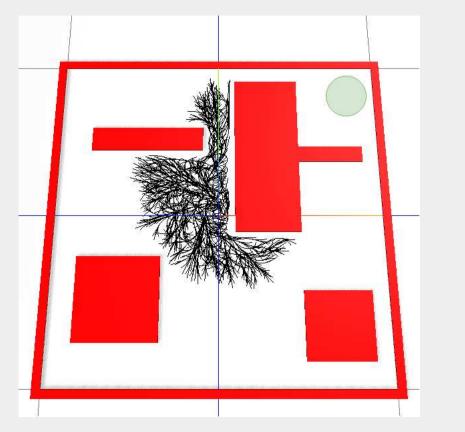
Learning Efficient Maneuver Sets for Kinodynamic Motion Planning Aravind Sivaramakrishnan, Zakary Littlefield and Kostas E. Bekris Department of Computer Science, Rutgers, the State University of New Jersey

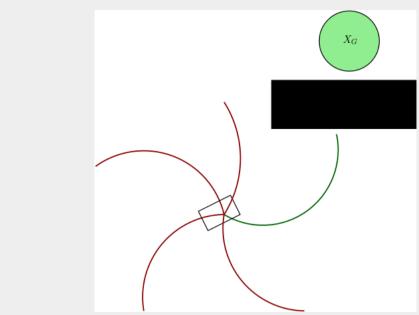
Motivation

- Objective: Improve the per iteration performance of a kinodynamic planner.
- **Key idea**: Instead of random propagation, compute local maneuvers that balance an exploitation-exploration trade-off
- Exploitation maneuvers guide the system towards the goal given local heuristic information
- Exploration maneuvers move the system in different directions to deal with situations where heuristic does not provide good guidance.



Informed maneuvers navigate the robot (center) to the goal (green) while exploring the workspace.

Motion planning with curated maneuvers



From a large set of random maneuvers, the exploitative (green) maneuver minimizes heuristic to the goal (green). Explorative (red) maneuvers are obtained iteratively by maximizing the dispersion to previously curated maneuvers [2].

First solution statistics between DIRT using random and curated maneuvers:

	Iteration	Time	Path Cost
Random	1471	0.2	50.47
Curated	686	12.15	48.13

- Very effective in finding a high-quality solution in fewer number of iterations
- Prohibitive to compute online
- **Goal:** Develop a data-driven approach that achieves the same objective as the curation but can generate the maneuvers fast.

Input to the learning process

- A regular set of points X_{local} in the vicinity of x_0 are collision checked to generate a binary 2D map **O**_{local} indicating the presence of obstacles in the workspace.
- For the heuristic h(x) is also evaluated at each $x \in X_{local}$, resulting in a 2D matrix **h**_{local}.

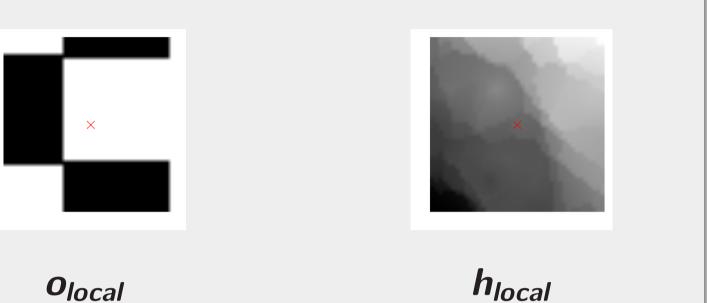
Proposed architecture

- Multi-layered neural networks F_x, F_o, F_h act on the inputs to produce $x_0^*, o_{local}^*, h_{local}^*$.
- An operator $M_0(x_0^*, o_{local}^*, h_{local}^*)$ produces feature vector x_f^0 .
- Fixed Exploitative control u^0 is obtained as $u^0 = F^0(x_f^0)$, where F^0 is also a neural network.
- Remaining N exploratory controls are obtained as follows.

$$x_f^k = M_k(x_f^0, U_{k-1})$$
$$u^k = F^k(x_f^k)$$

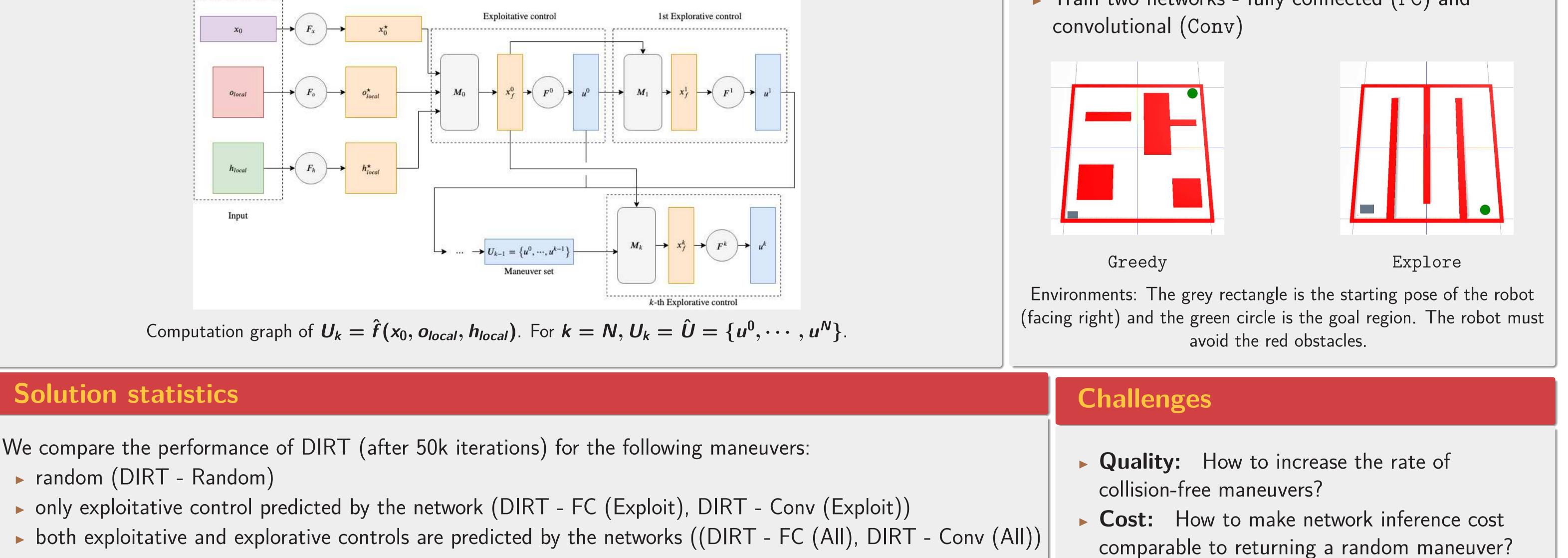
where for all $k \ge 1$, $U_k = \{u^0, u^1, ..., u^{k-1}\}$. For the exploitative control (k = 0), U_{k-1} is the empty set.

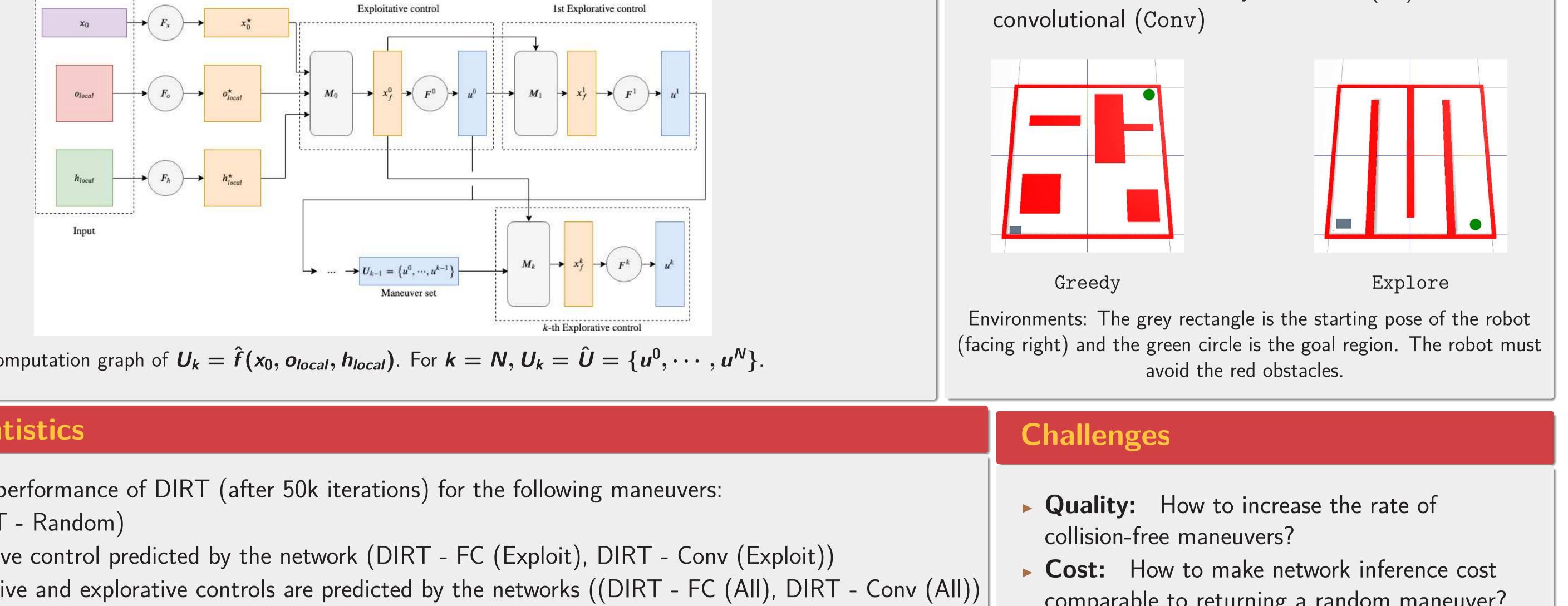
Experimental Setup



Treaded vehicle with 5 dim. state space (SE(2) augmented by steering angle and forward velocity) and 2 dim. control space (acceleration of left and right treads) used in our experiments.

- Randomly place obstacles in the workspace so they cover one-third of the reachable workspace.
- Execute the DIRT planner [1] with the online curation procedure on multiple problem instances in such workspaces.
- Euclidean distance to the goal in the workspace is used as the heuristic function.
- For each node x_0 the planner selects to propagate, store o_{local} and h_{local} maps, and maneuver set \hat{U} of size 5 curated from 1000 randomly sampled maneuvers.
- Train two networks fully connected (FC) and





Algorithm	NumSolns	FirstSolnIters	FirstSolnCost	FinalSoInIters	FinalSolnCost
DIRT - Random	30	3446.67	59.64	23277.57	49.44

DIRT - FC (Exploit)	30	2246.67	56.54	17050.37	49.89
DIRT - FC (All)	30	620	47.58	16921.5	45.47
DIRT - Conv (Exploit)	30	3366.67	65.03	27774.67	48.38
DIRT - Conv (All)	30	2006.67	54.8	25671.07	48.16

Solution statistics for Greedy. All values are averaged over NumSolns. Best values highlighted in bold.

Algorithm	NumSolns	FirstSolnIters	FirstSolnCost	FinalSolnIters	FinalSolnCost
DIRT - Random	30	15666.67	163.60	33254.13	149.47
DIRT - FC (Exploit)	29	12000	155	31794.86	140.06
DIRT - FC (All)	30	18766.67	133.83	28119.66	130.92
DIRT - Conv (Exploit)	29	27666.67	182.16	39924.96	172.14
DIRT - Conv (All)	30	14066.67	143.71	28194.83	139.43

Solution statistics for Explore. All values are averaged over NumSolns. Best values highlighted in bold.

environments?

Uncertainty: How to deal with more realistic sensing input?

Data efficiency: How to deal with higher

dimensional systems and more complex

References

1. Littlefield, Z., and Bekris, K. E. 2018. Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions. In IROS.

2. Green, C.J., and Kelly, A. 2007. Toward optimal sampling in the space of paths. In *ISRR*.

{as2578, zwl2, kb572}@rutgers.edu