
Python
Methodologies for Data Science

Lars Sorensen - 16:137:603
Fall 2015 - biglars@cs.rutgers.edu
Unit Four

mailto:biglars@cs.rutgers.edu

Python Methodologies for Data Sciences

Take a breath. You’ve done a lot in the last seven weeks...

Loading Python on your machine - Figuring out how to run IDLE - Using the Python interactive command window

Creating programs - Print function - Variables - Assignment - Arithmetic

Modulus - Strings - Integers - Floats - Casting - Input function

Booleans - Arithmetic conditionals (>, <, ==, !=, <=, >=) - Boolean operators (And, Or, Not) - if - elif - else

Sequences - strings - slicing - indexing, reverse indexing - len function - ord, chr - string methods

Lists - split method - append method - mutability of lists - mixed data types of lists

Loops - Iteration - for loops - range function - nested loops - while loops - sentinel loops - counters - accumulators

Interactive loops - definite loops - indefinite loops - keyword ‘in’ as set conditional

Functions - arguments - return types - scope - File I/O - opening, closing, reading from files, writing output to files, pickling

importing libraries - the Python Standard library - writing your own library - from import - third party modules, etc

Now that’s a whole lot of stuff....

Python Methodologies for Data Sciences

Welcome, my brave Python soldiers, to Unit 4. Unit 4 is going to be fun, trust me on this, because we are going
to be going behind the scenes and learning about some Computer Science (CS). For the most part, I took the
beginning of an Intro to CS course and extracted the CS from it to get you the first three units. At the end of the
day, I’m trying to make you Data Science programmers, not Computer Scientists, but now that you have the
basics of an imperative programming language under your belt (and you do, you’re all Python programmers
now. Congrats!) I am going to give you a quick survey of some of the CS topics I extracted.
As I am going to explain, when we first learn computer science we get hit with tons about sorting and searching.
When you’re a 19 year old kid like I was at this stage, you just push through and don’t understand why this
tedium is necessary. When you become an old seasoned CS dog you realize that all that sorting was the best
way to introduce new students to algorithmic efficiency and that different ways of doing things ARE NOT equal.
As a Data Science class we will be interested in searching as well. We’re going to find out that the more we
know about our data the more efficient we can be as we examine it. If I know my data is sorted I can take a
search operation that would take one million steps to complete with sloppy data and complete it in twenty steps.
That’s right, Twenty.

Python Methodologies for Data Sciences

We are also going to look at one of the most vexing issues a young CS student can run into. Recursion.
It is not as hard as its reputation. It’s a simple concept actually, and it’s been proven that the most common kind
of recursion (the kind called tail recursion) is theoretically indistinguishable from a loop. We are not going to
bend your mind too much, but recursion gives us a chance to show you how to take advantage of the ways that
computer systems and memory work.
We are going to load a third party module, matlibplot, and create a graph with some data. Some actual Data
Science? Alert the media. Yes, we finally have enough chops to start doing some real data science.
Lastly, we are going to clean up some of the orphans as promised. Eric is going to be happy as we will be
covering the data structure that is dictionaries and we will be looking at ways to keep our programs from
crashing by learning about something called “exception handling.”
Sounds like a ton but it’s not. Let the fun begin.

Python Methodologies for Data Sciences

Sorting and Searching

Python Methodologies for Data Sciences

Ever since the sorting hat put me in
Slytherin I’ve been trying to prove that I’
m actually a nice guy and get myself
transferred out.

In order to work towards this goal I have
decided that we are just going to talk
about sorting and I am not going to force
you (as I was forced) to code up seven
useless sorts that you will never use or
think about again. (That said, feel free to
code up the selection and merge sort you
see in Zelle.)

We will code up a search, but it’s going
to be fun as it’s just a game of high and
low...

Python Methodologies for Data Sciences

Sorting is merely taking a sequence and putting it in order. It can be numeric order
or it can be lexicographic order (alphanumeric), it can be forwards or it can be
backwards, but at the end of the day we will have a sequence of objects that can be
said to have all the items on one side of it lesser than or equal to it and one side with
all of the objects greater than or equal to it.

There are many different ways to sort lists. The first one I was ever shown was
called a bubble sort. You went to the bottom of the list and started comparing the
bottom to what was above. If the thing above it was greater then you swapped
them. Then you went back down to the bottom and started over. You repeated this
process until your whole list was in order. A bubble sort (bubble because things
‘bubbled’ to the top of the list) is terribly inefficient. Every time the computer does
a comparison or does a swap is a use of resources. This takes time. When we talk
about efficient sorting or efficient algorithms we discuss how long they take, how
many operations they take and how much memory they use.

Python Methodologies for Data Sciences

http://www.sorting-algorithms.com/

Take a few minutes and examine
the different sorting algorithms at
the sorting algorithms website.
Click on an unsorted graphic and
watch it get sorted.

Run Bubble and then run the
QuickSort to see how differently
they work. If you are dead set on
coding a sorting algorithm you can
find the code (psuedocode, that
means easily readable words that
aren’t really a computer language)
with the algorithm links on top of
the page.

Python Methodologies for Data Sciences

To quickly sort a list in Python we can
use the sort() method that is available for
lists.

Python uses a sort called the timsort.

https://en.wikipedia.org/wiki/Timsort

While many sorts have been around for a
long time, the timsort has only been
around since 2002 and was developed
just for Python.

https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Timsort

Python Methodologies for Data Sciences

As we can see below the
sort() method sorts the items
of the list in place. Where
daList[2] was 6, it is now
equal to 2.

Python Methodologies for Data Sciences

We can also sort strings
with the sort() method.

Python Methodologies for Data Sciences

Yikes. Here’s a list with mixed data types. What happens when we try to
sort a list like this?

Python Methodologies for Data Sciences

We get an error. Remember when you sort a list they have to ALL be of the
same data type so Python knows they can be put in some kind of order.

Python Methodologies for Data Sciences

Why we care so much about sorting

As I said before, we care about sorting early in computer science
education because it is a good way to introduce the topic of
algorithm efficiency to students. We will do this too as we are
going to talk about Big O in a moment.

But there is another reason we care about sorting. When we have
a sorted list we know certain things about our data. This makes
searching through it for specific items easier. Let’s explore
searching...

Python Methodologies for Data Sciences

Searching

When we have large sets of data sometimes we want to search it to
see if certain items are in the list. We can search for names,
numbers, anything that resides in a list.

The easiest way to do it is to go into a loop and look for what you
are seeking. This is called a linear search. If we have a list of one
million items, the item we are seeking might be at the end of the
list so, at times, we’ll have to do a lot of searching or “look-ups” to
see if our item is there.

What if there were a way to find items more efficiently? That’s
where sorting comes into play...

Python Methodologies for Data Sciences

Binary Search

If I know my data is sorted I can play a computer
science version of the game High/Low.

 If I need to search a list that’s one million items long I
can look for my item in the middle of the list. As I
compare the search item to the middle item in the list I
can also check if it’s higher or lower than that item.
Because I have a sorted list this will instantly let me
discount HALF of my list! With one lookup I have cut
my search area down by 500,000 numbers! That’s
powerful.

 That’s the idea behind a search method called Binary
Search.

Python Methodologies for Data Sciences

Here’s a list where we search for eleven in a list
sixteen long. We go to the middle. Higher or
lower? It’s higher (11>8), so we discount the
bottom of the list and only search 9 thru 16.

We then look at thirteen. Now I’m lower. We
remove 13 through 16 and only have 9 through 12
to search now.

This process continues, cutting the existing list in
half each time we go through the loop. In only 5
lookups we have successfully searched a list 16
items long. Had we used linear search our worse
case scenario would have been 16 lookups. That’s
a big savings in efficiency.

Python Methodologies for Data Sciences

Do not start typing, the code to the right is in your
Unit 4 resource folder.

This is a binary search executed in Python. Read it
and follow what it’s doing. Trace through it and
understand it.

I create a list of numbers from 1 to 999999 and
search for the last number. In a linear search that
would be a million lookups.

With binary search, by cutting the list in half every
time I search, we can cut that down to just 20
lookups. That’s the power of sorted data. Look at
the next slide...

Python Methodologies for Data Sciences

I show the end of my
output to the right here.

In twenty lookups I
have found my number.

This is very efficient,
especially when
compared with a one
million lookup linear
search. We will look at
this efficiency when we
discuss Big O in a
moment.

Python Methodologies for Data Sciences

Grab the code from the resource folder and
play around with a few different searches.
Make the range bigger and see how many
lookups it takes to find a number.

If you want, code up a linear search for the
same problem and compare the two.

(Guessing this will happen in a YouTube
video methinks...)

Python Methodologies for Data Sciences

When we look at efficiency we often
discuss the worst and best case scenario
for the workings of algorithms. With a list
of 500 elements, an 8 step binary search is
nearing a worst case scenario. Still, this is
incredibly efficient when compared to
linear search.

Python Methodologies for Data Sciences

Here we see a best case scenario for a
binary search. With a linear search
we’d need 250 lookups to find 250.
here we get it on the first lookup.

When our data is sorted it tells us
something important about the format
of our data that allows us to use
algorithms that save incredible
amounts of time and work.

It’s easy for me to say it, now let’s be
more rigorous about these facts.

Python Methodologies for Data Sciences

Remember, we cared about
sorting not just for searching
but because it’s a good way
to show beginning
programmers that different
algorithms have different
efficiencies, especially when
the input becomes bigger.

This leads us to the analysis
of algorithms and Big O.

Python Methodologies for Data Sciences

Big O

Python Methodologies for Data Sciences

Do you know your NBA history? Me too. We’
re not talking about this Big O though...

Do you watch anime? Me too. But
we’re not talking about this Big O
either....

Python Methodologies for Data Sciences

Big O is just the notation used by programmers when they examine how efficient their algorithms are as their inputs get
bigger. That’s it. End of story. It’s nothing confusing or crazy. People ascribe all kinds of crazy things to Big O, but
it’s rather simple.

The O come the word Order in “Order of Magnitude.” That’s because when we look at algorithms we don’t sweat the
small stuff and usually just look at the largest term (if we have a polynomial) so when we look at O(n) or O(1) we’re
dealing with different levels, not things that are close to each other. Big O is just a function that maps the number of
items in a list versus the number of operations needed to search or examine the list in a “worst case” scenario.

If I have a task that takes the same amount of time no matter what my input is that’s O(1) or constant. When I have a
task that maps one to one with the size of my data, that’s O(n). This is the Big O for a Linear search. If we have 1,000
items then we may have 1,000 operations in a worst case.

Python Methodologies for Data Sciences

Here are some of the Big O
complexities graphed out for
us.

The algorithms we’ve been
dealing with are fairly efficient
when you look here. Our
Binary Search has Big O -> O
(log n); it’s better than linear as
we have shown.

A Computer Scientist’s
nightmare is O(n!). That’s
what’s called combinatorial
explosion, and most of these
problems are unsolved because
they are what’s called
“intractable.” That’s geek for
“too big to handle.”

Python Methodologies for Data Sciences

Even with small inputs an
algorithm with Big O of O(n!)
gets out of control.

There is a famous computer
science problem called the
Travelling Salesman Problem
or TSP. TSP has Big O of O
(n!).

These problems are not
unsolvable because theory tells
us they cannot be solved (there
are things that computers can’t
solve...), this is unsolvable
because there is not enough
memory or time in the universe
to do so. That’s a big, scary
problem, yeah?

Python Methodologies for Data Sciences

https://en.wikipedia.org/wiki/Big_O_notation

Suffice it to say that Big O is important in that we want to make sure
that when we use computers and algorithms to solve problems that they
are efficient. This is the way we analyze algorithms in Computer
Science.

There are other ways to examine problems and algorithms but they deal
with a field called complexity. In complexity studies we look at the
constraints of memory (space) and how many operations we need
(time) and examine things that way.

Want a million dollars? Solve the P vs NP problem at the Clay
Mathematics Institute, it’s the biggest unsolved problem in complexity
and in all of computer science.

Python Methodologies for Data Sciences

Okay: Sorting, searching, Big O; you
have a bunch to soak in.

Take a break for a while and then
come back for the mind bending fun
that is...

 Recursion!

Python Methodologies for Data Sciences

Recursion

Python Methodologies for Data Sciences

Python Methodologies for Data Sciences

Again, I know I sound like a broken record, but people make a bigger deal out of recursion
than they have to.

Recursion, in computer science, refers to a function that, in the body of said function,
refers to and calls itself. It’s self-referential. If you study math or know who Bertrand
Russell is you know how much trouble that can get you into, but we will always give our
functions a way to get out.

The two main things we have to do when we learn about recursion are:

Understand how functions work (we’re taking advantage of this)

Learn to spot problems that can be broken down into the same operation applied over a list
in a “self-similiar” way.

This sounds nuts, huh? Let’s look at an example.

Python Methodologies for Data Sciences

To the right I have a program that figures out
factorial values (4! = 4 * 3 * 2 * 1). Look in the
function myfact(). In the last line, the function
refers to itself and calls itself with the original
parameter minus 1.

At first this seems weird, but it’s not. The function
that’s called is just a fresh copy of the same
function you are in. That’s all. You create a new
function run in memory that returns to the previous
function when it’s done. That’s it.

Eventually you will get to the point where n == 0
and does not self refer. Then, all the values will
cascade down as they return their values.

Python Methodologies for Data Sciences

Look at this diagram of factorial for 6.
This is a good way to think about a
recursive operation.

All we are doing is extracting the top
number and then running the procedure
on the smaller list of numbers left behind.

Once we get to the 1 we begin to multiply
as we go back to the original function call.

This all makes sense, as factorial can be
defined as “n multiplied by the factorial of
n - 1.”

Python Methodologies for Data Sciences

Here’s the results. Recursion is something that
takes time to get and seeing the answers doesn’t
always help. Recursion works because of the
behind the scenes. It works because it essentially
does the following:

1. Make the list smaller
2. Run the operation again (the function call)
3. Repeat until list is done (tail condition)
4. As the functions all return your answer is

crafted.

Python Methodologies for Data Sciences

The Secret Sauce

In CS we almost always teach recursion with Factorial as an
example (some use Fibonacci) and I do understand why (I
mean, I just did it), but then most people stop there. CS
teachers do not realize that most people are not familiar with
factorials and the whole idea of teaching recursion should be
showing someone a NEW way of doing something they are
already used to doing. Enter multiplication.

I use multiplication because you have been intimate with this
operation since you were in third grade. That, and I think you
need to see more than one example. Look to the right and see
how I implement multiplication with recursion.

Python Methodologies for Data Sciences

The secret sauce cont.

Multiplication is just a series of additions, remember? When I
call 7,3 I think of 7+7+7. That’s perfect for recursion. Save
the one seven and send the smaller list (7+7 in this instance) to
the same function (with a mult(7,2)).

When you call mult(7,1) then times will be 1. This is your tail
condition. You’ll return 7 to a function that adds 7 to it and
then that function returns 14 to a function that adds 7 to it and
returns 21 to the original call.

Look at this carefully and understand how it works before you
move on. That sounds like some silly teacher thing to say, I
know. I want you to do it though because when you get it,
when you have that “eureka” recursion moment and understand
what it’s about, it’s awesome and I want you to get there.

Python Methodologies for Data Sciences

You will not be left hanging. Recursion
is something that is best learned by
seeing it done. I will be doing an entire
video dedicated to just this and we will
be live coding recursive functions during
our October 28th in-class meeting.

 Make sure you are there!

Python Methodologies for Data Sciences

Python Methodologies for Data Sciences

Matplotlib and Simple Graphs

Python Methodologies for Data Sciences

http://matplotlib.org/

Now we’re getting somewhere. We are going to venture into
the world of third party libraries this week. We are going to
load and use a package called “Matplotlib.” It’s a series of
functions, classes and methods that allow us to craft
visualizations with our data. It mimics much of the
functionality of MATLAB.

 You will find that programmers are a cheap lot (me included,
FREEEEE). Why pay a lot of money for software when we’re
able to create it for ourselves? Because of this it’s often a
good idea to see if there is a freeware solution to the things
you’d like to use. It also allows for customization (you do
know Python now) that is not available when you use
commercial proprietary software.

Python Methodologies for Data Sciences

Now, we have one issue. Sometimes loading these third
party libraries can be a pain for beginning programmers.

 Packages often rely on you having loaded other packages
beforehand. These requirements are called “dependencies”
and you may as well get used to them now.

 Matplotlib has a few, not the least of which is NUMPY, one
of the most popular Python libraries for math and science
programming (so it’s good you have it.) so we have to load
this library too.

 I will discuss the process of loading matplotlib when we
meet on October 28th so make sure you’re there.

You can try to load matplotlib on your system
before we meet, but be wary of 32 vs 64 bit systems
and make sure you download a copy that works with
your version of Python!

Python Methodologies for Data Sciences

As you may have discovered, often the hardest part about
using third party libraries is getting them installed and
working properly. Once that’s done they are often easy to
use though.

 Look to the right and you can see a simple program to plot
the log of n as n goes from 1 to 1000...

Notice that we import differently here. It’s not because of
matplotlib or NUMPY, it’s to show you some new ways to
use import.

 The first import is just importing NUMPY but telling
Python we want to refer to it as “np”. That’s all. The
second import is just a way to import a sub library. A sub
library is a module that resides inside a directory, in this
case the top level directory is called matplotlib.

Python Methodologies for Data Sciences

When we run the code we
get a plot of our data!

Check out the URL under
the graph for examples of
all the graphs you can
make with matplotlib.

 After that take some time
with the pyplot tutorial.
Now that you understand
Python you can avail
yourself of these kinds of
resources!

http://matplotlib.org/gallery.html

http://matplotlib.org/users/pyplot_tutorial.html

Python Methodologies for Data Sciences

The Orphans

Python Methodologies for Data Sciences

Dictionaries
In addition to the previously seen Lists, Python has another
container built into it: the Dictionary.

With Lists, the only ways to access an item were to iterate across
the entire list, or remember exactly at what spot the item was at.
You were only able to index your list with integer numbers.

But with Dictionaries, you can index with
anything. A dict is what we call an
“associative list” or a “key-value store.” It
works just list a list, but associates one
value with another, rather than a location
with its value.

Try creating some code similar to the code
below. What happens if we try to access
the author by book? Or the pair by
position? (Hint: Bad things)

Python Methodologies for Data Sciences

The other great thing about dicts is that we can
create associations on the fly:

Dictionaries operate as a key-value store,
where the key is what you can use to access
the value.

Python Methodologies for Data Sciences

Exception Handling

Sometimes, errors are bound to happen,
and we can’t predict everything. When
something goes wrong in our program,
we usually don’t want the whole thing to
crash violently; we should at least let the
user (or the programmer) know what
went wrong and exit gracefully!

To solve these problems, we have
exception handling and try-except blocks.

Python Methodologies for Data Sciences

In except blocks, we can catch specific errors to
deal with each one separately. We can give our
errors names like variables using the as keyword,
so we can print out our error messages.

An except block that does not specify an error
will catch any error (so this except block should
always go last, as Python checks errors in the
order you specify). This is our default case.

For a list of possible errors to catch, see:
https://docs.python.org/2/library/exceptions.html

And note that you can raise exceptions yourself
too!

https://docs.python.org/2/library/exceptions.html
https://docs.python.org/2/library/exceptions.html

Python Methodologies for Data Sciences

To sum things up

 This Unit was a tour of some Computer Science concepts that I wanted you to be aware of. They will serve
you well as continue your journey down the road to becoming a productive programmer. I do not expect you to
become experts in any of these topics. I want you to be exposed to them, play around with them and to continue
to explore the ones that you find interesting or that you think you can use in your programs (Dictionaries are
used quite often in Python).

 Sorting and searching, Big O, recursion, using third party modules and being aware of dictionaries and
exception handling are all powerful tools for you to have in your Python toolbox. As you can see we are slowly
but surely leaving the world of learning the syntax of Python and getting more into the realm of learning HOW
to use the Python we’ve learned. This is higher level stuff. It’s learning new discrete problem solving
techniques and then merely using Python to implement them. It’s a big time step.

Python Methodologies for Data Sciences

Other cool resources

http://docs.python-guide.org/en/latest/
This is not a tutorial, you’re done with that.
this is about writing good code, structure,
scraping the web, some next level stuff. Check
it out.

Python Methodologies for Data Sciences

I know, I know...

This is the section where I apologize for not getting to something that was promised in the
Syllabus. This week we finally got to Dictionaries and Exception handling, but at the
expense of Object graphics and Event Driven programming.

 I will do some graphics in Unit 5 (it makes sense, you’ll see) and we’ll look at Event
Driven programming in Unit 6 when we look at some Data Structures, Design patterns and
higher level stuff.

Python Methodologies for Data Sciences

A few simple exercises

Zelle -

 Page 463 - Do the Palindrome problem, # 3

 Write the Anagram program from page 437

 Code up the Selection Sort from page 444

