Understanding BGP Misconfiguration

Ratul Mahajan David Wetherall Tom Anderson

University of Washington

Motivation

^u BGP instabilities have widespread impact

- ^u Misconfigurations can be a leading cause of unreliability
 - BGP is complex to configure
 - Known major incidents
- u Little is known about misconfiguration in BGP
 - Only anecdotal evidence
- ^u Use our experience to avoid future mishaps

Understanding BGP misconfiguration

^u A systematic study to understand the problem

- How common are misconfigurations?
- What is their impact on connectivity and routing load?
- Why do they happen?
- How can we stop them?

u Approach

- Leverage global visibility of BGP actions to detect misconfigs
 § Data from 23 BGP speakers in the backbone
- Obtain operator feedback through an email survey

Border Gateway Protocol (BGP)

BGP Misconfiguration

- u No universally accepted list of "Dos & Don'ts"
- ^u Defined as behavior unintended by the operator
 - Includes both *slips* (inadvertent errors) and *mistakes* (erroneous plan)
- ^u We study two broad classes of globally visible faults
 - Origin misconfiguration
 - Export misconfiguration

BGP Misconfiguration (2)

Methodology

- Analyze updates from 23 BGP speakers for 21 days [route-views]
 - Rich view of backbone routing
 - Ability to observe even very short-lived events
- u Identifying misconfiguration
 - IRRs are inaccurate or outdated
 - Instead use signature of misconfigs in the update stream
 - S Policy changes have similar signature but bigger timescales

Methodology (2)

- 1. Identify short-lived (< 24hrs) changes as *potential* misconfigs
 - Origin misconfiguration
 - Short-lived new route new prefix or new origin for a prefix
 - Export misconfiguration
 - Short-lived AS-path that violates policy
 - Infer AS relationships using Gao's heuristics
- 2. Email verification through operators
 - Was it a misconfig? Connectivity disrupted? What caused it?
- 3. Use email responses to discover underlying causes
- u Test connectivity using public traceroute servers
 - Coarse independent verification of email responses

Results: Origin misconfiguration

	Potential misconfigs per day	Email responses (% of potential)	Misconfigs (% of email)	Connectivity (% of misconfigs)
Prefixes	605	352 (58%)	339 (96%)	13 (4%)
Incidents	178	52 (29%)	45 (86%)	6 (13%)

- ^u Misconfiguration detection accuracy is high
- ^u Large number of misconfigurations
 - Extrapolated estimate is 580 (605 * 0.96) prefixes per day
 - 3 in 4 new routes seen in a day result from misconfigs
- ^u Most misconfigurations don't disrupt connectivity

Results: Export misconfiguration

	Potential misconfigs per day	Email responses (% of potential)	Misconfigs (% of email)	Connectivity
Paths	96	64 (66%)	61 (96%)	-
Incidents	35	12 (36%)	10 (86%)	-

- ^u Misconfiguration detection accuracy is high
- ^u Almost no impact on connectivity
 - But congestion experienced

Routing load

- ^u Defined as fraction of updates due to misconfigs
 - = (bad updates) / (total updates)

Some misconfigs cause extreme short-term routing load

Causes: Origin misconfiguration

- ^u Faulty redistribution (32% prefixes/ 5% incidents)
 - Errors in propagating IGP routes into BGP
- u Initialization bug (22% / 5%)
 - Leaking routes temporarily during boot-up or maintenance
- u Reliance on upstream filtering (14% / 46%)
 - Announcing routes assuming upstream would filter them
- u Hijacks (1% / 6%)
 - Announcing somebody else's address space
- u Old configuration (1% / 4%)
 - Reactivation of stale configuration

Prefix based (mis)configuration

 Prefix based configuration was responsible for 22% of the export misconfig incidents

Intended policy at A: Provide transit of C through link A-C

Configuration: Export all prefixes originated by C to P1 and P2

The misconfiguration is exposed when the link A-C fails

Fixes (largely speculative)

- u User interfaces
 - Basic principles need to be followed
 - High-level configuration tools built into the routers
- u Configuration checker
- u Automated verification
- ^u Expose errors
- ^u Appropriate configuration semantics
- ^u Consistent databases and updated registries

Conclusions

- ^u Misconfigurations are commonplace
- Connectivity is surprisingly robust to most misconfigs but routing load can be significant
- ^u The causes of misconfigurations are diverse
 - Much needs to be done to improve the operational reliability of the Internet

On email surveys

- Don't worry. That was a configuration error of our upstream ISP.
- Yes, we know this is not a recommended way of doing things; but the packet monster of the internet must be fed.
- I am writing to thank you for your letter and say that I am glad that someone apart from me is interested in our BGP announcements.
- ^u Hope you enjoy living in Seattle; it's a beautiful city.