need to do Z scores, yes?

Let’s do it...

9.7.1. Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean() Arithmetic mean (“average”) of data.
median() Median (middle value) of data.
median_low() Low median of data.
median_high() High median of data.
median_grouped() Median, or 50th percentile, of grouped data.
mode () I(\j/lode (most common value) of discrete

ata.

9.7.2. Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or average values.

pstdev() Population standard deviation of
data.

pvariance() Population variance of data.

stdev() Sample standard deviation of data.

variance() Sample variance of data.

https://docs.python.org/3/library/statistics.html

P s’ hon Methodologies for Data Sciences

This i=s a comment

Author: Lars

I first import the statistics library. Then
I print some values. Then, by using the
mean and the standard deviation I can
produce Z scores for individual list
items to see how far away they are R
from the mean. print (statistics.mode (myList))

pri:t(statistics.median(myList]H
print (statistics.pvariance (myList})
print (statistics.pstdev (myList))

e e e e e

Uze the statistics library

import statistics

myList = [12, 23, 34, 2, 45, &5, 7, 34, 12, 34, 5]

=3

Now I have the tools to make a Z =3core

£ = [(myList[2] - statistics.mean (myList))/ statistics.pstdev(myList)
print ("The Z score for™, myList[Z2],.™is™.z)

z = (myList[3] - statistics.mean (myList)),/ statistics.pstdev (myList)
print {(*The Z score for™,myList[3]."1is";2)

x|

P s’ hon Methodologies for Data Sciences

¥ Thiz iz a comment

%
/ My results (seen below in blue) make sense. Think about it. The mean is around

25, so that would be at the center of the bell curve. The third item is 34, which is 9
! away from the mean. Seeing as the standard deviation is 18.6, a Z score of .49
makes sense, I’'m about .5 standard deviations from the mean (9 is half of 18).

¥ Use the statistics library

import statistics

muiase = LS 35 S & 95 W T Sk 35 S 51 The same holds true for the second Z score. With the ‘2’ I am 23 to the left of the
print (statistics.mean (myLisc)) mean, so [am more than a standard deviation (18.6) away from the mean and I get
pr'l_:t. (statistics.mode (myList)) a Z score 0f—122

print (statistics.median (myLi=stc)]l
print (statistics.pvariance (myList}))
print (statistics.pstdev (myLi=c})

Now we can do simple frequentist stats without SPSS or R. All we need is

Now I have the tools to make a Z score Python

z = (myList[2] - statistics.mean (myList))/ statistics.pstdev (myList)

print {("The Z score for® mylist[2];"ia™;=z)

z = (myList[3] - statistics.mean (mylist))/ statistics.pstdev|myList)

print ("The T score for® mylist[3];%i=". =)

24.818181818181817

34

23

348.87603305785126

18.678223498444687

The Z score for 34 is 0.49157877260558225 —
The Z score for 2 is -1.2216462566732782 X

g

P s’ hon Methodologies for Data Sciences

Now we look at the time _ _
library. I am only going to use 16.3. time — Time access and conversions
one function from it (go check
out the others) but it lets me

This module provides various time-related functions. For related functionality, see also the datetime and calendar modules.

. . Although this module is always available, not all functions are available on all platforms. Most of the functions defined in this
time my OperatlonS. platform C library functions with the same name. It may sometimes be helpful to consult the platform documentation, k
semantics of these functions varies among platforms.

I use the tlme flll'lCtiOI’l to get An explanation of some terminology and conventions is in order.
the current time as the program e The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch” is zero. F

.. epoch is 1970. To find out what the epoch is, look at gmtime(0).
runs. This is pretty powerful

e The functions in this module may not handle dates and times before the epoch or far in the future. The cut-off point in

because now I can begln to determined by the C library; for 32-bit systems, it is typically in 2038.

cxamine hOW long 1t takes my « Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year 2000 issues, sir
and times are represented internally as seconds since the epoch. Function strptime() can parse 2-digit years whe

programs to run. format code. When 2-digit years are parsed, they are converted according to the POSIX and ISO C standards: values
mannad tA 10R0_1000 anAd valiiae N_AQ ara mannad +tAa 2NNN_J27NAR

By using this you can begin to
see how truly fast computers https://docs.python.org/3/library/time.htmi

arc.

P s’ hon Methodologies for Data Sciences

Here I grab some code that acts as a
generator (behind the curtain from Unit
2, yes) for Fibonacci numbers.

If memory serves this code was used
for Euler 25. I needed to find the index
of the first Fibonacci number with 1000
digits.

I grab the time, perform my work, and
then grab the time again, this time
minusing the start time to get the
elapsed time for my operation.

I created and examined 4782 Fibonacci
numbers in about a tenth of a second.
Starting to get the idea? Fast.

OK, now we can generate fibs, lets test
start = time.time ()

c=1
[for i in fibby (5000} :
c++= 1

#print {len(str{i)))
if len{stri(i)} >= 1000:

print ("The answer i= ", c)
elapsed = time.time() - =start
print [("The answer was found in", elapsed,"seconds")
I did some testing to ballpark the seed. 4782 i=s what we get in

a second...

e
The answer is 4782

lea= than

The answer was found in 0.12013B88358069824 =seconds

e e

P s’ hOn Methodologies for Data Sciences

Before we discuss creating our own modules we need to
discuss one more thing, third party libraries. Often, especially
with Python, the most popular modules are not found in the
standard library. They are created by third party programmers
and released for use in the Python community. These libraries
need to be installed on your systems just like when you ﬁ
installed Python, but once installed you can import their code

just like you imported from the standard library.

Some of these libraries have become part of every Python
programmers tool kit. The four I show to the right are just a
sample. Pygame is used to make video games (I will be
showing you some of this in the coming weeks), Numpy and
Scipy are no-brainers for scientific computing tasks and
matplotlib is used for data visualization (we will be using this
in unit 4).

P s’ hOn Methodologies for Data Sciences

Using built in functions, code from the Standard
Python library and even code from third party
libraries can save us a lot of time and be very
convenient, but code reuse is not the only benefit of
modularity and compartmentalization.

It can also serve to help us organize our own code and
begin to create libraries of our own. It allows us to
create files full of code that we know we will reuse.
Code that is specific to us.

[am going to run through a simple example to show
you what I mean.

P s’ hOn Methodologies for Data Sciences

Here I create a simple file (from here
forwards known as a module. That’s
what Python calls it, so when in
Rome...) called ‘silly.py’

It contains four simple math
functions. If you were to run this
code nothing would happen (try it).
This is just a list of functions waiting
to be used.

Code this up for yourself.

Fi silly.py - C:fSirﬁPythoanythonPrograms,f'siliy.py

S e o e e e | T

lee Edit Format Run Options Windows Help
o

his is a comment

(o)

author : Lars

A library of silly functions...

def addme (a,b) :

xn a + b

dief subme (a,b):

A

def multme(a,b) :

return a * b

ief divme (a,b):

rn a / b

P s’ hOn Methodologies for Data Sciences

Now I create a new module. It
contains two void functions that just
print a header and a footer to the
screen.

I save this (in the same directory as
silly.py) as sillyheads.py

Code this up too. Stay with me, i1t’1l
make sense in a second...

& sillyheads.py - C/SimplePython/PythonPrograms/sillyheads.py

e o s e sHe e

File. Edit Format Run Options Windows Help

This is a comment
author : Lars

a library of silly header functions...

def printheader():

print ("These are some math answers for my report®™)

-D?-—'_nt(|"irxrrxirxxxr‘rx*xwirxxx#xxx*x*xxr‘rxwk.\'rxxx#xxxi:x*xxir"]

=f printfooter(}:

-py--'_nt(|'*x.\r.\rx:’:-r*r.\r:rx:-r:-r:rx#x*x.\r.\rx:’:-r'-r.\rxx'x:-r:r.\r#x*x.\r.*rx::".-r'-r.\rrx"]

print (" That's all folks!!"™)

P s’ hOn Methodologies for Data Sciences

Now it will all come together.

I create a function. It’s called doMath(). The first thing I
do is import from my two previous modules. I only
import what [am going to use (addme and divme, not
multme and subme).

I then call printheader(). Then I have two print functions
that use my math functions inside of them. I then call for
my footers. Now, this is all in a function. In order to
run the program I need to run the function. I do this at
the bottom of the program with the doMath() function
call.

Create this program. Call it usesilly.py. Place it in the
directory with the two modules you created previously.

& usesilly.py - C:/SimplePython/PythonPrograms/usesilly.py

File: Edit Format Run Options Windows Help
This is a comment
4

auther : Lars

#

Using a library of silly functions...
i

def doMath():

from silly import addme, divme

from sillyvheads import printheader, printfooter

printheader ()

print{"the answer to 3 + 4 is : ", addme(3,4))

print ("the answer to 12 / 4 is: ", divme(12,4})
()

printfooter

main program
doMath ()

P s’ hOn Methodologies for Data Sciences

& usesilly.py - C:/SimplePython/PythonPrograms/usesilly.py

File: Edit Format Run Options Windows Help
This is a comment

aiithor’ © Lers

Using a library of silly functions...

T ——

e

ief doMathi():
from silly import addme, divme
from sillyheads import printheader, printfooter

printheader ()
print{"the answer to 3 + 4 is : ", addme(3,4})
print ("the answer to 12 / 4 is: ", divme(12,4)}
printfooter ()

4 main program
doMath ()

This is the result. The code to the left uses the two
modules we produced and does not have to type
them all over again. We created two of our own
modules, imported functions from both (you are
not limited to using only one library at a time) and
used them in a program.

T L =S e D b o] e
>

These are some math answers for my report

A RN RN R AR TR R AN TR N AT AR TRNATNRRE R

the answer to 3+ 4 is : 7

the answer to 12 / 4 is: 3.0
tédedtdtdadddaddsadastdididtdatddadd st sd

That's all folks!!

R e R S T AR e

P s’ hon Methodologies for Data Sciences

One explanation remains.

Why did we wrap our program code in the
form of a function?

I know you have seen this quite a bit in Zelle.
He likes to write programs in “main()”
functions and then run them with a main() call
as the last item of a program.

There’s a very simple reason why we do this...

& usesilly.py - C:/SimplePython/PythonPrograms/usesilly.py

File Edit Format Runm Options Windows Help
This is a comment
4

author : Lars

Using a library of s5illy functicns...

e A= e e e

- doMath() :
from silly import
From sillyheads import

addme, divme
printheader, printfooter

printheader ()
print{"the answer to 3 + 4 is : ", addme(3,4))
print ("the answer to 12 / 4 is: ", divme({12,4))

printfooter ()

main program
doMath ()

P s’ hOn Methodologies for Data Sciences

§ _ S— ¥4 useusesilly.py - C:/SimplePython/Pythonl
6 *usesilly.py - C/SimplePython/PythonPrograms/usesilly.py*

File: Edit Format Run Options Wind¢
File Edit Format. Run Options Windows Help (4 comment
This is a comment
a rt usesilly
author : Lars ;
i usesilly.doMath ()
"
Using a library of silly functions...
These are some math answers for my report
AT A AT TN AT AT AR TR AT AT I NN
3 the answer to 3 + 4 is @ 7
f doMathi(} : the answer to 12 / 4 is: 3.0
oIm Silly --\--::-, addﬂ.’le; dime xi;i*i*i**;i;i;;*i:{ixx*i*ixixi*ii*xixi‘k*v‘(i
= i = . That*' 1 1
rom sillyheads import printheader, printfooter xva R RS
printheader() . . .
rint ("the answer to 3 + 4 is : ", addme(3,4)) We do this because if we comment out the call to main() (see the code to
print("the answer to 12 / 4 is: ", divme(12,4)) the left) we have just taken our ‘program’ and turned it into a ‘module.’
printfooter () What I mean to say is that now we can actually import ‘usesilly’ into

another program and use it. Look above. I create a program called

useusesilly.py and just run the doMath() function. The results are the

) same as when I ran it previously. If this were a report I ran often I just
took a lot of work and created a structure that produces my report in one
line of code.

P s’ hOn Methodologies for Data Sciences

7 silly Dy T iRy hon/PyihonPrograms/silly. py 7 *usesilly.py - C;/SimplePython/PythonPrograms/usesilly.py*

File Edit Format Run Options: Windows Help - — = B -
§ THEE 36 &, COURAHE . File Edit Format Run Options Windows Help
¢ This is a comment
author : Lars i
¥
B library of silly functions... # author : Lars . .
" E ¥% useusesilly.py - C:/SimplePython/Python|
= _'_c'l 1ibr, Q'I-- cti ns — o - - -
ief addme (a,b) : . : gsing - tiReasyal sS4 LIy EunoIoRs. File Edit Format Run Options Windc
& Hub & sillyheads.py - C:/SimplePython/PythonPrograms/sillyheads.py ; '# comment
def subme(a,b): File Edit Format Run Options Windows Help def doMath():
z =B # This is a comment from s5illy import addme, divme rt usesilly
£ multme (a,b): # 1 5illyheads import printheader, printfooter
return a * b ¥ author : Lars usesilly.doMath ()
—_— _— # printheader()
- lmeta; :’.h # a library of silly header functions... print("the an to 3 + 4 i3 : ", addme(3,4))
print ("the answer to 12 / 4 is: ", divme(12,4))
3 s nbisadanil printfooter ()
der prim eaaer o
print ("These are some math answers for my report™)
Print (MxEkEd kxR kR kR kR IR I LR R IR IR I AR K IR I A d Kk xdx) .
= # main program
def printfooter(): £ damaey]
print(":wwx"xwx'wrwx’w'xwwwrww\“xwwwrwwwrwww’xw#ww%wwrw"]
print (" That's all folks!l")

From useusesilly.py I called the code in usesilly.py. From here I called the code in silly.py and sillyheads.py. In this way we have
compartmentalized, created headers, footers and math functions that can be reused, and codified an often used process (assuming this was
useful and NOT silly) so we can perform it often and with only one command. Powerful stuff.

P s’ hOn Methodologies for Data Sciences

To sum things up

Modularity or compartmentalization keeps distinct operations separate. This helps us to stay organized and it

keeps code from getting too long and complicated.

Remember to use good names for your modules and to keep in mind that you may use the code you are
writing in many different programs so keep things as general as you can while still getting the job done.

This is how professional programmers operate, they rarely write complete self-contained programs. They
will write modules for themselves and other programmers to use.

P s’ hOn Methodologies for Data Sciences

To sum things up

We have a world of code at our fingertips when we consider the Python Standard library. We can import
these functions and constants and use them in our own code. Make sure you are comfortable with using the
Python online documentation:

https://docs.python.org/3/library/

Down the road we will see how we can work with 3rd party libraries when we use matplotlib to create graphs
and visualizations with our data.

You can also make your own modules to organize your code and possibly reuse it down the line as we did
with all of our ‘silly” modules and code.

P s’ hOn Methodologies for Data Sciences

Finally!!!

We’re here. Welcome. You are now Python Programmers. We have covered the basics of imperative
(like a recipe, remember) programming. You have the rudiments. We’re halfway home. Take your
time absorbing these slides. Think back to what we have done in Units 1 and 2. You now have the
simple components of computer programming under your belt.

Data
Sequences
Iteration
Functions
Modularity

The basics are indeed under the belt, but there is still much to learn. We’ll worry about that later though. Right now we celebrate.

P s’ hon Methodologies for Data Sciences

Other cool resources

Byte is one of the best intro to Python books on the
web. You can use the website or you can look on the
SAKALI site for a PDF version that I put there.

You cannot get enough practice. Books for beginners
are all different and you will learn something new
every time you look at one. I guarantee it. I have
been programming for thirty-five years and I learn
things when I review these books. They are worth a
look.

Practice, practice, practice...

http://www.swaroopch.com/notes/python/

A Byte of Python

Swaroop C H — swaroop@swaroopch.com

Table of Contents

1. Welcome

. Dedication

. Preface

. Introduction
. Installation
. First Steps

. Basics

(0.0 N TR o QU o GRS SO C (U

. Operators and Expressions
9. Control Flow

10. Functions

11. Modules

12. Data Structures

13. Problem Solving

P s’ hOn Methodologies for Data Sciences

I know, I know...

Again, my eyes were bigger than my stomach (and I have a big stomach ;-)) when I wrote the syllabus.
As 1 did with dictionaries in the past Unit, I made a promise in the syllabus that I did not deliver on in these slides.

We will cover Exceptions and Exception handling in the next unit. We will likely do dictionaries there as well. It
makes sense as these two topics are a bit on the advanced side and will fit nicely in a Unit on Computer Science
considerations. That, and if I do not do dictionaries soon Eric will kill me, he really wants you guys to know about
them because he know how important they are to software development.

I will likely do a section next unit called ‘orphans’ and we’ll handle the things that were left behind in the first half of
the course.

P s’ hOn Methodologies for Data Sciences

A few simple exercises

1. Write a function called sphereArea(radius) that takes a radius and returns the area of a sphere
with that radius.

2. Rewrite Euler 6 using functions; Specifically, create functions for the sum of squares (sos) and the
square of the sums.

3. Write a function called sumN(n) that returns the sum of the numbers from 1 to n

4. Write a function called nthFib(n) to compute the nth Fibonacci number. Create a file that stores
the first 200.

5. Create a list of the first 1000 multiples of 17. Pickle the list. Then retrieve it from the file you saved
it to and print the value to the screen.

